Химическая структура эндотоксинов. ОФС.1.2.4.0006.15 Бактериальные эндотоксины Кишечный эндотоксин

Токсические вещества, синтезируемые бактериями, по химической природе относятся к белкам (экзотоксины) и ЛПС (эндотоксины) – локализуются в стенке Б!! и освобождаются только после их разрушения.

Эндотоксины. К ним относятся липополисахариды (ЛПС), которые содержатся в клеточной стенке грамотрицательных бак­терий. Токсические свойства определяются всей молекулой ЛПС , а не отдельными ее частями: ПС или липидом А. Хорошо изучены эндотоксины энтеробактерий (эшерихии, шигеллы и сальмонеллы, бруцеллы, туляремийные бактерии).

ЛПС (эндотоксины) в отличие от экзотоксинов более устойчивы к повышенной t°С, менее ядовиты и малоспецифичны. При введении в Ò подопытных Ж!! вызывают примерно одинаковую реакцию, независимую от того, из каких гр– Б!! они выделены. При ВВЕДЕНИИ БОЛЬШИХ ДОЗ наблюдается угнетение фагоцитоза, явления токсикоза, слабость, одышка, расстройством кишечника (диарея), падением деятель­ности и ↓ t°С тела. При введении НЕБОЛЬШИХ ДОЗ – обратный эффект: стимуляция фагоцитоза, t°С тела.

У ЛЮДЕЙ поступление эндотоксинов в кровяное русло приво­дит к лихорадке в результате их действия на клетки крови (гранулоциты, моноциты), из которых выделяются эндогенные пирогены. Возникает ранняя лейкопения , которая сменяется вторичным лейкоцитозом . Усиливается гликолиз Þ может возникнуть гипо­гликемия. Также развивается гипотония (по­ступление в кровь количества серотонина и кининов), нарушается кровоснабжение органов и ацидоз.

ЛПС активирует фракцию С3 комплемента по АЛЬТЕРНАТИВНОМУ ПУТИ Þ ↓ его содержания в сыворотке и накопление биологически активных фракций (С3а, С3b, С5а и др.). Большие количества поступившего в кровь эндоток­сина приводят к ТОКСИКО-СЕПТИЧЕСКОМУ ШОКУ.

ЛПС – сравнительно слабый иммуноген. Сыворотка крови животных, иммунизированных чистым эндотоксином, не облада­ет высокой антитоксической активностью Þ не способна полно­стью нейтрализовать его ядовитые свойства.

Некоторые бактерии одновременно образуют как белковые токсины, так и эндотоксины, например кишечная палочка и др.

8. Генетические аспекты патогенности.?(некорректный ответ)

АНТИГЕНЫ БАКТЕРИЙ

Каждый мкÒ содержит несколько АГ. Чем сложнее его структура, тем больше АГ. У мкÒ различают ГРУППОСПЕЦИФИЧЕСКИЕ АГ (встречаются у разных видов одного и того же рода или семейства), ВИДОСПЕЦИФИЧЕСКИЕ (у различных представителей одного вида) и ТИПОСПЕЦИФИЧЕСКИЕ (ВАРИАНТНЫЕ) АГ (у разных вариантов в пределах одного и того же вида → се­ровары). Среди бактериальных антигенов различают Н, О, К и др.



Жгутиковые Н-АГ – белок флагеллин, разрушается при нагре­вании, но после обработки фенолом сохраняет свои антигенные свойства.

Соматический О-АГ – ЛПС # стенки гр–. Детерминантными группами являются концевые повторяющиеся звенья ПС цепей, присое­диненные к основной части. Состав сахаров в детерминантных группах и их число, у разных бактерий неодинаковы. Чаще всего в них содержатся гексозы и аминосахара. О-АГ термостабилен, сохраняется при кипячении в течение 1-2 ч, не разрушается после обработки формалином и этанолом.

К-АГ (капсульные) – хорошо изучены у эшерихий и сальмонелл. Как и О-АГ свя­заны с ЛПС # стенки и капсулой, но в отличие от О-АГ содержат в основном кислые ПС (уроновые кислоты). По чувствительности к температуре К-АГ подразделяют на А- (выдерживает кипячение более 2ч), В- (недолгое нагревание до 60°С) и L-АГ (термолабильны). К-АГ располагаются более поверхностно Þ для выявления О-АГ необходимо предварительно разрушить капсулу, что достигается кипячением культур.

К капсульным анти­генам относится так называемый Vi-АГ (обнаружен у брюшнотифозных и некоторых др энтеробактерий, обла­дающих высокой вирулентностью).



ПС капсульные АГ (часто типоспецифические) есть у пневмококков, клебсиелл и других бактерий, образующих выра­женную капсулу. У сибиреязвенных бацилл К–АГ состоит из полипептидов.

Токсины (если они являются растворимыми белками) и ферменты – облада­ют полноценными АГ.

АГ ВИРУСОВ. АГ простых вирионов связаны с их нуклеокапсидами, по хим составу это рибонуклеопротеиды или дезоксирибонуклеопротеиды. Они растворимы Þ обозна­чаются как S-антигены (solutio - раствор). У сложных вирусов одни АГ связаны с нуклеокапсидом, другие – с гликопротеидами суперкапсидной оболочки. Мно­гие вирионы содержат особые поверхностные V-АГ – гемагглютинин (выявляется в реакции ГА или гемадсорбции, РТГА) и фермент нейраминидазу.

Вирусные антигены м.б. группоспецифическими или типоспецифическими, эти различия учитываются при иден­тификации вирусов.

Гетерогенные АГ (гетероантигены) – это общие АГ, обнаруженные у представителей различных видов микроорганиз­мов, животных и растений.

АГ Ò ЧКА И Ж!!

Белковые АГ Ж!! х-ся выраженной видовой специфичностью, на основании этого можно судить о родстве различ­ных видов животных и растений. Белковые АГ тканей и ## Ж!! обладают так­же органной и тканевой специфичностью → изучения клеточной диф­ференцировки и опухолевого роста.

Опухолевые антигены. В результате злокачественной транс­формации нормальных ## в опухолевые в них начинают проявляться специфические АГ, отсут­ствующие в нормальных ##. Выявляют специфические опухолевые Т-АГ (tumor – опухоль) → иммунологические методы ранней диагностики различных опухолей человека.

Аутоантигены. Собственные АГ Ò, которые в норме не проявляют своих АГ свойств, вызывают в определенных условиях образование антител (аутоантител), назы­ваются аутоАГ. В эмбриональном периоде формируется естественная иммунологическая толерантность организма к аутоАГ, которая обычно сохраняется на протяжении всей жизни. Утрата естественной толерантности → аутоиммунные заболе­вания.

Изоантигены. Это антигены, по которым отдельные индиви­дуумы или группы особей одного вида различаются между собой: система АВО, резус и др.

9. Антиген.

Антигены разделены на полные (иммуногенные) , всегда проявляющие иммуногенные и антигенные свойства, и неполные (гаптены) , не способные самостоятельно вызывать иммунный ответ.

Гаптены обладают антигенностью, что обусловливает их специфичность, способность избирательно взаимодействовать с антителами или рецепторами лимфоцитов, определяться иммунологическими реакциями. Гаптены могут стать иммуногенными при связывании с иммуногенным носителем (например, белком), т.е. становятся полными.

За специфичность антигена отвечает гаптенная часть, за иммуногенность- носитель (чаще белок).

