Строение слухового анализатора таблица. Строение и функции слухового анализатора

12600 0

Слуховая система является анализатором звуков. В ней различают звукопроводящий и звуковоспринимающий аппараты (рис. 1). Звукопроводящий аппарат включает наружное ухо, среднее ухо, лабиринтные окна, мембранозные образования и жидкостные среды внутреннего уха; звуковоспринимающий — волосковые клетки, слуховой нерв, нейронные образования ствола мозга и центры слуха (рис. 2).


Рис. 1. Схематическое строение уха (периферическое строение слухового анализатора): 1 — наружное ухо; 2 — среднее ухо; 3 — внутреннее ухо




Рис. 2. Схема звукопроводящего и звуковоспринимающего аппаратов: 1 — наружное ухо; 2 — среднее ухо; 3 — внутреннее ухо; 4 — проводящие пути; 5 — корковый центр


Звукопроводящий аппарат обеспечивает проведение акустических сигналов к чувствительным рецепторным клеткам, звуковоспринимающий — трансформирует звуковую энергию в нервное возбуждение и проводит ее в центральные отделы слухового анализатора.

Наружное ухо (amis externa) включает ушную раковину (auricula) и наружный слуховой проход (meatus acusticus extemus).

Ушная раковина представляет собой овальное образование неправильной формы возле начала наружного слухового прохода. Ее основу составляет эластический хрящ, покрытый кожей. В нижней части раковины, которая называется мочкой (lobulus auriculae), хрящ отсутствует. Вместо него под кожей находится слой клетчатки.

В ушной раковине различают ряд возвышений и ямок (рис. 3). Ее свободный, валикообразно загнутый край носит название завитка (helix). Завиток начинается от заднего края мочки, тянется по всему периметру раковины и заканчивается над входом в наружный слуховой проход. Эта часть ушной раковины получила название ножки завитка (cms helicis). В верхнезадней части завитка определяется овальное утолщение, которое называется утиным бугорком (tubercuhtm auriculae).


Рис. 3. Основные анатомические образования ушной раковины: 1 — завиток; 2 — ножка лрогивозавитка; 3 — ножка завитка; 4 — передняя вырезка; 5 — надкозелковый бугорок; 6 — козелок; 7 — наружный слуховой проход; 8 — межкозелковая вырезка; 9 — противокозелок: 10 — мочка (сережка); 11 — задняя ушная борозда; 12 — противозавиток; 13 — ушная раковина; 14 — ладьевидная ямка; 15 — ушной бугорок; 16 — треугольная ямка


Различают еще второй валик — противозавиток (anthelix). Между завитком и противозавитком находится треугольная ямка (fossa triangularis). Противозавиток заканчивается над мочкой уха возвышением, получившим название противокозелка (antitragus). Спереди противокозелка находится плотное хрящевое образование — козелок (tragus). Он частично защищает слуховой проход от проникновекия в него инородных тел. Глубокая ямка, размещенная между козелком, противозавитком и противокозелком, составляет собственно раковину уха (concha auriculae). Мышцы ушной раковины являются рудиментарными и практического значения не имеют.

Ушная раковина переходит во внешний слуховой проход (meatus (icusticus exterrms). Внешняя часть прохода (приблизительно 1/3 его длины) состоит из хряща, внутренняя часть (2/3 длины) — костная. Перепончато-хрящевая часть наружного слухового прохода подвижна, кожа содержит волосы, сальные и серные железы. Волосы защищают ухо от проникновения в него насекомых, инородных тел; сера и #ир смазывают и очищают слуховой проход от чешуек и инородных частиц. Кожа костной части наружного прохода тонкая, лишена волос \\ желез, плотно прилегает к височной кости.

