Регуляторные механизмы комплемента. Защитные функции комплемента


Комплемент - система сывороточных белков и нескольких белков клеточных мембран, выполняющих 3 важные функции: опсонизацию микроорганизмов для дальнейшего их фагоцитоза, инициацию сосудистых реакций воспаления и перфорацию мембран бактериальных и других клеток. Компоненты комплемента обозначают буквами латинского алфавита C, B и D с добавлением арабской цифры (номер компонента) и дополнительных строчных букв. Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (C1, C2 ... C9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (C1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b).

Активация комплемента В норме, когда внутренняя среда организма «стерильна» и патологического распада собственных тканей не происходит, уровень активности системы комплемента невысок. При появлении во внутренней среде микробных продуктов происходит активация системы комплемента. Она может происходить по трём путям: альтернативному, классическому и лектиновому.

- Альтернативный путь активации. Его инициируют непосредственно поверхностные молекулы клеток микроорганизмов [факторы альтернативного пути имеют буквенное обозначение: P (пропердин), B и D].

Из всех белков системы комплемента в сыворотке крови больше всего C3 - его концентрация в норме составляет 1,2 мг/мл. При этом всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 с образованием C3a и C3b. Компонент C3b - опсонин, т.е. он способен ковалентно связываться как с поверхностными молекулами микроорганизмов, так и с рецепторами на фагоцитах. Кроме того, «осев» на поверхности клеток, C3b связывает фактор В. Тот, в свою очередь, становится субстратом для сывороточной сериновой протеазы - фактора D, который расщепляет его на фрагменты Ва и Bb. C3b и Bb образуют на поверхности микроорганизма активный комплекс, стабилизируемый пропердином (фактор Р).

◊ Комплекс C3b/Bb служит С3-конвертазой и значительно повышает уровень расщепления С3 по сравнению со спонтанным. Кроме того, после связывания с C3 он расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (наиболее сильный) и C3a - анафилатоксины комплемента, т.е. медиаторы воспалительной реакции. Они создают условия для миграции фагоцитов в очаг воспаления, вызывают дегрануляцию тучных клеток, сокращение гладких мышц. C5a также вызывает повышение экспрессии на фагоцитах CR1 и CR3.

◊ С C5b начинается формирование «мембраноатакующего комплекса», вызывающего перфорацию мембраны клеток микроорганизмов и их лизис. Сначала образуется комплекс C5b/C6/ C7, встраивающийся в мембрану клетки. Одна из субъединиц компонента C8 - C8b - присоединяется к комплексу и катализирует полимеризацию 10-16 молекул C9. Этот полимер и формирует неспадающуюся пору в мембране, имеющую диаметр около 10 нм. В результате клетки становятся неспособными поддерживать осмотический баланс и лизируются.

- Классический и лектиновый пути сходны друг с другом и отличаются от альтернативного способом активации C3. Главной C3конвертазой классического и лектинового пути служит комплекс C4b/C2a, в котором протеазной активностью обладает C2a, а C4b ковалентно связывается с поверхностью клеток микроорганизмов. Примечательно, что белок C2 гомологичен фактору В, даже их гены расположены рядом в локусе MHC-III.

◊ При активации по лектиновому пути один из белков острой фазы - MBL - взаимодействует с маннозой на поверхности клеток микроорганизмов, а MBL-ассоциированная сериновая протеаза (MASP - Mannose-bindingprotein-Associated Serine Protease) катализирует активационное расщепление C4 и C2.

◊ Сериновой протеазой классического пути служит C1s, одна из субъединиц комплекса C1qr 2 s 2 . Она активируется, когда по крайней мере 2 субъединицы C1q связываются с комплексом антиген-антитело. Таким образом, классический путь активации комплемента связывает врождённый и адаптивный иммунитет.

Рецепторы компонентов комплемента. Известно 5 типов рецепторов для компонентов комплемента (CR - Complement Receptor) на различных клетках организма.

CR1 экспрессирован на макрофагах, нейтрофилах и эритроцитах. Он связывает C3b и C4b и при наличии других стимулов к фагоцитозу (связывания комплексов антиген-антитело через FcyR или при воздействии ИФНу - продукта активированных T-лимфоцитов) оказывает пермиссивное действие на фагоциты. CR1 эритроцитов через C4b и C3b связывает растворимые иммунные комплексы и доставляет их к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При нарушении этого механизма иммунные комплексы выпадают в осадок - прежде всего в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), приводя к развитию гломерулонефрита.

CR2 B-лимфоцитов связывает продукты деградации C3 - C3d и iC3b. Это в 10 000-100 000 раз увеличивает восприимчивость B-лимфоцита к своему антигену. Эту же мембранную молекулу - CR2 - использует в качестве своего рецептора вирус Эпштейна-Барр - возбудитель инфекционного мононуклеоза.

CR3 и CR4 также связывают iC3b, который, как и активная форма C3b, служит опсонином. В случае если CR3 уже связался с растворимыми полисахаридами типа бета-глюканов, связывания iC3b с CR3 самого по себе достаточно для стимуляции фагоцитоза.

C5aR состоит из семи доменов, пенетрирующих мембрану клетки. Такая структура характерна для рецепторов, связанных с G-белками (белки, способные связывать гуаниновые нуклеотиды, в том числе ГТФ).

Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.

- C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.

- DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.

- Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.

- Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на C4c и C4d.

- Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.

- Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.

Организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде , работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против некоторых микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был назван комплементом . Термин «комплемент» ввёл Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввёл в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы , которые служат для распознавания антигенов . Эти рецепторы мы сейчас называем «антителами » (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определённым антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешён в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путём протеолиза . Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путём расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс ещё больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Система комплемента работает как биохимический каскад реакций. Комплемент активируется тремя биохимическими путями: классическим, альтернативным и лектиновым путём. Все три пути активации производят разные варианты C3-конвертазы (белка, расщепляющего С3). Классический путь (он был открыт первым, но эволюционно является новым) требует антител для активации (специфический иммунный ответ, приобретённый иммунитет), в то время как альтернативный и лектиновый пути могут быть активизированы антигенами без присутствия антител (неспецифический иммунный ответ, врождённый иммунитет). Итог активации комплемента во всех трёх случаях одинаков: C3-конвертаза гидролизует СЗ, создавая C3a и C3b и вызывая каскад дальнейшего гидролиза элементов системы комплемента и событий активации. В классическом пути для активации С3-конвертазы необходимо образование комплекса С4bC2a. Этот комплекс образуется при расщеплении С2 и С4 С1-комплексом. С1-комплекс, в свою очередь, для активации должен связаться с иммуноглобулинами класса М или G. C3b связывается с поверхностью болезнетворных микроорганизмов, что приводит к большей «заинтересованности» фагоцитов к связанным с СЗb клеткам (опсонизация). C5a - важный хемоаттрактант, помогающий привлекать в район активации системы комплемента новые иммунные клетки. И C3a, и C5a имеют анафилотоксическую активность, непосредственно вызывая дегрануляцию тучных клеток (как следствие - выделение медиаторов воспаления). C5b начинает формирование мембраноатакующих комплексов (МАК), состоящим из C5b, C6, C7, C8 и полимерного C9. МАК - цитолитический конечный продукт активации системы комплемента. МАК формирует трансмембранный канал, вызывающий осмотический лизис клетки-мишени. Макрофаги поглощают помеченные системой комплемента болезнетворные микроорганизмы.

Фактор С3е, образующийся при расщеплении фактора С3b, обладает способностью вызывать миграцию нейтрофилов из костного мозга, и в таком случае быть причиной лейкоцитоза .

Классический путь запускается активацией комплекса С1 (он включает одну молекулу С1q и по две молекулы С1r и С1s). Комплекс С1 связывается с помощью С1q с иммуноглобулинами классов М и G, связанными с антигенами. Гексамерный C1q по форме напоминает букет нераскрытых тюльпанов, «бутоны» которого могут связываться с -участком антител. Для инициации этого пути достаточно единственной молекулы IgM , активация молекулами IgG менее эффективна и требует больше молекул IgG.

С1q связывается прямо с поверхностью патогена, это ведет к конформационным изменениям молекулы С1q, и вызывает активацию двух молекул сериновых протеаз С1r. Они расщепляют С1s (тоже сериновую протеазу). Потом комплекс С1 связывается с С4 и С2 и затем расщепляет их, образуя С2а и С4b. С4b и С2а связываются друг с другом на поверхности патогена, и образуют С3-конвертазу классического пути, С4b2а. Появление С3-конвертазы приводит к расщеплению С3 на С3а и С3b. С3b образует вместе с С2а и С4b С5-конвертазу классического пути. С5 расщепляется на C5a и C5b. C5b остается на мембране и соединяется с комплексом C4b2a3b. Потом соединяются С6, С7, С8 и С9, которая полимеризуется и возникает трубочка внутри мембраны. Тем самым нарушается осмотический баланс и в результате тургора бактерия лопается. Классический путь действует более точно, поскольку так уничтожается любая чужеродная клетка.

Альтернативный путь запускается гидролизом C3 прямо на поверхности патогена. В альтернативном пути участвуют факторы В и D. С их помощью происходит образование фермента СЗbBb. Стабилизирует его и обеспечивает его длительное функционирование белок P. Далее РС3bBb активирует С3, в результате образуется С5-конвертаза и запускается образование мембраноатакующего комплекса. Дальнейшая активация терминальных компонентов комплемента происходит так же, как и по классическому пути активации комплемента. В жидкости в комплексе СЗbBb В заменяется Н-фактором и под воздействием дезактивирующего соединения (Н) превращается в С3bi. Когда микробы попадают в организм, комплекс СЗbBb начинает накапливаться на мембране, катализируя реакцию ращепления С3 на С3b и С3а, значительно увеличивая концентрацию С3b. К комплексу пропердин+С3bВb присоединяется еще одна молекула С3b. Образовавшийся комплекс расщепляет С5 на C5a и C5b. C5b остается на мембрае. Происходит дальнейшая сборка МАК с поочередным присоединением факторов С6, С7, С8 и С9. После соединения С9 с С8 происходит полимеризация С9 (до 18 молекул сшиваются друг с другом) и образуется трубочка, которая пронизывает мембрану бактерии, начинается закачка воды и бактерия лопается.

Альтернативный путь отличается от классического следующим: при активации системы комплемента не нужно образование иммунных комплексов, он происходит без участия первых компонентов комплемента - С1, С2, С4. Он также отличается тем, что срабатывает сразу же после появления антигенов - его активаторами могут быть бактериальные полисахариды и липополисахариды (являются митогенами), вирусные частицы, опухолевые клетки.