Иммуногенность зависит от ряда причин (молекулярного веса, подвижности молекул антигена, формы, структуры, способности к изменению). Существенное значение имеет степень гетерогенности антигена, т.е. чужеродность для данного вида (макроорганизма), степени эволюционной дивергенции молекул, уникальности и необычности структуры. Чужеродность определяется также молекулярной массой, размерами и строением биополимера, его макромолекулярностью и жесткостью структуры. Белки и другие высокомолекулярные вещества с более высоким молекулярным весом наиболее иммуногенны. Большое значение имеет жесткость структуры, что связано с наличием ароматических колец в составе аминокислотных последовательностей. Последовательность аминокислот в полипептидных цепочках- генетически детерминированный признак.

Антигенность белков является проявлением их чужеродности, а ее специфичность зависит от аминокислотной последовательности белков, вторичной, третичной и четвертичной (т.е. от общей конформации белковой молекулы) структуры, от поверхностно расположенных детерминантных групп и концевых аминокислотных остатков. Коллоидное состояние и растворимость- обязательные свойства антигенов.

Специфичность антигенов зависит от особых участков молекул белков и полисахаридов, называемых эпитопами. Эпитопы или антигенные детерминанты- фрагменты молекул антигена, вызывающие иммунный ответ и определяющие его специфичность. Антигенные детерминанты избирательно реагируют с антителами или антиген- распознающими рецепторами клетки.

Структура многих антигенных детерминант известна. У белков это обычно фрагменты из 8- 20 выступающих на поверхности аминокислотных остатков, у полисахаридов- выступающие О- боковые дезоксисахаридные цепи в составе ЛПС, у вируса гриппа- гемагглютинин, у вируса иммунодефицита человека- мембранный гликопептид.

Эпитопы качественно могут отличаться, к каждому могут образовываться “свои” антитела. Антигены, содержащие одну антигенную детерминанту, называют моновалентными, ряд эпитопов- поливалентными. Полимерные антигены содержат в большом количестве идентичные эпитопы (флагеллины, ЛПС).

Основные типы антигенной специфичности (зависят от специфичности эпитопов).

1.Видовая - характерна для всех особей одного вида (общие эпитопы).

2.Групповая - внутри вида (изоантигены, которые характерны для отдельных групп). Пример- группы крови (АВО и др.).

3.Гетероспецифичность - наличие общих антигенных детерминант у организмов различных таксономических групп. Имеются перекрестно- реагирующие антигены у бактерий и тканей макроорганизма.

а. Антиген Форсмана- типичный перекрестно- реагирующий антиген, выявлен в эритроцитах кошек, собак, овец, почке морской свинки.

б.Rh- система эритроцитов. У человека Rh- антигены агглютинируют антитела к эритроцитам обезьян Macacus rhesus, т.е. являются перекрестными.

в. Известны общие антигенные детерминанты эритроцитов человека и палочки чумы, вирусов оспы и гриппа.

г. Еще пример- белок А стрептококка и ткани миокарда (клапанный аппарат).

Подобная антигенная мимикрия обманывает иммунную систему, защищает от ее воздействия микроорганизмы. Наличие перекрестных антигенов способно блокировать системы, распознающие чужеродные структуры.

4.Патологическая. При различных патологических изменениях тканей происходят изменения химических соединений, что может изменять нормальную антигенную специфичность. Появляются “ожоговые”, “лучевые”, “раковые” антигены с измененной видовой специфичностью. Существует понятие аутоантигенов - веществ организма, к которым могут возникать иммунные реакции (так называемые аутоиммунные реакции) , направленные против определенных тканей организма. Чаще всего это относится к органам и тканям, в норме не подвергающихся воздействию иммунной системы в связи с наличием барьеров (мозг, хрусталик, паращитовидные железы и др.).

5.Стадиоспецифичность . Имеются антигены, характерные для определенных стадий развития, связанные с морфогенезом. Альфа- фетопротеин характерен для эмбрионального развития, синтез во взрослом состоянии резко увеличивается при раковых заболеваниях печени.

АГ – вещества любого происхождения, которые рас­познаются ## иммунной системы Ò реципиента как генетически чужеродные и вызывают различные формы им­мунного ответа. Каждый АГ имеет 4 СВОЙСТВА­: антигенность, иммуногенность, специфичность и чужеродность.

ИММУНОГЕННОСТЬ – способность АГ индуцировать в Ò реципиента иммунный ответ (образование АТ, формирование гиперчувствительности, иммунологической памяти и толерантности).

АНТИГЕННОСТЬ – способность АГ взаимодействовать с продуктами иммунных реакций (например, с АТ).

Хим природа. АГ – природные или синтетические биополимеры с высокой Мг (белки и полипептиды, ПС (если их Мг не менее 600000), НК и липиды. При денатурации (нагревание, обработка крепкими кислотами или щелочами) белки утрачивают свои АГ свойст­ва. Проявление антигенного действия связано с катаболическим разрушением АГ. Например, полипептиды из L-АК, являются антигенными, а из D-АК нет, т.к. они сравнительно медленно и не полностью разрушаются ферментами организма.

Чужеродность (гетерогенность) – наиболее выражена при иммунизации Ò бел­ками др вида. Исключение – белки со специализированными функциями (ферменты, гормоны, гемоглобин), но при частичном изменении их структуры они могут приобретать антигенность.

Антигенность зависит также от ви­да иммунизированного животного, способа введения, дозы, скорости разрушения АГ в Ò реципиента. Антигенные свойства одних АГ лучше проявляются при вве­дении их перорально, других – внутрикожно, третьих – внутри­мышечно.

Антигенность при введении АГ с адъювантами (гидроксид или фосфат алюминия, масляная эмульсия, ЛПС грамотрицательных бактерий). Механизм действия адъювантов – создаётся депо АГ, сти­мулирует фагоцитоз, митогенное действе на лимфоциты.

СПЕЦИФИЧНОСТЬ – определяется особенностями поверхностной структуры антиге­нов – наличием эпитопов – детерминантных групп на поверхности макромолекулы-носителя. Эпитопы очень разнообразны за счет разл комбинаций АК на поверх­ности белка, несколько АК образуют эпитоп. На поверхности АГ обычно располагается несколько эпито­пов, что обусловливает ПОЛИВАЛЕНТНОСТЬ АГ, если 1 эпитоп – МОНОВАЛЕНТНЫЙ, если несколько одинаковых – ПОЛИМЕРНЫЙ. При отделении эпитопа от молекулы-носителя он утрачивает свои АГ свой­ства, но может реагировать с гомологичными АТ. Изменяя эпитоп, можно искусствен­но модифицировать специфичность АГ.

ПОЛНЫЕ АГ обладают всеми этими свойствами. Неполные АГ (ГАПТЕНЫ), не иммуногенны, но в комплексе с белками-носителями они становятся полными.

10. Антитела.

Антитела - специфические белки гамма- глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном (in vivo, in vitro). В соответствии с международной классификацией совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами .

Уникальность антител заключается в том, что они способны специфически взаимодействовать только с тем антигеном, который вызвал их образование.

Иммуноглобулины (Ig) разделены в зависимости от локализации на три группы:

Сывороточные (в крови);

Секреторные (в секретах- содержимом желудочно- кишечного тракта, слезном секрете, слюне, особенно- в грудном молоке) обеспечивают местный иммунитет (иммунитет слизистых);

Поверхностные (на поверхности иммунокомпетентных клеток, особенно В- лимфоцитов).