В месте перехода хрящевой части в костную слуховой проход несколько суживается (isthmus). Костная часть прохода имеет неправильную S-образную форму, из-за чего передненижнис участки барабанной перепонки просматриваются недостаточно. Чтобы расширить пространство и лучше рассмотреть барабанную перепонку, необходимо оттянуть ушную раковину кверху Л назад. Такое строение наружного слухового прохода имеет практическое значение в клинике. В частности, наличие сальных желез и во-;юс только в хрящевой части предопределяет возникновение фурункулов, фолликулитов; сужение прохода на границе его перепончато-хрящевой и костной части представляет опасность, поскольку создает угрозу проталкивания инородного тела в глубину слухового прохода при неумелом его удалении.

Наружное ухо и близлежащие ткани снабжаются кровью из мелких сосудов наружной сонной артерии — a. auhcularis posterior, a. temporalis superfacialis, a. maxillaris interna и других. Иннервация наружного уха осуществляется ветвями V, VII и X черепных нервов. Участие в этом процессе, блуждающего нерва, в частности его ушной детви (г. auricularis), объясняет причину возникновения рефлекторного кашля у отдельных пациентов при механическом раздражении кожи наружного слухового прохода (удаление серы, туалет уха).

Среднее ухо (auris media) представляет собой систему воздухоносных полостей, включающих барабанную полость (cavum tympani), пещеру (antrum), воздухоносные ячейки сосцевидного отростка (cellulae $astoideas) и слуховую трубу (tuba auditiva). Наружной стенкой барабанной полости является барабанная перепонка, внутренней — латеральная стенка внутреннего уха, верхней — крыша барабанной полости (tegmen tympani), отделяющая барабанную полость от средней черепной ямки, нижней — костное образование, отделяющее луковицу яремной вены (bulbus venae jugularis).

На передней стенке имеется барабанное отверстие слуховой трубы и канал для мышцы, напрягающей барабанную перепонку (т. tensor tympani), на задней — вход в пещеру (aditus ad antrum), который соединяет барабанную полость через надбарабанное пространство (attic) с пещерой сосцевидного отростка (antrum mastoideum). Слуховая труба соединяет барабанную полость с носовой частью горла. Сзади и снизу отверстия слуховой трубы размещен костный канал, в котором проходит внутренняя сонная артерия, своими ветвями обеспечивающая кровоснабжение внутреннего уха. Анатомическое строение

Д.И. Заболотный, Ю.В. Митин, С.Б. Безшапочный, Ю.В. Деева

Возрастная анатомия и физиология Антонова Ольга Александровна

5.5. Слуховой анализатор

5.5. Слуховой анализатор

Основной функцией органов слуха является восприятие колебаний воздушной среды. Органы слуха тесно связаны с органами равновесия. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе.

Филогенетически они имеют общее происхождение. Оба рецепторных аппарата иннервируются волокнами третьей пары черепных нервов, оба реагируют на физические показатели: вестибулярный аппарат воспринимает угловые ускорения, слуховой – воздушные колебания.

Слуховые восприятия очень тесно связаны с речью – ребенок, потерявший слух в раннем детстве, утрачивает речевую способность, хотя речевой аппарат у него абсолютно нормален.

У зародыша органы слуха развиваются из слухового пузырька, который вначале сообщается с наружной поверхностью тела, но по мере развития эмбриона отшнуровывается от кожных покровов и образует три полукружных канала, расположенных в трех взаимно перпендикулярных плоскостях. Часть первичного слухового пузырька, которая связывает эти каналы, называют преддверием. Оно состоит из двух камер – овальной (маточки) и круглой (мешочка).

В нижнем отделе преддверия из тонких перепончатых камер образуется полый выступ, или язычок, который у зародышей вытягивается, а затем скручивается в виде улитки. Язычок образует кортиев орган (воспринимающую часть органа слуха). Этот процесс происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается миелинизация волокон слухового нерва. В последние месяцы внутриутробного развития начинается дифференцировка клеток в корковом отделе слухового анализатора, протекающая особенно интенсивно в первые два года жизни. Заканчивается формирование слухового анализатора к 12-13-летнему возрасту.