Лектиновый путь гомологичен классическому пути активации системы комплемента. Он использует лектин, связывающий маннозу, (MBL) - белок, подобный C1q классического пути активации, который связывается с маннозными остатками и другими сахарами на мембране, что позволяет распознавать разнообразные болезнетворные микроорганизмы. MBL - сывороточный белок, принадлежащий к группе белков коллектинов, который синтезируется преимущественно в печени и может активировать каскад комплемента, непосредственно связываясь с поверхностью патогена.

В сыворотке крови MBL формирует комплекс с MASP-I и MASP-II (Mannan-binding lectin Associated Serine Protease, связывающие MBL сериновые протеазы). MASP-I и MASP-II весьма схожи с C1r и C1s классического пути активации и, возможно, имеют общего эволюционного предшественника. Когда несколько активных центров MBL связываются определенным образом c ориентированными маннозными остатками на фосфолипидном бислое болезнетворного микроорганизма, MASP-I и MASP-II активируются и расщепляют белок C4 на C4a и C4b, а белок С2 на C2a и C2b. Затем C4b и C2a объединяются на поверхности болезнетворного микроорганизма, формируя C3-конвертазу, а C4a и C2b действуют как хемоаттрактанты для клеток иммунной системы.

Система комплемента может быть очень опасной для тканей хозяина, поэтому её активация должна хорошо регулироваться. Большинство компонентов активны только в составе комплекса, при этом их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом комплекса, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то из компонентов ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям. Система комплемента регулируется специальными белками, которые находятся в плазме крови даже в большей концентрации, чем сами белки системы комплемента. Эти же белки представлены на мембранах собственных клеток организма, предохраняя их от атаки со стороны белков системы комплемента.

Система комплемента играет большую роль во многих болезнях, связанных с иммунитетом.

При болезнях иммунных комплексов комплемент провоцирует воспаление главным образом двумя путями:

Уже в первые часы после заражения геморрагической лихорадкой Эбола система комплемента блокируется

Термин «комплемент» впервые был предложен Borclet в результате наблюдения, что для реализации ряда иммунологических эффектов (гемолиз, бактерицидность) наряду с антителами необходим сывороточный фактор, разрушающийся при нагревании до +56°С. За 70 лет изучения комплемента было установлено, что он представляет собой сложную систему из 11 сывороточных белков, активность которых регулируется по меньшей мере таким же количеством факторов. Комплемент представляет собой систему каскадно действующих высокоэффективных протеаз, которые последовательно активируются за счет отщепления или присоединения пептидных фрагментов и в конечном счете приводит к бактериолизису или цитолизу. По сложности система комплемента сопоставима с системой свертывания крови, с которой связана, как и с системой кининов, функциональными связями. В филогенезе система комплемента появилась раньше иммунной системы. Онтогенетически это проявляется в том, что уже 6-недельный плод способен синтезировать отдельные компоненты системы, а с 10-й недели можно выявить гемолитическую активность синтезированных факторов, хотя нормальные концентрации всех С-компонентов определяются только в течение первого года после рождения. Из общего количества сывороточных белков на систему комплемента приходится около 10%. Она является основой защитных сил организма. Функциональные дефекты системы комплемента могут приводить к тяжелым рецидивирующим инфекциям и патологическим состояниям, обусловленным иммунными комплексами. Существует прямая функциональная связь между системой комплемента и фагоцитарной системой, поскольку прямое или опосредованное через антитела связывание компонентов комплемента с бактериями является необходимым условием фагоцитоза (опсонизация микроорганизмов). Комплемент - это доминирующий гуморальный компонент реакции воспаления, поскольку его продукты являются хемотаксинами и анафила-токсинами, оказывающими выраженное воздействие на фагоциты, обмен веществ и систему свертывания крови. Таким образом, комплемент относят к важным элементам системы резистентности, а также эффективного звена гуморального иммунитета. Кроме того, система комплемента включает важные факторы регуляции иммунного ответа.

Синтез и метаболизм С-факторов . Образование С-факторов происходит преимущественно в печени, костном мозге и селезенке. Особое положение занимает С1, который синтезируется, по-видимому, в эпителии тонкого кишечника. Макрофаги играют определяющую роль в синтезе компонентов комплемента, что отражает тесную филогенетическую связь между этими двумя системами. Непрерывное использование С-факторов в организме и высокий уровень их катаболизма определяют необходимость их непрерывного синтеза, причем скорость синтеза относительно высока. Для С3, например, ежечасно синтезируется 0,5-1,0 мг белка на 1 кг веса. Как активация и ингибирование, так и потребление и синтез находятся в лабильном равновесии. При этом сывороточные концентрации отдельных факторов, с одной стороны, и содержание фрагментов и продуктов расщепления - с другой, дают возможность оценить состояние и уровень активации всей системы.

С-факторы состоят, как правило, из нескольких полипептидных цепей. С3, С4 и С5 синтезируются в виде одной полипептидной цепи, в результате протеолитического расщепления которой образуются либо С3 и С5, либо только С4. Полипептидные цепи С1 и С8 синтезируются раздельно. Глюкозилирование осуществляется непосредственно перед секрецией и является необходимой предпосылкой этого процесса.

Снижение синтеза компонентов комплемента наблюдается при тяжелых заболеваниях печени, уремии и использовании высоких концентраций кортикостероидов, затрагивая преимущественно С3, С4 и С5. Сниженная концентрация С3 в сыворотке определяется также при хронической иммунокомплексной патологии за счет активации альтернативного пути с усиленным расходом этого компонента. Одновременно может происходить снижение синтеза этого компонента, что свидетельствует о существовании отрицательной обратной связи регуляции его синтеза через C3d.