Любая молекула антител имеет сходное строение (Y- образную форму) и состоит из двух тяжелых (Н) и двух легких (L) цепей, связанных дисульфидными мостиками. Каждая молекула антител имеет два одинаковых антигенсвязывающих фрагмента Fab (fragment antigen binding), определяющих антительную специфичность, и один Fc (fragment constant) фрагмент, который не связывает антиген, но обладает эффекторными биологическими функциями. Он взаимодействует со “своим” рецептором в мембране различных типов клеток (макрофаг, тучная клетка, нейтрофил).

Концевые участки легких и тяжелых цепей молекулы иммуноглобулина вариабельны по составу (аминокислотным последовательностям) и обозначаются как VL и VH области. В их составе выделяют гипервариабельные участки, которые определяют структуру активного центра антител (антигенсвязывающий центр или паратоп). Именно с ним взаимодействует антигенная детерминанта (эпитоп) антигена. Антигенсвязывающий центр антител комплементарен эпитопу антигена по принципу “ключ - замок” и образован гипервариабельными областями L- и Н- цепей. Антитело свяжется антигеном (ключ попадет в замок) только в том случае, если детерминантная группа антигена полностью вместится в щель активного центра антител.

Легкие и тяжелые цепи состоят из отдельных блоков- доменов . В легких (L) цепях - два домена- один вариабельный (V) и один константный (C), в тяжелых (H) цепях- один V и 3 или 4 (в зависимости от класса иммуноглобулина) C домена.

Существуют легкие цепи двух типов- каппа и лямбда, они встречаются в различных пропорциях в составе различных (всех) классов иммуноглобулинов.

Выявлено пять классов тяжелых цепей- альфа (с двумя подклассами), гамма (с четырьмя подклассами), эксилон, мю и дельта. Соответственно обозначению тяжелой цепи обозначается и класс молекул иммуноглобулинов- А, G, E, M и D.

Именно константные области тяжелых цепей, различаясь по аминокислотному составу у различных классов иммуноглобулинов, в конечном результате и определяют специфические свойства иммуноглобулинов каждого класса.

Известно пять классов иммуноглобулинов, отличающихся по строению тяжелых цепей, молекулярной массе, физико- химическим и биологическим характеристикам: IgG, IgM, IgA, IgE, IgD. В составе IgG выделяют 4 подкласса (IgG1, IgG2, IgG3, IgG4), в составе IgA- два подкласса (IgA1, IgA2).

Структурной единицей антител является мономер , состоящий из двух легких и двух тяжелых цепей. Мономерами являются IgG, IgA (сывороточный), IgD и IgE. IgM- пентамер (полимерный Ig). У полимерных иммуноглобулинов имеется дополнительная j (joint) полипептидная цепь, которая объединяет (полимеризует) отдельные субъединицы (в составе пентамера IgM, ди- и тримера секреторного IgA).

Основные биологические характеристики антител.

1. Специфичность - способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).

2 . Валентность- количество способных реагировать с антигеном активных центров (это связано с молекулярной организацией- моно- или полимер). Иммуноглобулины могут быть двухвалентными (IgG) или поливалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела навывают полными антителами . Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр (блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.

3. Афинность - прочность связи между эпитопом антигена и активным центром антител, зависит от их пространственного соответствия.

4. Авидность - интегральная характеристика силы связи между антигеном и антителами, с учетом взаимодействия всех активных центров антител с эпитопами. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител.

5. Гетерогенность - обусловлена антигенными свойствами антител, наличием у них трех видов антигенных детерминант:

- изотипические - принадлежность антител к определенному классу иммуноглобулинов;

- аллотипические- обусловлены аллельными различиями иммуноглобулинов, кодируемых соответствующими аллелями Ig гена;

- идиотипические- отражают индивидуальные особенности иммуноглобулина, определяемые характеристиками активных центров молекул антител. Даже тогда, когда антитела к конкретному антигену относятся к одному классу, субклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга (идиотипом ). Это зависит от особенностей строения V- участков H- и L- цепей, множества различных вариантов их аминокислотных последовательностей.

Понятие о поликлональных и моноклональных антителах будет дано в следующих разделах.

Характеристика основных классов иммуноглобулинов.

Ig G. Мономеры, включают четыре субкласса. Концентрация в крови- от 8 до 17 г/л, период полураспада- около 3- 4 недель. Это основной класс иммуноглобулинов, защищающих организм от бактерий, токсинов и вирусов. В наибольшем количестве IgG- антитела вырабатываются на стадии выздоровления после инфекционного заболевания (поздние или 7S антитела), при вторичном иммунном ответе. IgG1 и IgG4 специфически (через Fab- фрагменты) связывают возбудителей (опсонизация) , благодаря Fc- фрагментам IgG взаимодействуют с Fc- рецепторам фагоцитов, способствуя фагоцитозу и лизису микроорганизмов. IgG способны нейтрализовать бактериальные экзотоксины, связывать комплемент. Только IgG способны транспортироваться через плаценту от матери к плоду (проходить через плацентарный барьер) и обеспечивать защиту материнскими антителами плода и новорожденного. В отличие от IgM- антител, IgG- антитела относятся к категории поздних- появляются позже и более длительно выявляются в крови.

IgM. Молекула этого иммуноглобулина представляет собой полимерный Ig из пяти субъединиц, соединенных дисульфидными связями и дополнительной J- цепью, имеет 10 антиген- связывающих центров. Филогенетически это наиболее древний иммуноглобулин. IgM- наиболее ранний класс антител, образующихся при первичном попадании антигена в организм. Наличие IgM- антител к соответствующему возбудителю свидетельствует о свежем инфицировании (текущем инфекционном процессе). Антитела к антигенам грамотрицательных бактерий, жгутиковым антигенам- преимущественно IgM- антитела. IgM- основной класс иммуноглобулинов, синтезируемых у новорожденных и младенцев. IgM у новорожденных- это показатель внутриутробного заражения (краснуха, ЦМВ, токсоплазмоз и другие внутриутробные инфекции), поскольку материнские IgM через плаценту не проходят. Концентрация IgM в крови ниже, чем IgG- 0,5- 2,0 г/л, период полураспада- около недели. IgM способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент, активизировать фагоцитоз, связывать эндотоксины грамотрицательных бактерий. IgM обладают большей, чем IgG авидностью (10 активных центров), аффинность (сродство к антигену) меньше, чем у IgG.

IgA. Выделяют сывороточные IgA (мономер) и секреторные IgA (IgAs). Сывороточные IgA составляют 1,4- 4,2 г/л. Секреторные IgAs находятся в слюне, пищеварительных соках, секрете слизистой носа, в молозиве. Они являются первой линией защиты слизистых, обеспечивая их местный иммунитет. IgAs состоят из Ig мономера, J-цепи и гликопротеина (секреторного компонента). Выделяют два изотипа- IgA1 преобладает в сыворотке, субкласс IgA2 - в экстраваскулярных секретах.

Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек и присоединяется к молекуле IgA в момент прохождения последней через эпителиальные клетки. Секреторный компонент повышает устойчивость молекул IgAs к действию протеолитических ферментов. Основная роль IgA- обеспечение местного иммунитета слизистых. Они препятствуют прикреплению бактерий к слизистым, обеспечивают транспорт полимерных иммунных комплексов с IgA, нейтрализуют энтеротоксин, активируют фагоцитоз и систему комплемента.