Орган слуха. Орган слуха человека состоит из наружного уха, среднего уха и внутреннего уха. Наружное ухо служит для улавливания звуков, его образуют ушная раковина и наружный слуховой проход. Ушная раковина образована эластическим хрящом, снаружи покрытым кожей. Внизу ушная раковина дополнена кожной складкой – мочкой, которая заполнена жировой тканью. Определение направления звука у человека связано с бинауральным слухом, т. е. со слышанием двумя ушами. Любой боковой звук поступает в одно ухо раньше, чем в другое. Разница во времени (несколько долей миллисекунды) прихода звуковых волн, воспринимаемых левым и правым ухом, дает возможность определить направление звука. При поражении одного уха человек определяет направление звука вращением головы.

Наружный слуховой проход у взрослого человека имеет длину 2,5 см, емкость – 1 куб. см. Кожа, выстилающая слуховой проход, имеет тонкие волоски и видоизмененные потовые железы, вырабатывающие ушную серу. Они выполняют защитную роль. Ушная сера состоит из жировых клеток, содержащих пигмент.

Наружное и среднее ухо разделяются барабанной перепонкой, представляющей собой тонкую соединительно-тканную пластинку. Толщина барабанной перепонки – около 0,1 мм, снаружи она покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка располагается наклонно и начинает колебаться при попадании на нее звуковых волн. Поскольку барабанная перепонка не имеет собственного периода колебаний, то она колеблется при любом звуке соответственно его длине волны.

Среднее ухо представляет собой барабанную полость, которая имеет форму маленького плоского барабана с туго натянутой колеблющейся перепонкой и слуховой трубой. В полости среднего уха находятся сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Рукоятка молоточка вплетена в барабанную перепонку; другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно сочленена со стремечком. К стремечку прикреплена стременная мышца, которая удерживает его у перепонки овального окна, отделяющего внутреннее ухо от среднего. Функцией слуховых косточек является обеспечение увеличения давления звуковой волны при передаче с барабанной перепонки на перепонку овального окна. Это увеличение (примерно в 30–40 раз) помогает слабым звуковым волнам, падающим на барабанную перепонку, преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо, трансформируясь там в колебания эндолимфы.

Барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см, очень узкой (2 мм), поддерживающей одинаковое давление снаружи и изнутри на барабанную перепонку, обеспечивая тем самым наиболее благоприятные условия для ее колебания. Отверстие трубы в глотке чаще всего находится в спавшемся состоянии, и воздух проходит в барабанную полость во время акта глотания и зевания.

Внутреннее ухо находится в каменистой части височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани, который как бы вставлен в костный лабиринт и повторяет его форму. Между костным и перепончатым лабиринтами имеется жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа. Кроме овального окошка, в стенке, отделяющей среднее ухо от внутреннего, есть круглое окно, которое делает возможным колебание жидкости.

Костный лабиринт состоит из трех частей: в центре находится преддверие, спереди от него – улитка, а сзади – полукружные каналы. Костная улитка – спирально извивающийся канал, образующий два с половиной оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки – 0,04 мм, на вершине – 0,5 мм. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части – лестницы.

Внутри среднего канала улитки находится спиральный (кортиев) орган. Он имеет базилярную (основную) пластинку, состоящую примерно из 24 тыс. тонких фиброзных волоконец различной длины. Эти волоконца очень упругие и слабо связаны друг с другом. На основной пластинке вдоль нее в пять рядов располагаются опорные и волосковые чувствительные клетки – это и есть слуховые рецепторы.

Внутренние волосковые клетки расположены в один ряд, по всей длине перепончатого канала их насчитывается 3,5 тыс. Наружные волосковые клетки располагаются в три-четыре ряда, их насчитывается 12–20 тыс. Каждая рецепторная клетка имеет удлиненную форму, на ней имеется 60–70 мельчайших волосков (длиной 4–5 мкм). Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой, которая нависает над ними. Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва. В продолговатом мозге находится второй нейрон слухового пути; потом путь идет, перекрещиваясь, к задним буграм четверохолмия, а от них – в височную область коры, где располагается центральная часть слухового анализатора.

В коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов. Другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку.

Механизм восприятия звука. Для слухового анализатора звук является адекватным раздражителем. Звуковые волны возникают как чередование сгущений и разрежений воздуха и распространяются во все стороны от источника звука. Все вибрации воздуха, воды или другой упругой среды распадаются на периодические (тоны) и непериодические (шумы).

Тоны бывают высокие и низкие. Низким тонам соответствует меньшее число колебаний в секунду. Каждый звуковой тон характеризуется длиной звуковой волны, которой соответствует определенное число колебаний в секунду: чем больше число колебаний, тем короче длина волны. У высоких звуков волна короткая, она измеряется в миллиметрах. Длина волны низких звуков измеряется метрами.

Верхний звуковой порог у взрослого человека составляет 20 000 Гц; самый низкий – 12–24 Гц. Дети имеют более высокую верхнюю границу слуха – 22 000 Гц; у пожилых людей она ниже – около 15 000 Гц. Наибольшей восприимчивостью обладает ухо к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость уха сильно понижается.

У новорожденных полость среднего уха заполнена амниотической жидкостью. Это затрудняет колебания слуховых косточек. Со временем жидкость рассасывается, и вместо нее из носоглотки через евстахиеву трубу проникает воздух. Новорожденный ребенок при громких звуках вздрагивает, у него изменяется дыхание, он перестает плакать. Более четким слух у детей становится к концу второго – началу третьего месяца. Через два месяца ребенок дифференцирует качественно различные звуки, в 3–4 месяца различает высоту звука, в 4–5 месяцев звуки для него становятся условно-рефлекторными раздражителями. К 1–2 годам дети различают звуки с разницей в один-два, а к четырем-пяти годам – даже 3/4 и 1/2 музыкального тона.

>> Слуховой анализатор

§ 51. Слуховой анализатор

1. Что общего между зрительным и слуховым анализаторами?
2. Каково строение и функции наружного, среднего и внутреннего уха?
3. Как звуковая волна преобразуется в наружном, среднем и внутреннем ухе?
4. Что происходит в слуховых рецепторах?
5. Как сохранить хороший слух?

Значение слуха.

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

(Слуховая сенсорная система)

Вопросы лекции:

1. Структурно-функциональная характеристика слухового анализатора:

a. Наружное ухо

b. Среднее ухо

c. Внутреннее ухо

2. Отделы слухового анализатора: периферический, проводниковый, корковый.

3. Восприятие высоты, силы звука и локализации источника звука:

a. Основные электрические явления в улитке

b. Восприятие звуков различной высоты

c. Восприятие звуков различной интенсивности

d. Определение источника звука (бинауральный слух)

e. Слуховая адаптация

1. Слуховая сенсорная система – второй по значению дистантный анализатор человека, играет важную роль именно у человека в связи с возникновением членораздельной речи.

Функция слухового анализатора: превращение звуковых волн в энергию нервного возбуждения и слуховое ощущение.

Как любой анализатор, слуховой анализатор состоит из периферического, проводникового и коркового отдела.

ПЕРИФЕРИЧЕСКИЙ ОТДЕЛ

Превращает энергию звуковых волн в энергию нервного возбуждения – рецепторный потенциал (РП). Этот отдел включает:

· внутреннее ухо (звуковоспринимающий аппарат);

· среднее ухо (звукопроводящий аппарат);

· наружное ухо (звукоулавливающий аппарат).

Составляющие этого отдела объединяются в понятие орган слуха .

Функции отделов органа слуха

Наружное ухо :

a) звукоулавливающая (ушная раковина) и направляющая звуковую волну в наружный слуховой проход;

b) проведение звуковой волны через слуховой проход к барабанной перепонке;

c) механическая защита и защита от температурных воздействий окружающей среды всех остальных отделов органа слуха.