Механизмы активации системы комплемента . Активация после начального этапа может развиваться в нескольких направлениях:

Классический путь активации комплемента, начиная с С1;

Альтернативный путь активации комплемента, начиная с С3;

Специфическая активация комплемента с образованием различных продуктов расщепления.

I. Классический путь активации системы комплемента. Классический путь активации комплемента - это иммунологически обусловленный процесс, инициированный антителами. Иммунологическая специфичность обеспечивается взаимодействием антител с антигенами бактерий, вирусов и клеток. Реакция антиген-антитело связана с изменением конфигурации иммуноглобулина, что приводит к формированию места связывания для Clq на Fc-фрагменте вблизи шарнирного участка. Связываться с С1 могут иммуноглобулины. Активация С1 происходит исключительно между двумя Fc-фрагментами. Поэтому каскад активации может быть индуцирован даже одной молекулой IgM. В случае антител IgG необходимо соседство двух молекул антител, что накладывает жесткие ограничения на плотность эпитопов антигенов. В связи с этим IgM является гораздо более эффективным инициатором цитолиза и иммунной опсонизации, чем IgG. Количественно эта оценка соответствует величине 800:1. Сам процесс активации комплемента можно разделить на определенные этапы:
1- распознавание иммунных комплексов и образование С1;
2 - образование С3-конвертазы и С5-конвертазы;
3 - образование термостабильного комплекса С5b, 6,7;
4 - перфорация мембраны.

Перфорация мембраны . Каждый образовавшийся комплекс С5b, 6,7 независимо от связывания с мембраной или экранировки S-белком соединяется с 1 молекулой С8 и 3 молекулами С9. Свободный С5b-С9-комплекс действует гемолитически, тогда как комплекс с S-белком этим действием не обладает. Два ассоциированных с мембраной С5b-С9-комплекса образуют в мембране кольцевую пару, что приводит к резкому изменению осмотического давления в клетке. Если эритроциты высокочувствительны к образованию такого дефекта мембраны, то ядросодержащие клетки способны к репарации дефектов этого типа и обладают определенной резистентностью к атаке комплемента. В связи с этим определяющим при взаимодействии комплемента с мембраной является общее количество связавшихся с клеткой молекул Clg, которое зависит от количества и класса связавшихся с клеткой антител. Среди бактерий существуют виды, устойчивые к действию комплемента. В этом случае решающим оказывается эффект опсонизации микроорганизмов с последующим фагоцитозом. Определенную роль при атаке комплементом грамотрицательных бактерий играет лизоцим. Некоторые особенности активации комплемента вытекают из общих закономерностей и определяются начальной активацией С1 растворимыми или преципитированными иммунными комплексами. Реакция протекает идентично вплоть до образования комплекса С5b, 6,7, что приводит к продукции хемотаксических факторов и анафилатоксинов. Аналогичные процессы происходят при внутривенном введении агрегированного IgG. Клинические проявления при этом могут варьировать от сывороточной болезни до анафилактического шока. Сочетание в составе растворимых иммунных комплексов Fc-фрагментов с адгезивными компонентами С5b, 6,7 может приводить к их отложению на клетках эндотелия и ассоциации с клетками крови, обусловливая целый ряд системных поражений. Такие иммунокомплексные механизмы создают основу для аллергических реакций типа III, каскада реакций активации комплемента, лавинообразному вовлечению в реакцию компонентов комплемента с нарастанием количества фармакологически активных фрагментов.

Альтернативный путь активации комплемента . При альтернативном пути активации комплемента в реакциях не участвуют факторы С1, С4, С2. Активация начинается при расщеплении С3 на фрагменты С3а и С3b. Дальнейшее течение процесса идентично классическому пути.

Pillemer впервые описал Mg+ зависимую «систему пропердина», в которой С3 был активирован зимозаном (полисахаридом) без участия антител. Другие нерастворимые полисахариды также могут выступать в роли активаторов (инулин, высокомолекулярный декстран), кроме того, активаторами могут служить бактериальные эндотоксины, агрегированные IgG4, IgA и IgE, иммунные комплексы с F фрагментами, протеазы (плазмин, трипсин), фактор яда кобры, С3b. При альтернативном пути активации действуют две С3-конвертазы. С3Вb обладает незначительной активностью и появляется при взаимодействии С3 с В, D и пропердином. С3Вb отделяет незначительное количество С3b, которое ведет к образованию высокоактивной конвертазы С3b, результатом действия которой является С3b. Возникает положительная обратная связь, значительно усиливающая реакцию. Подавление такого самопроизвольного усиления осуществляется за счет С3b-INA, который ингибирует образующийся в растворимой форме С3b. Фактор яда кобры является функциональным и структурным аналогом С3b, однако не ингибируется С3b-INA. Эндотоксины и полисахариды активируют пропердин и тем самым создают условия для связывания и стабилизации С3b, который ингибируется С3b-INA только в свободном состоянии. Определяющим этапом в альтернативном пути активации является образование С3b, который переносится на активированную поверхность. Процесс начинается связыванием С3b с В, причем этот этап зависит от присутствия Mg2+. С3bВ активируется за счет D в комплекс С3b Вb. Пропердин связывает С3b и таким образом стабилизирует спонтанно диссоциирующий комплекс Вb. Специфическим ингибитором альтернативного пути является В1Н. Он конкурирует с фактором В за связь С3b, вытесняя его из комплекса С3bВ и делая С3b доступным для действия С3b-INA. Цитолитическая активность альтернативного пути полностью определяется свойствами оболочки микроорганизмов и клеточной мембраны. Гликопротеины и гликолипиды, содержащие концевые остатки сиаловой кислоты придают мембране устойчивость к действию активированного по альтернативному пути комплементу, тогда как обработка нейраминидазой отменяет эту резистентность и делает клетки высокочувствительными. Сиаловые кислоты играют важную роль в резистентности микроорганизмов. Большинство видов бактерий не содержит в составе оболочки сиаловых кислот, однако многие патогенные виды их имеют. Антитела могут изменять свойства поверхности и таким образом повышать чувствительность мишеней к комплементу. Важным этапом в активации поверхности является связывание пропердина, в результате чего возникает высокоаффинный рецептор для С3b и одновременно образуется стабильный комплекс С3Вb. В связи с этим различают два вида активаторов альтернативного пути: 1) пропердинзависимые активаторы (полисахариды, эндотоксины, антитела); 2) пропердиннезависимые активаторы (фактор яда кобры, протеазы).