IgE . Представляет мономер, в сыворотке крови находится в низких концентрациях. Основная роль- своими Fc- фрагментами прикрепляется к тучным клеткам (мастоцитам) и базофилам и опосредует реакции гиперчувствительности немедленного типа. К IgE относятся “антитела аллергии”- реагины. Уровень IgE повышается при аллергических состояниях, гельминтозах. Антигенсвязывающие Fab- фрагменты молекулы IgE специфически взаимодействует с антигеном (аллергеном), сформировавшийся иммунный комплекс взаимодействует с рецепторами Fc- фрагментов IgE, встроенных в клеточную мембрану базофила или тучной клетки. Это является сигналом для выделения гистамина, других биологически активных веществ и развертывания острой аллергической реакции.

IgD. Мономеры IgD обнаруживают на поверхности развивающихся В- лимфоцитов, в сыворотке находятся в крайне низких концентрациях. Их биологическая роль точно не установлена. Полагают, что IgD участвуют в дифференциации В-клеток, способствуют развитию антиидиотипического ответа, участвуют в аутоиммунных процессах.

С целью определения концентраций иммуноглобулинов отдельных классов применяют несколько методов, чаще используют метод радиальной иммунодиффузии в геле (по Манчини)- разновидность реакции преципитации и ИФА.

Определение антител различных классов имеет важное значение для диагностики инфекционных заболеваний. Обнаружение антител к антигенам микроорганизмов в сыворотках крови- важный критерий при постановке диагноза- серологический метод диагностики. Антитела класса IgM появляются в остром периоде заболевания и относительно быстро исчезают, антитела класса IgG выявляются в более поздние сроки и более длительно (иногда- годами) сохраняются в сыворотках крови переболевших, их в этом случае называют анамнестическими антителами.

Выделяют понятия: титр антител, диагностический титр, исследования парных сывороток. Наибольшее значение имеет выявление IgM- антител и четырехкратное повышение титров антител (или сероконверсия - антитела выявляют во второй пробе при отрицательных результатах с первой сывороткой крови) при исследовании парных - взятых в динамике инфекционного процесса с интервалом в несколько дней- недель проб.

Реакции взаимодействия антител с возбудителями и их антигенами (реакция “антиген- антитело”) проявляется в виде ряда феноменов- агглютинации, преципитации, нейтрализации, лизиса, связывания комплемента, опсонизации, цитотоксичности и могут быть выявлены различными серологическими реакциями.

Динамика выработки антител. Первичный и вторичный иммунный ответ.

Первичный ответ- при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

Продолжительность скрытого периода (больше- при первичном);

Скорость нарастания антител (быстрее- при вторичном);

Количество синтезируемых антител (больше- при повторном контакте);

Последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

Роль антител в формировании иммунитета.

Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.

Ig (АТ) – белки плазмы крови, по хим составу – гликопротеиды, по электрофоретической подвижности – γ-глобулины.

СТРУКТУРА Ig

Белковая часть молекулы Ig состоит из 4 полипептидных цепей: 2 одинаковых тяжелых Н-цепей и 2 легких L-цепей (различаются по Мг). Каждая цепь состоит из вариабельной V- (начинается с N-конца, примерно 110АК = 1 домен ) и стабильной С-части (4-5 доменов) . Каждая пара легких и тяжелых цепей связана S-S мостиками , меж­ду их С-участками, обе тяжелые цепи также соединены друг с другом между их константными участками → шарнир . В пре­делах каждого домена поли­пептидная цепь уложена в виде петель. Петли в V-до­менах легкой и тяжелой цепи составляют гипервариабельный участок , который входит в состав антигенсвязывающего центра.

При гидролизе IgG протеолитическим ферментом папаином , легкие и тяжелые цепи распадаются на 3 фрагмента: два Fab- (Fragment antigen binding) и один Fc-фрагмент (Fragment cristalline). Свободные N-концы концы каждого Fab-фрагмента входят в состав V-доменов, формирующих антигенсвязывающий (активный) центр. Fc-фраг­мент имеет свободные С-концы, одинаковые у разных АТ, функции которых заключаются в фиксации и последующей активации системы комплемента по классическому пути после, в прикреплении иммуноглобулина G к Fc-рецепторам ## мембран и в прохождении IgG через плаценту. В области Fc-фрагментов антител локализуются участки (эпитопы ), определяющие индивидуальную, видовую, группо­вую, антигенную специфичность данного иммуноглобулина.

КЛАССЫ И ТИПЫ Ig:

в зависимости от структуры, свойств и антигенных особенностей их легких и тя­желых цепей.

Легкие цепи в молекулах Ig пред­ставлены двумя ИЗОТИПАМИ – ламбда (λ) и каппа (κ), которые различаются по химическому составу. Тяжелые цепи Ig подразделены на 5 изотипов (γ, μ, α, δ, ε), которые опреде­ляют их принадлежность к одному из 5 классов: G, M, A, D, Е соответственно. Они отличаются друг от друга физ-хим особенностями и биол свойствами.

Наряду с изотипическими вариантами Ig имеются аллотипические (АЛЛОТИПЫ), несущие индивидуаль­ные АГ генетические маркеры. Каждая плазма­тическая клетка продуцирует АТ одного аллотипа.

По различиям в АГ свойствах Ig делят на ИДИОТИПЫ. V-домены разных Ig можно различить и по их АГ свойствам (идиотипам). Накопление любых АТ, несущих в структуре своих активных центров новые для организма антигенные эпитопы (идиотипы), приводит к индукции иммунного ответа на них с образованием анти-АТ, получив­ших название антиидиотипических.

СВОЙСТВА Ig

Молекулы Ig разных классов построены из одних и тех же мономеров , имеющих по две тяжелых и по две легких цепи. К мономерам относятся иммуноглобулины G и Е, к пентамерам – IgM, a IgA могут быть представлены мономерами, димерами и тетрамерами. Мономеры соеди­нены между собой j-цепью (joining). Разные классы Ig отличаются друг от друга биол свойствами, в частности их способностью связывать гомологичные АГ. В реак­ции у мономеров IgG и IgE участвуют 2 антигенсвязывающих участка, при этом образуется сетевая струк­тура, которая выпадает в осадок. Суще­ствуют также моновалентныеАТ, у которых функционирует лишь один из 2 центров Þ без обра­зования сетевой структуры. Такие анти­тела называются неполными, они выявляются в сыво­ротке крови с помощью реакции Кумбса.

Иммуноглобулины характеризуются различной авидностью (скорость и прочность связыва­ния с молекулой АГ). Авидность зависит от класса Ig, содержащих разное количество мономеров. Наибольшая авидность у IgМ. Авидность АТ меняется в про­цессе иммунного ответа в связи с переходом от синтеза IgM к преимущественному синтезу IgG.

Разные классы Ig отличаются по способности проходить через плаценту, связывать и активи­ровать комплемент и др. За эти свойства отвечают отдельные домены Fc-фрагмента .