Среднее ухо (звукопроводящий отдел) – это барабанная полость с 3-мя слуховыми косточками: молоточек, наковальня и стремечко.

Барабанная перепонка отделяет наружный слуховой проход от барабанной полости. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая, в свою очередь, сочленена со стремечком. Стремечко прилегает к мембране овального окна. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, в результате чего происходит вентиляция барабанной полости и уравнивание давления в ней с атмосферным. Если внешнее давление быстро изменяется (быстрый подъем на высоту), а глотания не происходит, то разность давлений между атмосферным воздухом и воздухом в барабанной полости приводит к натяжению барабанной перепонки и возникновению неприятных ощущений («закладывание ушей»), снижению восприятия звуков.

Площадь барабанной перепонки (70 мм 2) значительно больше площади овального окна (3,2 мм 2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн в 2 раза, поэтому происходит такое же усиление звуковых волн на овальном окне барабанной полости. Следовательно, среднее ухо усиливает звук примерно в 60-70 раз, а если учитывать усиливающий эффект наружного уха, то эта величина возрастает в 180-200 раз. В связи с этим, при сильных звуковых колебаниях для предотвращения разрушительного действия звука на рецепторный аппарат внутреннего уха, среднее ухо рефлекторно включает «защитный механизм». Он состоит в следующем: в среднем ухе есть 2 мышцы, одна из них натягивает барабанную перепонку, другая – фиксирует стремечко. При сильных звуковых воздействиях эти мышцы при их сокращении ограничивают амплитуду колебаний барабанной перепонки и фиксируют стремечко. Это «гасит» звуковую волну и предохраняет чрезмерное возбуждение и разрушение фонорецепторов кортиевого органа.

Внутреннее ухо : представлено улиткой – спирально закрученным костным каналом (2,5 завитка у человека). Этот канал разделен по всей его длине на три узкие части (лестницы) двумя мембранами: основной мембраной и вестибулярной мембраной (Рейснера).

На основной мембране расположен спиральный орган – орган корти (кортиев орган) – это собственно звуковоспринимающий аппарат с рецепторными клетками – это и есть периферический отдел слухового анализатора.

Геликотрема (отверстие) соединяет верхний и нижний канал на вершине улитки. Средний канал является обособленным.

Над кортиевым органом расположена текториальная мембрана, один конец которой закреплен, а другой остается свободным. Волоски наружных и внутренних волосковых клеток кортиевого органа соприкасаются с текториальной мембраной, что сопровождается их возбуждением, т.е. энергия звуковых колебаний трансформируется в энергию процесса возбуждения.

Строение кортиевого органа

Процесс трансформации начинается с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебания перилимфы вестибулярной лестницы. Эти колебания через геликотрему передаются на перилимфу барабанной лестницы и достигают круглого окна, выпячивая его в сторону среднего уха (это не дает затухнуть звуковой волне при прохождении по вестибулярному и барабанному каналу улитки). Колебания перилимфы передаются на эндолимфу, что вызывает колебания основной мембраны. Волокна основной мембраны приходят в колебательные движения вместе с рецепторными клетками (наружными и внутренними волосковыми клетками) кортиевого органа. При этом волоски фонорецепторов контактируют с текториальной мембраной. Реснички волосковых клеток деформируются, это вызывает формирование рецепторного потенциала, а на его основе – потенциала действия (нервный импульс), который проводится по слуховому нерву и передается в следующий отдел слухового анализатора.

ПРОВОДНИКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Проводниковый отдел слухового анализатора представлен слуховым нервом . Он образован аксонами нейронов спирального ганглия (1-й нейрон проводящего пути). Дендриты этих нейронов иннервируют волосковые клетки кортиевого органа (афферентное звено), аксоны образуют волокна слухового нерва. Волокна слухового нерва заканчиваются на нейронах ядер кохлеарного тела (VIII пара ч.м.н.) (второй нейрон). Затем, после частичного перекреста, волокна слухового пути идут в медиальные коленчатые тела таламуса, где опять происходит переключение (третий нейрон). Отсюда возбуждение поступает в кору (височная доля, верхняя височная извилина, поперечные извилины Гешля) – это проекционная слуховая зона коры.

КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

Представлен в височной доле коры больших полушарий – верхняя височная извилина, поперечные височные извилины Гешля . С этой проекционной зоны коры связаны корковые гностические слуховые зоны – зона сенсорной речи Вернике и праксическая зона – моторный центр речи Брока (нижняя лобная извилина). Содружественная деятельность трех зон коры обеспечивает развитие и функцию речи.

Слуховая сенсорная система имеет обратные связи, которые обеспечивают регуляцию деятельности всех уровней слухового анализатора с участием нисходящих путей, которые начинаются от нейронов «слуховой» коры и последовательно переключаются в медиальных коленчатых телах таламуса, нижних буграх четверохолмия среднего мозга с формированием тектоспинальных нисходящих путей и на ядрах кохлеарного тела продолговатого мозга с формированием вестибулоспинальных путей. Это обеспечивает в ответ на действие звукового раздражителя формирование двигательной реакции: поворота головы и глаз (а у животных – ушных раковин) в сторону раздражителя, а также повышение тонуса мышц-флексоров (сгибание конечностей в суставах, т.е. готовность к прыжку или бегу).

Слуховая кора

ФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗВУКОВЫХ ВОЛН, КОТОРЫЕ ВОСПРИНИМАЮТСЯ ОРГАНОМ СЛУХА

1. Первой характеристикой звуковых волн является их частота и амплитуда.

Частота звуковых волн определяет высоту звука!

Человек различает звуковые волны с частотой от 16 до 20 000 Гц (это соответствует 10-11 октавам). Звуки, частота которых ниже 20 Гц (инфразвуки) и выше 20 000 Гц (ультразвуки) человеком не ощущаются!

Звук, который состоит из синусоидальных или гармонических колебаний, называют тоном (большая частота – высокий тон, малая частота – низкий тон). Звук, состоящий из не связанных между собой частот, называют шумом .

2. Второй характеристикой звука, которую различает слуховая сенсорная система, является его сила или интенсивность.

Сила звука (его интенсивность) совместно с частотой (тоном звука) воспринимается как громкость. Единица измерения громкости – бел = lg I/I 0 , однако в практике чаще используют децибел (dB) (0,1 бела). Децибел – это 0,1 десятичного логарифма отношения интенсивности звука к пороговой его интенсивности: dB = 0,1 lg I/I 0 . Максимальный уровень громкости, когда звук вызывает болевые ощущения, равен 130-140 дБ.

Чувствительность слухового анализатора определяется минимальной силой звука, вызывающей слуховые ощущения.

В области звуковых колебаний от 1000 до 3000 Гц, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот называется речевой зоной (1000-3000 Гц). Абсолютная звуковая чувствительность в этом диапазоне равна 1*10 -12 вт/м 2 . При звуках выше 20 000 Гц и ниже 20 Гц абсолютная слуховая чувствительность резко снижается – 1*10 -3 вт/м 2 . В речевом диапазоне воспринимаются звуки, имеющие давление меньше 1/1000 бара (бар равен 1/1 000 000 части нормального атмосферного давления). Исходя из этого, в передающих устройствах, чтобы обеспечить адекватное понимание речи, информация должна передаваться в речевом диапазоне частот.

МЕХАНИЗМ ВОСПРИЯТИЯ ВЫСОТЫ (ЧАСТОТЫ), ИНТЕНСИВНОСТИ (СИЛЫ) И ЛОКАЛИЗАЦИИ ИСТОЧНИКА ЗВУКА (БИНАУРАЛЬНЫЙ СЛУХ)

Восприятие частоты звуковых волн

Слуховой анализатор, строение уха, функция рецепторов.
1).Слуховой анализатор обеспечивает восприятие звуковой информации и ее обработку в центральных отделах коры головного мозга. Периферическую часть анализатора образуют: внутренне ухо и слуховой нерв. Центральная часть образована подкорковыми центрами среднего и промежуточного мозга и височной зоной коры.