С5-конвертаза альтернативного пути активации возникает в результате связывания С3b с комплексом С3Вb в рамках механизма усиления, а последующее течение процесса соответствует классическому пути активации.

Альтернативная активация комплемента - это важный компонент системы неспецифической резистентности к бактериям, вирусам и одноклеточным микроорганизмам. Переход от неспецифической защиты к реакциям, опосредованным антителами, осуществляется плавно, либо оба процесса протекают параллельно. В качестве патогенетического звена альтернативная активация комплемента принимает участие во многих заболеваниях. Примерами могут служить:
- мембранопролиферативные нефриты с гипокомплементемией;
- острый гломерулонефрит после стрептококковой инфекции ;
- нефриты при СКВ ;
- болезнь голубеводов;
- грибковые инфекции;
- септицемии с шоком, обусловленным эндотоксинами;
- ночная пароксизмальная гемоглобинурия;
- парциальная липодистрофия.

Альтернативный путь наблюдается также в части случаев активации комплемента по классическому пути. При нефритах выявляется фактор C3NeF, который представляет собой комплекс аутоантител с С3bВb, резистентный к действию р1Н и функционирующий как С3-конвертаза. Эндотоксины за счет липида А являются эффективными активаторами не только альтернативного пути активации комплемента, но и системы свертывания, а также кининовой системы. Активация фактора XII играет при этом определяющую роль.

Неспецифическая активация комплемента . Неспецифическая активация комплемента может осуществляться протеазами (трипсин, плазмин, калликреин, лизосомные протеазы и бактериальные ферменты) на каждой стадии от С1 доС5. Исходный активированный фактор является гораздо более эффективным по сравнению с индуцирующей протеазой, причем при активации в жидкой фазе активация может начаться сразу в нескольких процессах. Возникают анафилатоксины, которые, помимо гемолитического действия, дают полную картину шока при остром панкреатите и тяжелых инфекциях. Неспецифическая активация является одним из компонентов острого воспаления.

Механизмы регуляции системы активации комплемента

I. Ингибирующие механизмы . Каждый этап каскада активации комплемента находится в равновесии с неактивированным состоянием. Ярко выраженные фармакологические эффекты продуктов активации требуют регуляции на различных уровнях.

В качестве лимитирующего фактора в системе активации по классическому пути выступает С2, который присутствует в наиболее низкой концентрации.

Другой ограничивающей группой факторов служит необходимость взаимодействия Clq с двумя Fc-фрагментами антител и возможность доступа к образовавшимся участкам связывания активаторов и субстратов реакции (С2а, С4b, С3b, и т. д. до С9). Нестабильность С2а, С4b, С5b и Вb в жидкой фазе препятствует неограниченному развитию реакции и обусловливает концентрацию процесса на активированной поверхности. Описаны специфические ингибиторы для Clr, Cls, C4b, С2, С3b, С6, С5b-6-7, Вb, С3а и С5а.

II. Стимулирующие механизмы . Наиболее важным механизмом усиления активации комплемента является положительная обратная связь, в результате которой появление С3b приводит к значительному ускорению образования этого продукта активации. Активированный пропердин стабилизирует Вb. Аналогичным образом реализуется эффект патологических аутоантител.

Биологические эффекты системы комплемента

I. Цитолиз и бактерицидность . Цитолиз и бактерицидность могут быть индуцированы следующим образом:
- иммунный цитолиз, обусловленный антителами IgM и IgG;
- СРВ (С-реактивный белок) - связь с последующей активацией комплемента;
- прямая активация пропердина через альтернативный путь активации клетками и бактериями;
- побочные эффекты при реакции иммунных комплексов;
- участие активированных фагоцитов.

II. Образование анафилатоксинов . Понятие «анафилатоксин» было впервые введено Friedberger. В данном случае имелся ввиду фрагмент С3а и фрагмент С5а, которые связываются на соответствующих рецепторах клеточной мембраны и обладают сходными фармакологическими эффектами:
- высвобождение гистамина и других медиаторов из тучных клеток и базофилов (С5а более эффективен по сравнению с С3а);
- сокращение гладкой мускулатуры и воздействие на микроциркуляцию (С3а эффективнее по сравнению с С5а);
- активация фагоцитов и секреция лизосомных ферментов (эффективность С3а и С5а сопоставима).