IgG составляют около 80% сывороточных Ig (12 г/л). Они обра­зуются на высоте первичного иммунного ответа и при повторном введении антигена (вторичный ответ). Обладают достаточно быстро связываются с АГ, особенно бактериальной природы. При связывании IgG с эпитопами АГ в области его Fc-фрагмента открывается участок, ответственный за фиксацию первой фракции системы комплемента, с последующей активацией системы комплемента по классическому пути. IgG является единственным классом антител, проникающим через плаценту в организм плода. Через некоторое время после рождения ребенка содержание его в сыворотке крови падает и достигает минимальной концентрации к 3–4 мес, после чего начинает возрастать за счет накопления собственных IgG, достигая нормы к 7-летнему возрасту. Из всех классов Ig в Ò больше всего синтезируется IgG. Около 48% IgG содержится в тканевой жидкости, в которую он диф­фундирует из крови.

IgM первыми начинают син­тезироваться в Ò плода и первыми появляются в сыво­ротке крови после иммунизации. Составляют около 13% сывороточных иммуноглобулинов (1 г/л). По Мг они значительно больше остальных Ig, т.к. состоят из 5 субъединиц. К IgM принадлежит большая часть изогемагглютининов (группы крови). Они не проходят через плаценту и обладают наиболее высокой авидностью. При взаимодействии с АГ in vitro вызывают их агглютинацию, преципитацию или связывание комплемента.

IgA встречаются в сыворотке крови и в секретах на поверхности слизистых оболочек. В сыво­ротке крови (после 10 лет) их 2,5 г/л. Сывороточный IgA синтезируется в плазматических клетках селезенки, лимфатических узлов и слизистых оболочек. Они не агглютинируют и не преципитируют АГ, не активируют комплемент.

SIgA отличают­ся от сывороточных наличием секреторного компонента (β-глобулин), свя­занного с 2 или 3 мономерами иммуноглобулина А. Секреторный компонент синтезируется клетками секреторного эпи­телия, а к IgA присоединяется при его прохождении через эпите­лиальные клетки. Играют существенную роль в местном им­мунитете, препятствуют адгезии мкÒ на эпителиальных клетках. В агрегированной форме активирует комплемент по альтернатив­ному пути.

Около 40 % общего IgA содержится в крови.

IgD До 75% содержится в крови (0,03 г/л). Не проходит через плаценту, не связывает комплемент. Функции не выяснены (предположительно – является одним из рецепторов предшественников В-лимфоцитов).

IgE – в крови 0,00025 г/л, синтезируется плазмати­ческими клетками в лимфати­ческих узлах, в слизистой оболочке ЖКТ. Их называют также РЕАГИНАМИ, т.к. они принимают участие в анафилактических реакциях, обладая выраженной цитофильностью.

11. Неспецифические факторы защиты.

Рис. Схематическое строение клеточной стенки грамотрицательных бактерий

Грамотрицательные бактерии обладают двуслойной клеточной стенкой, которая окружает цитоплазматическую мембрану. Первый слой - очень тонкая (толщиной 1 нм) нелипидная мембрана, состоящая из пептидогликана. Его называют также гликопептидом или мукопептидом. Это сложный матрикс, содержащий полисахаридные цепи, связанные друг с другом поперечными сшивками из коротких пептидных цепей. Второй слой клеточной стенки - липидная мембрана толщиной 7,5 нм. Именно на этой внешней мембране и расположены эндотоксины (липополисахариды). Молекулы эндотоксина обеспечивают структурную целостность, отвечают за многие физиологические функции, в том числе определяют патогенные и антигенные свойства бактерий.

Структурно молекула эндотоксина делится на три части – Липид А, Кор и О-специфическую цепь (рис. внизу).

О-специфическая цепь липополисахаридов построена из повторяющихся олигосахаридов. Наиболее распространенными сахарами, входящими в состав О-специфической цепи, являются глюкоза, галактоза, рамноза. Этот участок молекулы придает ей гидрофильные свойства, благодаря которым ЛПС хорошо растворимы в воде. Полисахаридная часть является наиболее вариабельной частью молекулы ЛПC. Часто этот фрагмент молекулы называют О-антигеном, так как именно он отвечает за антигенную активность грамотрицательных бактерий

Кор - центральная часть молекулы, связывающая О-антиген с Липидом А. Формально структура кора подразделяется на внешнюю и внутреннюю части. В состав внутренней части кора обычно входят остатки L-глицеро-О-манногептозы и 2-кето-3-дезоксиоктоновой кислоты (КДО). КДО содержит 8 атомов углерода и в природе практически нигде больше не встречается.

Липид А состоит из дисахарида, фосфата и жирных кислот. Участок Липида А является наиболее константным участком молекулы ЛПС, и его строение схоже у многих бактерий.

Кроме липополисахаридов в состав внешней стенки грамотрицательных бактерий входят и белки (внешняя мембрана на ¾ состоит из ЛПС, и только ¼ приходится на белковые компоненты). Эти белки вместе с ЛПС образуют белково-липополисахаридные комплексы разного размера и молекулярной массы. Именно эти комплексы и называются бактериальными эндотоксинами . Очищенные препараты, которые используются в качестве стандартов, лишены пептидных фрагментов и представляют собой чистый препарат липополисахарида. Тем не менее, термин «бактериальные эндотоксины» применяется с равным успехом и к естественным эндотоксинам, оказавшимся в растворе в результате разрушения бактерий, и к чистым препаратам ЛПС.


На внешней стенке одной грамотрицательной бактерии может содержаться до 3,5 млн. молекул ЛПС. После ее гибели все они оказываются в растворе. Эндотоксины грамотрицательных бактерий остаются биологически активными молекулами и после гибели бактерий. Молекула эндотоксина термостабильна и легко выдерживает цикл стерилизации в автоклаве. Малые размеры молекул эндотоксинов позволяют им легко проходить через мембраны, используемые для стерилизации растворов (0,22 мкм). Поэтому эндотоксины могут присутствовать в готовых лекарственных формах, даже произведенных в асептических условиях и прошедших финишную стерилизацию.

Бактериальные эндотоксины являются исключительно активными (сильными) пирогенами. Для развития лихорадочного приступа достаточно присутствия бактериальных эндотоксинов в инфузионном растворе в концентрации 1 нг/мл (см. http://forums. rusmedserv.com/archive/index.php/t-98927.html). Другие пирогены менее активны, и для развития пирогенного ответа их концентрация должна быть в 100-1000 раз больше. Обычно термины «пирогены» и «эндотоксины» употребляются как синонимы и, хотя не все пирогены являются эндотоксинами, наиболее значимыми являются именно эндотоксины грамотрицательных бактерий.