В органе слуха заложены рецепторы трех видов: а) рецепторы, воспринимающие звуковые колебания (колебания воздушных волн), которые мы ощущаем как звук; б) рецепторы, дающие нам возможность определить положение нашего тела в пространстве; в) рецепторы, воспринимающие изменения направления и быстроты движения.

2.) Нормальный анализ крови здорового человека.

Кровь состоит из 55% плазмы. Клеток крови и кровяных пластинок 45% В составе плазмы 90-92% Воды, 7-8% белков, 0.12% глюкозы, 0.7-0.9% жиров, 0.8% минеральных солей.

3.) Строение и свойства нейронов.
Основное свойство нейрона – это способность возбуждаться, то есть образовывать электрический импульс, и передавать (проводить) это возбуждение другим нейронам, мышечным или железистым клеткам. Основные свойства нейронов: раздражимость, возбудимость, проводимость, лабильность, инертность, утомляемость, торможение, регенерация и др.
2.)

Билет 12.

1. Зрительный анализатор, строение глаза, оптическая система глаза.
По чувствительным нервам нервные импульсы от рецепторов передаются в соответствующих зону коры больших полушарий. Совокупность нервных элементом, воспринимающих, проводящих, и анализирующих раздражения, физиолог И.П. Павлов назвал анализаторами. Таким образом анализаторы состоят из трех отделов:
1) периферическая часть, воспринимающая раздражение, - рецептор орган, в котором он находится.

2)проводящая часть-нерв, который проводит возбуждение от рецепторов в мозг

3)центральная часть-зона коры больших полушарий, где происходит анализ полученных возбуждений


Оптическая система глаза - оптический аппарат глаза; состоит из 4 преломляющих сред: роговицы, камерной влаги, хрусталика и стекловидного тела .

2. Закаливание организма.
Закаливание-это повышение и развитие устойчивости организма к неблагоприятным условиям внешней среды. оно достигается различными путями: прогулки на свежем воздухе, купание в холодной воде, солнечные ванны. Наше тело адаптируется(привыкает).

3. Головной мозг человека, его отделы. Функции отделов головного мозга
Головной мозг расположен в мозговом отделе черепа. Средняя его масса 1300-1400 г. состоит из белого и серого вещества.
Отелы головного мозга: мозг состоит из пяти отделов
1. Продолговатый мозг-продолжение верхней части спинного мозга в полости черепа
Рефлексы продолговатого мозга
-защитные(чихание кашель рвота слезотечение)
-пищевые(сосание глотание выделение слюны и пищеварительных соков)
-сердечно-сосудистые (регуляция работы сердца и кровеносных сосудов)
-дыхательные(центр дыхания регулирующий вдох и выдох)


4. 2. Задний мозг-стоит из варолиева моста и можечка. Варолиев мост лежит между продолговатым и средним мозгом и соединяет их, поэтому он и называется мостом. Отростки нейронов можечка соединяются со всеми отделами головного мозга. Можечок поддерживает тонус скелетных мышц. Повреждение можечка приводит к нарушению координации движений, равновесия тела, быстрой утомляемости рук и ног, снижение тонуса мышц.
3. Средний мозг-рассположен между задним и промежуточным. Через него проходят входящие и исходящие проводящие пути(А еще это гигабайты свежей информации)при помощи него осуществляется ориентировочные рефлексы.

5. 4. Промежуточный мозг-лежит выше и спереди среднего мозга. через промежуточный мозг передаются в кору больших полушарий импульсы от всех рецепторов тела. Промежутчный мозг регулирует обмен вещестсердечно-сосудистую деятельность, работу желез внутренней секруции, выделение, сон. а так же терморегуляция.

Поделиться