Нейтрализация вирусов . Система комплемента представляет собой важный фактор естественной резистентности против вирусной инфекции. Некоторые РНК-содержащие онкогенные вирусы способны непосредственно связывать Clq. Классическая активация комплемента в данном случае ведет к лизису инфекционного агента. Некоторые другие вирусы взаимодействуют с комплементом через СРВ. Кроме того, комплемент способен инактивировать вирус, находящийся в растворимом иммунном комплексе, что приводит к его опсонизации и фагоцитозу.

Противовирусное действие комплемента обусловлено следующими процессами:
- лизисом вируса за счет фрагментов от С1 до С9;
- агрегацией вируса за счет иммунных конглютининов;
- опсонизацией и фагоцитозом;
- блокадой вирусных лиганд для соответствующих рецепторов клеточной мембраны;
- блокадой пенетрации вируса в клетку.

Сам по себе комплемент не способен инактивировать пораженную вирусом клетку.

Разрушение иммунных комплексов . Появление иммунных комплексов, содержащих антитела класса IgG и IgM, связано с постоянной активацией комплемента. Активированные компоненты комплемента связываются с компонентами иммунных комплексов, включая как антитела, так и антигены, препятствуя тем самым образованию крупных агрегатов за счет стерических эффектов. Поскольку активация комплемента связана с появлением протеазной активности, происходит частичное разрыхление и расщепление образовавшихся агрегатов. Удаление продуктов распада из кровотока осуществляется благодаря опсонизации при помощи иммунофагоцитоза и иммуноэндоцитоза, в связи с чем важную роль играет доступность к связыванию с клеточными рецепторами ассоциированного с комплексами С3b. Отложившиеся в тканях иммунные комплексы удаляются также путем фагоцитоза, причем существенную роль в этом процессе играют плазмин и лизосомные ферменты.

Комплемент, свертывание крови и система кининов . Комплемент, система свертывания крови и система кининов тесно связаны между собой функционально. Речь идет о сложном комплексе механизмов, активация каждого из которых приводит к активации всего комплекса. Это отчетливо прослеживается при индуцированной эндотоксином реакции Санарелли-Швартцманна и состояниях, обусловленных иммунными комплексами. Калликреин, плазмин и тромбин активируют С1 и расщепляют С3, С5 и фактор В. Фактор ХIIА также может активировать С1, причем С1 расщепляется сначала плазмином, а затем продукты расщепления используются калликреином и фактором ХIIА. Активация тромбоцитов осуществляется через взаимодействие С3, фактора В, пропердина, фибриногена и тромбина. Активированные макрофаги и фагоциты - это важные источники тканевых протеаз и тромбопластина при всех видах воспаления. Активация всех трех систем происходит через активацию фактора XII (фактор Хагемана). С другой стороны, С1 = 1NН ингибирует как калликреин, так и фактор ХIIА. Таким же действием обладают ингибиторы протеаз - антитрипсин, макроглобулин и антихимотрипсин. В результате складывается система со сложной динамикой, которая может не только выполнять защитные функции, но и участвовать в патологических процессах.

Комплемент и опосредованные Т-клетками иммунные реакции . Система комплемента оказывает регуляторное действие как на Т-систему, так и на В-лимфоциты, причем в качестве основных медиаторов выступают фрагменты С3, фактор В и В1Н. На цитотоксических лимфоцитах (ЦТЛ) были выявлены ассоциированные с мембраной факторы и компоненты комплемента С5, С6, С7, С8 и С9. С другой стороны, изучение клеток-мишеней ЦТЛ с помощью электронного микроскопа показало, что в участке межклеточного контакта определяются структуры, аналогичные порам, формируемым при действии на мембрану факторов системы комплемента.

Диагностическое значение системы комплемента . Оценка системы комплемента направлена на решение следующих практических вопросов:
- участвуют ли в патогенезе заболевания активированные компоненты системы комплемента?
- имеются ли дефекты системы комплемента?

Для ответа на эти вопросы сначала проводят определение общей активности комплемента с помощью эритроцитов барана и инактивированной антисыворотки. В качестве источника комплемента используют исследуемую сыворотку в серийных разведениях и определяют титр, соответствующий 50% гемолизу. Результаты выражают в единицах СН50. Эритроциты кролика могут прямо активировать альтернативный путь активации комплемента и в этом случае активность исследуемой сыворотки измеряют в единицах АР 50. При остром и прогрессирующем потреблении комплемента, а также его дефектах наблюдается снижение активности комплемента. Для выявления дефекта по определенному фактору используются сыворотки, не содержащие изучаемый фактор, которые добавляют к исследуемой пробе. Используется также иммунохимическое определение отдельных компонентов системы комплемента (рокет-электрофорез и радиальная иммунодиффузия), однако этот подход не может заменить функциональных тестов, поскольку функционально неактивные аномальные белки и неактивные продукты расщепления могут привести к ошибочным определениям. Все исследуемые пробы следует сохранять до момента использования при температуре -70 °С. Изучение потребления комплемента может осуществляться с помощью радиоиммунного и иммуноферментного методов определения продуктов расщепления С3, С4 и В. Особое значение имеет количественный РИА для определения концентрации С5а, служащего показателем анафилактических реакций. При выявлении первичных и вторичных дефектов комплемента рекомендуется использовать следующую программу исследований:
- определение СН50, а возможно и АР50 для скрининга;
- количественное определение С4 и С3 для уточнения роли классического и альтернативного пути активации;
- подробный анализ Clq, С5, Р и других факторов.