Порообразующие токсины . К ним относят бактериальные токсины, функционирующие посредством вставки в плазматическую мембрану хозяина и формирующие в ней трансмембранные поры, приводящие клетку к лизису. Такие токсины еще называют RTX-семейством из-за наличия в их молекулах большого количества повторов . Механизм их действия хорошо прослеживается на примере альфа-токсина S.aureus, рассматриваемого как прототип олигомеризующегося пороформирующегося цитотоксина

Организация и механизм действия токсической молекулы . Большинство токсинов представляют собой А-В структуру. Эта структура предполагает наличие двух компонентов - В-субъединицы, которая участвует в связывании токсина с рецептором на поверхности клетки хозяина и способствует транспортировке токсина в клетку хозяина; и А-субъединицы - проявляющей энзиматическую (токсическую) активность в клетке хозяина. Структура В-доменов зависит от структуры рецепторов-мишеней, с которыми взаимодействует токсин. А-субъединицы более консервативны чем В, особенно в участках, критических для их ферментативной активности

Рис. Механизм действия бактериальных токсинов

А. Повреждение клеточных мембран альфа-токсином S. aureus. После с ЦПМ клетки, ножка похожего на шампиньон альфа-токсина вставляется в клетку -мишень и вызывает приток, или наоборот, отток из клетки ионов (обозначены как темные и светлые кружки, соответственно). В. Ингибирование белкового синтеза клетки шига-токсином (Stx). Голотоксин, который состоит из энзиматически активной субъединицы (А) входит в клетку через рецептор (Gb3). Затем А-субъединица, обладающая N-гликозидной активностью, отсекает аденозиновый остаток с 28S рибосомальной РНК, что останавливает белковый синтез. С. Примеры бактериальных токсинов, активирующих пути вторичных мессенджеров*. Связывание термостабильного энтеротоксина (ST) с рецептором гуанилатциклазы приводит к увеличению количества ГМФ, который обращает в обратную сторону ток электролитов. Посредством АДФ-рибозилирования или гликозилирования (соответственно), экзоэнзим С3 C. botulinum и токсины A (CdA) и В (CdB) C. difficile, инактивируют небольшие ГТФ-связывающие белки. Цитотоксический некротизирующий фактор (CNF) E. coli и дермонекротический токсин (DNT) рода Bordetella, активируют блокаду эффекторов через дезаминирование.

* ̶ Вторичные посредники (вторичные мессенджеры, англ. second messengers) - это малые сигнальные молекулы, компоненты системы передачи сигнала в клетке.

Эндотоксин или, если использовать более точный термин, бактериальный липополисахарид (ЛПС), считается самым мощным медиатором микробного происхождения, участвующим в патогенезе сепсиса и септического шока. Несмотря на то, что этот фактор был открыт более ста лет тому назад, основная роль эндотоксина, присутствующего в системном кровотоке большинства пациентов с септическим шоком, до сих пор не установлена и является предметом выраженной полемики. ЛПС - это наиболее существенная "сигнальная молекула", которая воспринимается системой раннего предупреждения естественного иммунитета хозяина, как предвестник внедрения грамотрицательных микроорганизмов во внутреннюю среду организма. Небольшие дозы ЛПС в ограниченном тканевом пространстве помогают организму хозяина организовать эффективную противомикробную защиту и удаление возбудителей во внешнюю среду. В то же время, внезапное высвобождение большого количества ЛПС, напротив, обладает пагубным влиянием на организм хозяина, поскольку в таком случае запускается неуправляемый и угрожающий жизни организма выброс многочисленных медиаторов воспаления и прокоагулянтов в системный кровоток. Выраженной реакции хозяина на эту молекулу, распознающую внедрение бактерий во внутреннюю среду организма, достаточно для того, чтобы вызвать диффузное повреждение эндотелия, гипоперфузию тканей, диссеминированное внутрисосудистое свертывание и рефрактерный шок. Многочисленные попытки блокировать активность эндотоксина, предпринятые в рамках клинических исследований, выполненных в популяции больных сепсисом, характеризуются противоречивыми и, главным образом, отрицательными результатами. Тем не менее, в течение предшествующего десятилетия были сделаны значительные открытия в области молекулярных основ ЛПС-опосредованной клеточной активации и тканевого повреждения, которые возродили оптимизм, связанный с возможным успехом применения терапии нового поколения, направленной на специфическое блокирование сигнальной системы ЛПС.

В настоящее время считается, что другие медиаторы микробного происхождения, которые
входят в структуру грамположительных бактерий, вирусов и грибов, также способны активировать многочисленные системы защиты организма хозяина, на которые воздействует ЛПС.

Эндотоксин распространяется в потоке крови и способствует активации моноцитов и макрофагов. В результате освобождаются медиаторы, в том числе цитокины, и создаются благоприятные условия для вызванного инфекцией системного воспаления. Эндотоксин является пусковым механизмом высвобождения цитокинов и медиаторов. Наличие эндотоксинов в крови называется эндотоксимией . При сильном иммунном ответе эндотоксемия может привести к септическому шоку . Считается, что воздействие на эндотоксин и его скорейшее выведение из организма являются важнейшими задачами при лечении сепсиса.

Токсигенез включает продуцирование токсинов патогенными бактериями. Это один из основных методов родов болезней и заболеваний, вызванных бактериями. 2 категории токсинов, которые приводят к различным инфекциям и заболеваниям; эндотоксинов и экзотоксинов, и они различны в зависимости от их химической природы. Эндотоксины представляют собой бактериальные токсины, состоящие из липидов (липополисахаридов), а экзотоксины состоят из белков.

Что такое эндотоксины?

Эндотоксины представляют собой липополисахариды, вырабатываемые грамотрицательными бактериями. Эндотоксины связаны клетками и производятся только тогда, когда лизис клеток. Энтотоксины присутствуют во внешней оболочке клеточной стенки в грамм-бактериях. Эндотоксины также называют липополисахаридами и присутствуют в клетках E coli, Shigella, Salmonella, Pseudomonas, Haemophilus influenza, Neisseria и Vibrio cholerae. Эндотоксины обычно секретируются путем развития бактерий из-за действий определенных антибиотиков или при действии фагоцитарного пищеварения.

Эндотоксины проявляют меньшую активность и не очень активны на их субстрате. Они обладают теплостойкостью. Наружная стенка бактерий непроницаема для больших молекул и молекул, которые не могут растворяться в воде и защищаться от внешней среды.

Эти токсины являются частью этой защитной деятельности. Он действует на хосте во время колонизации. Кроме того, эндотоксины проявляют слабую антигенность.

Что такое экзотоксины?

Экзотоксины представляют собой токсины, которые высвобождаются внеклеточно с развитием организма. Экзотоксины представляют собой заразительные токсины, которые распространяются от очага инфекции до других частей тела и вызывают повреждение. Они являются растворимыми белками, которые действуют как ферменты. Экзотоксин способен вызывать повреждение хозяина путем разрушения клеток или нарушения нормального клеточного метаболизма. Экзотоксины очень эффективны и могут нанести вред хозяину. Экзотоксины выделяются из-за их быстрого роста или во время лизиса клеток. Как грамм +, так и грамм-бактерии продуцируют экзотоксины.

Экзотоксины обладают большей токсичностью по сравнению с эндотоксинами и отличаются от определенных штаммов бактерий. Экзотоксины вызывают заболевания, специфичные только для этого заражения. Напр. Clostridium tetani образует столбнячный токсин. Существуют 3 основные категории экзотоксинов: энтеротоксины, нейротоксины и цитотоксины. Эти типы указывают на местоположение деятельности. Энтеротоксическую активность можно наблюдать на желудочно-кишечном тракте. Нейротоксины проявляют свои функции на нейронах, а цитотоксины разрушают функционирование клетки-хозяина. Некоторые из нарушений здоровья, вызванных экзотоксинами, включают холеру, столбняк и дифтерию. Антигенность экзотоксинов довольно высока. Экзотоксины запускают иммунную систему и секретируют антитоксины, чтобы аннулировать токсин.

Рисунок 1. Структура эндотоксинов и экзотоксинов (Aryal, 2015)

Разница между эндотоксинами и экзотоксинами

Химическая природа эндотоксинов и экзотоксинов

эндотоксинов

Эндотоксины также известны как липополисахариды грамм-бактерий. Эндотоксины состоят из двух компонентов, обладающих различными физическими и химическими характеристиками: гетерополисахарид и ковалентно присоединенный липид, называемый липидом А.