В острой фазе воспаления, при опухолях и в течении послеоперационного периода активность комплемента повышена.

Комплемент при заболеваниях иммунной системы . Система комплемента играет важную роль при аллергических заболеваниях типа II (цитотоксические антитела) и типа III (иммунокомплексная патология, феномен Артюса). Роль комплемента подтверждается следующими данными:
- выраженное потребление комплемента (СН50 снижен, активность и концентрации факторов ниже нормы);
- появление продуктов распада компонентов в сыворотке (С4а, фрагменты С3, С5а);
- определяемые с помощью иммуногистохимического анализа специфических антител (анти-С3, анти-С4 и т. д.) отложения комплемента в тканях;
- выработка цитотоксических антител;
- свидетельства хронически повышенного расхода комплемента.

Характерными примерами могут служить следующие заболевания:
- острые вирусные инфекции (особенно часто проявляются эффекты иммунных комплексов при краснухе , кори , гепатите В, инфекции ЕСНО-вирусом);
- острые бактериальные инфекции (активация комплемента иммунными комплексами при стрептококковых инфекциях, например, при скарлатине ; активация альтернативного пути при инфекции грамотрицательными микроорганизмами или эндотоксином);
- гломерулонефрит;
- аутоиммунные гемолитические анемии ;
иммунные тромбоцитопении;
- системная красная волчанка;
- реакция обусловленного антителами отторжения трансплантата;
- ревматоидный артрит;
- сывороточная болезнь ;
- криоглобулинемия, амилоидоз , плазмоцитома.

При всех этих заболеваниях оценка комплемента не вполне информативна, равно как и при широком спектре хронических заболеваний. Однако изучение этой системы позволяет сделать заключение об индивидуальной динамике течения заболевания. Исследование комплемента обязательно при наличии в анамнезе частых бактериальных инфекций в связи с возможностью генетически обусловленных аномалий. Это справедливо также для СКВ, которая часто ассоциирована с врожденными дефектами системы комплемента.

Система комплемента — это сложный комплекс сывороточных глобулинов. Это каскадная система протеолитических ферментов предназначена для гуморальной защиты организма от действия чужеродных агентов и участвует в реализации иммунного ответа организма. Белки системы комплемента обеспечивают быстрый и эффективный ответ на на первично слабый сигнал и доведение его до функциональных последствий. Компоненты системы комплемента принято обозначать латинскими буквами.

Существуют два механизма активации системы комплемента:

    классический;

    альтернативный.

Эти механизмы соединяются на уровне 5-го компонента и затем протекают одинаково.

Классический путь.

Пусковым механизмом является образование комплекса "антиген-антитело" (АГ-АТ) на поверхности клетки-мишени. При этом в молекуле иммуноглобулина (он обозначается: Ig или АТ) происходят конформационные изменения. В результате этих изменений Ig приобретает способность связывать С 1 q-компонент комплемента. К ним присоединяются C 1 r и C 1 s, и уже весь этот комплекс подвергается конформационной перестройке и превращается в С 1 -эстеразу, которая действует на С 4 , отщепляется С 4 а, а С 4 b входит в состав комплекса. Затем к комплексу присоединяется С 2 , формируя новый субстрат для действия С 1 s, отщепляется С 2 b, а С 2 a входит в состав комплекса.

Образовавшийся комплекс называется "С 3 -конвертаза", и под его действием отщепляется пептид С 3 a, а С 3 b входит в состав комплекса, который теперь называется "С 5 -конвертаза". С5-конвертаза действует на С5, отщепляет от него С 5 а, а С 5 b входит в состав комплекса.

После этого с С 5 b последовательно связываются С 6 , С 7 и С 8 . В результате образуется комплекс, способный присоединять 2 молекулы С 9 .

Если этот процесс протекает на поверхности клетки-мишени, то компоненты комплекса С 5 b-C 9 образуют мембраноатакующий комплекс, который формирует на поверхности клетки-мишени трансмембранные каналы, полностью проницаемые для электролитов и воды. Клетка-мишень погибает.

Побочные (неосновные) продукты процесса С 3 а и С 5 а обладают свойствами анафилотоксинов.

Регуляция классического пути.

Большинство компонентов активны только в составе комплекса. Их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то компонента ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям.

В регуляции работы системы комплемента также принимают участие эндогенные ингибиторы протеиназ. Самым эффективным из них является С 1 -ингибитор.

Альтернативный путь.

Отличие альтернативного пути от классического заключается в том, что для его запуска не нужно образования иммунных комплексов.

Пусковым механизмом альтернативного пути является образование С 3 b из С 3 под действием какого-либо пускового фактора: например, полисахаридов бактериальной клеточной стенки.

С3b образует комплекс с фактором "В" (С 3 bB), который подвергается действию протеазы D (всегда активна в плазме крови!). В результате отщепляется "Ва" и образуется комплекс С3bBb, который обладает протеолитической активностью в отношении С 5 — отщепляет от него С 5 а.

После этого реакции протекают так же, как и в классическом пути.

Субстратом для С 3 b является и С 3 , в результате чего образуется еще большее количество С 3 b — наблюдается положительная обратная связь. Поэтому достаточно даже небольших количеств С 3 bBb, чтобы получать все больше и больше его активной формы (усиление первично слабого сигнала).

Альтернативный путь в норме работает всегда и очень активно, что обеспечивает быстрый неспецифический ответ на внедрение чужеродных клеток.

В регуляции работы системы комплемента принимают участие специфические ингибиторы, которые регулируют скорость работы ферментов ключевых реакций.

Система комплемента - группа по меньшей мере 26 сывороточных белков (компонентов комплемента), опосредующих воспалительные реакции при участии гранулоцитов и макрофагов (табл. 16–3). Компоненты системы участвуют в реакциях свёртывания крови, способствуют межклеточным взаимодействиям, необходимым для процессинга Аг, вызывают лизис бактерий и клеток, инфицированных вирусами. В норме компоненты системы находятся в неактивной форме. Активация комплемента приводит к поочередному (каскадному) появлению его активных компонентов в серии протеолитических реакций, стимулирующих защитные процессы. Основные функции компонентов комплемента в защитных реакциях - стимуляция фагоцитоза , нарушение целостности клеточных стенок микроорганизмов мембраноповреждающим комплексом (особенно у видов, устойчивых к фагоцитозу, например гонококков) и индукция синтеза медиаторов воспалительного ответа (например, ИЛ1; табл. 16–4). Кроме того, система комплемента стимулирует воспалительные реакции (некоторые компоненты - хемоаттрактанты для фагоцитов), участвует в развитии иммунных (через активацию макрофагов) и анафилактических реакций. Активация компонентов комплемента может происходит по классическому и альтернативному путям.

Ы Вёрстка Таблица 16-3

Таблица 16 3 . Компоненты системы комплемента

Компонент Биологическая активность
Классический путь
C1q Взаимодействует с Fc-фрагментами АТ иммунных комплексов; взаимодействие активирует C1r
C1r C1r расщепляется с образованием протеазы C1s, гидролизующей компоненты С4 и С2
С4 С4 расщепляется с образованием С4а и С4b, адсорбирующегося на мембранах и принимающего участие в конвертировании С3
С2 С2 взаимодействует с С4b и конвертируется C1s в С2b (протеазный компонент С3/С5 конвертазы)
С3* Расщепляется С2b на анафилатоксин С3а и опсонин C3b; также является компонентом С3/С5 конвертазы
Альтернативный путь
Фактор В Аналог С2 классического пути активации
Фактор D Сывороточная протеаза, активирующая фактор В путём его расщепления
Мембраноповреждающий комплекс
С5 Расщепляется комплексом С3/С5; С5а является анафилатоксином, С5b фиксирует С6
С6 Взаимодействует с С5b и образует фиксирующий комплекс для С7
С7 Взаимодействует с С5b и С6, затем весь комплекс встраивается в клеточную стенку и фиксирует С8
С8 Взаимодействует с комплексом С5b, С6 и С7; образует стабильный мембранный комплекс и фиксирует С9
С9 После взаимодействия с комплексом С5–С8 полимеризуется, что приводит к лизису клетки
Рецепторы к компонентам комплемента
С1-рецептор Усиливает диссоциацию С3-конвертаз, стимулирует фагоцитоз микроорганизмов, опсонизированных С3b и С4b
С2-рецептор Опосредует сорбцию комплемент-содержащих иммунных комплексов; рецептор для вируса Эпстайна–Барр
С3-рецептор Обусловливает адгезию (белок семейства интегринов), стимулирует фагоцитоз микроорганизмов, опсонизированных С3b
С4-рецептор Белок семейства интегринов, стимулирует фагоцитоз микроорганизмов, опсонизированных С3b

* С3 также служит компонентом альтернативного пути активации.



Ы Вёрстка Таблица 16-4

Таблица 16 4 . Основные эффекты белков системы комплемента и фрагментов их расщепления

Компонент Активность
C2a Эстеразная активность по отношению к некоторым эфирам аргинина и лизина
С2b Кининоподобная активность, увеличение подвижности фагоцитов
C3a, C4a, C5a Анафилатоксины, освобождают гистамин, серотонин и другие вазоактивные медиаторы из тучных клеток, увеличивают проницаемость капилляров
C3b, iC3b, C4b Иммунная адгезия и опсонизация, связывают иммунные комплексы с мембранами макрофагов, нейтрофилов (усиление фагоцитоза) и эритроцитов (элиминация комплексов макрофагами селезёнки и печени)
C5a Хемотаксис и хемокинез, привлечение фагоцитирующих клеток в очаг воспаления и увеличение их общей активности
С5b6789 (мембраноповреждающий комплекс) Повреждение мембраны, формирование трансмембранных каналов, выход содержимого клетки. Клетки млекопитающих набухают и лопаются, бактерии теряют важные внутриклеточные метаболиты, но обычно не лизируются
Ba Хемотаксис нейтрофилов
Bb Активация макрофагов (прилипание и распластывание на поверхности)

Классический путь

Активация комплемента по классическому пути комплексами Аг–АТ. Включает поочередное образование всех 9 компонентов (от С1 до С9). Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (С1, С2...С9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (С1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b). Первоначально с комплексом Аг–АТ взаимодействует С1 (субкомпоненты C1q, C1r, C1s), затем к ним присоединяются «ранние» компоненты С4, С2 и С3. Они активируют компонент С5, прикрепляющийся к мембране клетки-мишени (бактерии, опухолевые или инфицированные вирусами клетки) и запускающий образование литического комплекса (С5b, С6, С7, С8 и С9). Иначе он называется мембраноповреждающий (мембраноатакующий ) комплекс , так как его образование на мембране вызывает разрушение клетки. Примеры микробных продуктов, активирующих систему комплемента по классическому пути, - ДНК и белок А стафилококков.

Поделиться