Экзотоксины

Экзотоксины представляют собой токсины, секретируемые бактериями, а химический состав - из белков.

Ферменты в эндотоксинах и экзотоксинах

эндотоксинов

Каталаза, фибролизин, IgA / IgG-протеазы

Экзотоксины

Гиалуронидаза, коллагеназа, определенная протеаза, нуклеаза, нейраминидаза, определенная протеаза, фосфолипаза А

Источник эндотоксинов и экзотоксинов

эндотоксинов

Эндотоксины секретируются клеточной мембраной грамм-бактерий только после лизиса клеток. Эндотоксины являются неотъемлемой частью клеточной стенки.

Экзотоксины

Экзотоксины секретируются определенными граммами + и грамм-бактериями

Расположение эндотоксинов и экзотоксинов

эндотоксинов

Он присутствует внутри клеточной мембраны и высвобождается только после лизиса грамм-клеточной стенки.

Экзотоксины

Он выделяется вне клетки как граммами +, так и грамм-бактериями.

Способ действия, связанный с эндотоксинами и экзотоксинами

эндотоксин

Включает TNF и Interlukin-1

экзотоксин

Различные режимы

Термостойкость эндотоксинов и экзотоксинов

эндотоксин

Эндотоксины являются термоустойчивыми и относительно стабильными при 250oC в течение одного часа

экзотоксин

Экзотоксины могут разрушаться при 600-800 ° C (тепло ответственно). Они нестабильны, кроме стафилококкового энтеротоксина.

Тесты обнаружения

эндотоксин

Обнаруживается тестом на анализ лимута Лимула.

экзотоксин

Осадки, методы на основе ELISA, нейтрализация

иммуногенность

эндотоксин

Эндотоксины проявляют слабую иммуногенность. Эндотоксины не продуцируют антитоксины.

экзотоксин

Экзотоксины чрезвычайно иммуногенны. Они вызывают гуморальную реакцию (антитела нацелены на токсины). При стимуляции иммунной системы экзотоксины выделяют антитоксины для нейтрализации токсина

Токсический потенциал / Вакцины

эндотоксин

Токсики не могут быть сделаны, и вакцины отсутствуют.

экзотоксин

Токсики могут быть получены обработкой формальдегидом, но обработанные токсины проявляют иммуногенность. Токсики могут использоваться в качестве вакцин.

Отношение к микроорганизмам

эндотоксин

Расположен в LPS наружной оболочки клеточной стенки и секретируется с повреждением клетки или во время умножения клеток.

экзотоксин

Метаболический продукт развивающейся клетки.

болезни

эндотоксинов

Инфекции мочевыводящих путей, брюшной тиф, менингококковый менингит, болезнь коронарной артерии, неонатальный некротизирующий энтероколит, болезнь Крона и язвенный колит, кистозный фиброз, менингококкемия, сепсис грамотрицательными палочками, геморрагический шок

Экзотоксины

Газовая гангрена, Алая лихорадка, Дифтерия, Ботулизм, столбняк, диарея, связанная с антибиотиками, синдром кожи кожи.

Резюме эндотоксинов против экзотоксинов

Различия между эндотоксинами и экзотоксинами приведены ниже:

Сравнительная таблица для эндотоксинов и экзотоксинов

Альгимед поставляет все необходимые реактивы, вспомогательные материалы и оборудование для проведения ЛАЛ-теста всеми фармакопейными методами. Для проведения гель-тромб теста и кинетического турбидиметрического анализа мы предлагаем универсальный ЛАЛ-реактив PYROSTAR ES-F производства Wako Chemicals USA, Inc. Данный реактив является эндотоксин-специфичным ЛАЛ-реактивом нового поколения. Он содержит карбоксиметилкурдлан, который лиофилизирован вместе с лизатом. Это делает ЛАЛ-реактив невосприимчивым к присутствию в препарате β-1,3-глюканов.

Для проведения инструментальных методов анализа, таких как хромогенный метод, мы предлагаем ЛАЛ-реактивы и программное обеспечение производства Лонза, США. Компания Лонза уделяет большое внимание развитию кинетических методов анализа, в том числе и новому методу определения бактериальных эндотоксинов с использованием рекомбинантного фактора С. При заказе измерительного комплекса для количественного определения бактериальных эндотоксинов, состоящего из спектрофотометра и программного обеспечения WinKQCL, сертифицированные специалисты из Лонзы осуществляют поддержку в установке и проведении IQ/OQ/PQ валидации оборудования.

  • ЛАЛ-реактив

    Биохимический реактив, получаемый из лизированных амебоцитов (клеток крови) мечехвостов вида Limulus Polyphemus. Обладает высокой чувствительностью к бактериальным эндотоксинам и используется для определения их содержания в лекарственных препаратах и активных фармацевтических субстанциях.

  • Чувствительность ЛАЛ-реактива (λ)

    Обозначается греческой буквой λ. Выражена в единицах эндотоксина на миллилитр, ЕЭ/мл и соответствует минимальной концентрации Международного стандарта эндотоксина, которая вызывает образование плотного геля при реакции с данным реактивом (в гель-тромб тесте), или соответствует точке с минимальным значением на стандартной кривой (в фотометрических методах анализа).

  • Контрольный стандарт эндотоксина (КСЭ)

    Очищенный липополисахарид, полученный из штамма E. Coli. Активность контрольного стандарта эндотоксина установлена по международному стандарту эндотоксина. Используется для подтверждения заявленной чувствительности ЛАЛ-реактива и для постановки контролей. Активность контрольного стандарта выражается в Единицах эндотоксина (ЕЭ).

  • Бактериальные эндотоксины

    Фрагменты клеточных стенок грамотрицательных бактерий. Представляют собой сложные липополисахаридные комплексы. При попадании в организм человека через парентеральный путь введения вызывают пирогенный ответ (повышение температуры тела). Так как грамотрицательные бактерии вездесущи по своей природе, бактериальные эндотоксины могут попадать в лекарственные препараты в процессе их производства из фармацевтических субстанций, лабораторной посуды, воды, производственного оборудования.

  • Вода для ЛАЛ-теста

    Для приготовления растворов ЛАЛ-реактива, контрольного стандарта эндотоксина и разведений испытуемого лекарственного препарата используют воду для ЛАЛ-теста. Вода для ЛАЛ-теста должна соответствовать требованиям, предъявляемым к воде для инъекций, и при этом не должна содержать бактериальные эндотоксины в количествах, определяемых в тесте.

  • Гель-тромб тест

    Метод проведения ЛАЛ-теста, в котором результаты анализа определяются визуально. Анализ проводят в стеклянных пробирках размером 10х75 мм, в которых смешиваются равные части ЛАЛ-реактива и испытуемого препарата. Пробирки с реакционной смесью инкубируют в водяной бане или термоблоке при температуре 37°С ± 1 °С в течение одного часа. По истечении времени инкубирования результаты определяются визуально: если в пробирках образовался плотный гель, который не стекает при однократном переворачивании пробирки на 180О, то результат засчитывается как положительный. Если в пробирке остался раствор или образовался гель, который стекает при переворачивании пробирки, то результат реакции считается отрицательным. Гель-тромб тест – это самый простой метод проведения ЛАЛ-теста, который не требует приобретения дорогостоящего оборудования. Освоение ЛАЛ-теста проще всего начинать именно с этого метода.

  • Качественный гель-тромб тест (метод А)

    Задачей этого анализа является подтверждение того, что содержание бактериальных эндотоксинов в испытуемом образце не превышает значения предельного содержания бактериальных эндотоксинов, указанного в фармакопейной статье. В качественном гель-тромб тесте испытуемый препарат проверяется в двух повторностях в одном выбранном разведении. Если в этом разведении получены положительные результаты, то содержание эндотоксинов в данном препарате более или равно фактору этого разведения, умноженному на чувствительность используемого ЛАЛ-реактива.

  • Количественный гель-тромб тест (метод В)

    Этим методом определяют содержание бактериальных эндотоксинов с помощью ряда последовательных разведений испытуемого лекарственного средства. В анализ ставится серия последовательных двукратных разведений препарата, не менее четырех разведений. Положительный контроль испытуемого препарата (контроль ингибирования) ставится для наименьшего разведения испытуемого препарата, так как ингибирование прямо зависит от концентрации испытуемого препарата в растворе. В анализе определяется конечная точка реакции для каждой повторности. Конечная точка реакции – это наименьшее разведение для каждой повторности, в которой еще происходит образование геля. Концентрация бактериальных эндотоксинов в испытуемом препарате для каждой повторности рассчитывается как произведение фактора разведения для конечной точки реакции на чувствительность ЛАЛ-реактива. Далее рассчитывается среднее геометрическое значение для всех повторностей, как в опыте «Подтверждение заявленной чувствительности ЛАЛ-реактива».

    Если для всех разведений испытуемого препарата получены отрицательные результаты, то содержание бактериальных эндотоксинов будет менее значения фактора разведения наименьшего разведения, умноженного на чувствительность ЛАЛ-реактива.

    Если для всех разведений испытуемого препарата получены положительные результаты, то содержание бактериальных эндотоксинов будет более или равно значению фактора разведения наибольшего разведения, умноженного на чувствительность ЛАЛ-реактива.

  • Предельное содержание бактериальных эндотоксинов

    Допустимое содержание бактериальных эндотоксинов в испытуемом лекарственном средстве, указанное в фармакопейной статье. Для расчета предельного содержания бактериальных эндотоксинов используют следующую формулу:
    Предельное содержание бактериальных эндотоксинов = К / М, где:

    К - пороговая пирогенная доза, равная 5 ЕЭ/кг в 1 час для испытуемого лекарственного препарата (если он вводится пациенту любым парентеральным путем, кроме интратекального). При интратекальном пути введения лекарственного препарата К составляет 0,2 ЕЭ/кг;

    М - максимальная терапевтическая доза испытуемого лекарственного средства, вводимая в течение одного часа (выражается в мг, мл или ЕД на 1 кг массы тела).

    Для радиофармацевтических лекарственных препаратов, вводимых внутривенно, предельное содержание бактериальных эндотоксинов рассчитывают как 175/V, где V – максимальная рекомендованная доза в мл. Для радиофармацевтических лекарственных препаратов, вводимых интратекально, предельное содержание бактериальных эндотоксинов равняется 14/V.
    Для лекарственных препаратов, доза которых рассчитывается на м2 поверхности тела (например, противоопухолевые препараты), пороговая пирогенная доза (К) составляет 100 ЕЭ/м2 .

  • Максимально допустимое разведение препарата (МДР)

    Максимально допустимое разведение (МДР) представляет собой наибольшее разведение испытуемого лекарственного средства, в котором возможно определение концентрации эндотоксина, соответствующей значению предельного содержания бактериальных эндотоксинов, установленному для данного лекарственного средства. МДР – это такое разведение испытуемого препарата, в котором можно сделать однозначный вывод о соответствии/несоответствии лекарственного препарата требованию раздела «Бактериальные эндотоксины».
    Испытуемое лекарственное средство может быть проверено в одном разведении или в серии разведений при условии, что конечная степень разведения не превысит значения МДР, которое рассчитывается по формуле:

    где:
    «предельное содержание бактериальных эндотоксинов» - допустимое содержание бактериальных эндотоксинов в испытуемом лекарственном средстве, указанное в фармакопейной статье;

    «концентрация испытуемого раствора» - концентрация лекарственного средства или действующего вещества, для которого указано предельное содержание бактериальных эндотоксинов

    λ - чувствительность ЛАЛ-реактива, в ЕЭ/мл.

  • Положительный контроль испытуемого препарата

    Представляет собой испытуемый препарат в выбранном разведении, к которому добавлен эндотоксин в концентрации, в два раза превышающей чувствительность используемого ЛАЛ-реактива (то есть, 2 λ). Данный контроль должен быть положительным и позволяет удостовериться в том, что испытуемый препарат в выбранном разведении не ингибирует реакцию гелеобразования.

  • Положительный контроль опыта

    Представляет собой воду для ЛАЛ-теста, к которой добавлен эндотоксин в концентрации, в два раза превышающей чувствительность используемого ЛАЛ-реактива (то есть, 2 λ). Данный контроль должен быть положительным и позволяет удостовериться в том, что ЛАЛ-реактив и контрольный стандарт эндотоксина не потеряли своих свойств в процессе транспортировки и хранения.

  • Отрицательный контроль опыта

    Представляет собой воду для ЛАЛ-теста. Данный контроль должен быть отрицательным и позволяет удостовериться в том, что все используемые в опыте материалы не содержат бактериальные эндотоксины в определяемых в тесте количествах.

Ничего не найдено:(Попробуйте ввести, к примеру, лал-реактив

Определение содержания бактериальных эндотоксинов

Компания «Альгимед» на базе собственной оснащенной лаборатории предлагает проведение определения бактериальных эндотоксинов в образцах заказчика различными фармакопейными методами :

  • методом гель-тромб тест (методы А и В)
  • хромогенным кинетическим методом (метод D)
Определение бактериальных эндотоксинов проводится как для препаратов, имеющих утвержденную НД с уровнем предельного содержания бактериальных эндотоксинов, так и для неизвестных образцов, не имеющих утвержденной нормативной документации по показателю «Бактериальные эндотоксины».
Также лаборатория предлагает проведение предварительных анализов и отработку методики постановки анализа «Мешающие факторы» для тех испытуемых образцов, для которых уже есть утвержденный заказчиком уровень предельного содержания бактериальных эндотоксинов и требуется провести отработку валидации метода для конкретного препарата. Подробнее
  • Проведение качественного или количественного анализа одного образца, для которого имеется утвержденный уровень предельного содержания БЭ - 3 360,00 рублей, включая НДС 20%.
  • Проведение исследовательского анализа одного образца, не имеющего утвержденного уровня предельного содержания БЭ - 3 960,00 рублей, включая НДС 20%.
  • Проведение цикла предварительных анализов и отработка методики постановки анализа «Мешающие факторы» для препарата, имеющего утвержденный уровень предельного содержания БЭ – 36 000,00 рублей, включая НДС 20%.
  • Разработка стандартной операционной процедуры (СОП) рутинной проверки лекарственного препарата по показателю «Бактериальные эндотоксины», для которого уже есть установленный уровень предельного содержания БЭ - 14 400,00 рублей, включая НДС 20%.

Образцы принимаются по адресу:

Поделиться