Как мы слышим? Психоакустика. Механизм проведения звуков Прохождение звуковой волны в органе слуха

К наружному уху относятся ушная раковина, слуховой проход и барабанная перепонка, которая закрывает внутренний конец слухового прохода. Слуховой проход имеет неправильную изогнутую форму. У взрослого человека длина его составляет около 2,5 см, а диаметр около 8 мм. Поверхность слухового прохода покрыта волосками и содержит железы, выделяющие ушную серу, которая необходима для поддержания влажности кожи. Слуховой проход обеспечивает также постоянную температуру и влажность барабанной перепонки.

  • Среднее ухо

Среднее ухо – это заполненная воздухом полость за барабанной перепонкой. Эта полость соединяется с носоглоткой посредством евстахиевой трубы – узкого хрящевого канала, который обычно находится в закрытом состоянии. Глотательные движения открывают евстахиеву трубу, что обеспечивает поступление воздуха в полость и выравнивание давления по обе стороны барабанной перепонки для ее оптимальной подвижности. В полости среднего уха находятся три миниатюрные слуховые косточки: молоточек, наковальня и стремя. Одним концом молоточек соединен с барабанной перепонкой, другой его конец связан с наковальней, которая, в свою очередь соединена со стременем, а стремя с улиткой внутреннего уха. Барабанная перепонка постоянно колеблется под действием улавливаемых ухом звуков, а слуховые косточки передают ее колебания во внутреннее ухо.

  • Внутреннее ухо

Во внутреннем ухе содержится несколько структур, но к слуху отношение имеет только улитка, получившая свое название из-за спиральной формы. Улитка разделена на три канала, заполненные лимфатическими жидкостями. Жидкость в среднем канале отличается по составу от жидкости в двух других каналах. Орган, непосредственно ответственный за слух (Кортиев орган), находится в среднем канале. Кортиев орган содержит около 30000 волосковых клеток, которые улавливают колебания жидкости в канале, вызванные движением стремени, и генерируют электрические импульсы, которые по слуховому нерву передаются к слуховой зоне коры головного мозга. Каждая волосковая клетка реагирует на определенную звуковую частоту, причем высокие частоты улавливаются клетками нижней части улитки, а клетки, настроенные на низкие частоты, располагаются в верхней части улитки. Если волосковые клетки по каким-либо причинам гибнут, человек перестает воспринимать звуки соответствующих частот.

  • Слуховые проводящие пути

Слуховые проводящие пути – это совокупность нервных волокон, проводящих нервные импульсы от улитки к слуховым центрам коры головного мозга, в результате чего возникает слуховое ощущение. Слуховые центры расположены в височных долях головного мозга. Время, потраченное на прохождение слухового сигнала от внешнего уха к слуховым центрам мозга, составляет около 10 миллисекунд.

Как устроено ухо человека (рисунок предоставлен фирмой Siemens)

Восприятие звука

Ухо последовательно преобразует звуки в механические колебания барабанной перепонки и слуховых косточек, затем в колебания жидкости в улитке и, наконец, в электрические импульсы, которые по проводящим путям центральной слуховой системы передаются в височные доли мозга для распознавания и обработки.
Мозг и промежуточные узлы слуховых проводящих путей извлекают не только информацию о высоте и громкости звука, но и другие характеристики звука, например, интервал времени между моментами улавливания звука правым и левым ухом – на этом основана способность человека определять направление, по которому приходит звук. При этом мозг оценивает как информацию, полученную от каждого уха в отдельности, так и объединяет всю полученную информацию в единое ощущение.

В нашем мозгу хранятся «шаблоны» окружающих нас звуков – знакомых голосов, музыки, опасных звуков и т.д. Это помогает мозгу в процессе обработки информации о звуке быстрее отличить знакомые звуки от незнакомых. При снижении слуха мозг начинает получать искаженную информацию (звуки становятся более тихими), что приводит к ошибкам в интерпретации звуков. С другой стороны, нарушения в работе мозга в результате старения, травмы головы или неврологических болезней и расстройств могут сопровождаться симптомами, похожими на симптомы снижения слуха, например, невнимательность, отрешенность от окружения, неадекватная реакция. Для того чтобы правильно слышать и понимать звуки, необходима согласованная работа слухового анализатора и мозга. Таким образом, без преувеличения можно сказать, что человек слышит не ушами, а мозгом!

Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.). Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21-27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягивающаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой . Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Nа).

Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана.

Механизмы проведения звуковых колебаний . Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает колебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенциал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых колебаний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в следующем: если в улитку ввести электроды и соединить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то микрофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появлению разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал - непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.


Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10.).

Потенциал действия слухового нерва генерируется в результате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи.

Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца : на основной мембране натянуты струны различной длины, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше . В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является “теория места ”, согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Согласно резонансной теории, различные участки основной пластинки реагируют колебанием своих волокон на звуки разной высоты. Сила звука зависит от величины колебаний звуковых волн, которые воспринимаются барабанной перепонкой. Звук будет тем сильнее, чем больше величина колебаний звуковых волн и соответственно барабанной перепонки, Высота звука зависит от частоты колебаний звуковых волн, Большая частота колебаний в единицу времени будет. восприниматься органом слуха в виде более высоких тонов (тонкие, высокие звуки голоса) Меньшая частота колебаний звуковых волн воспринимается органом слуха в виде низких тонов (басистые, грубые звуки и голоса) .

Восприятие высоты, силы звука и локализации источника звука начинается с попадания звуковых волн в наружное ухо, где они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через геликотрему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха. Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что приводит в колебательные дви­жения основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. При действии звука волокна мембраны приходят в колебательные движения вместе с рецепторны-ми клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с текториальной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.

Представляет собой сложный специализированный орган, состоящий из трех отделов: наружного, среднего и внутреннего уха.

Наружное ухо является звукоулавливающим аппаратом. Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами, так называемый биниуральный слух, имеют значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятичных долей секунды (0,0006 с) раньше, чем до другого. Этой предельно малой разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

Среднее ухо представляет собой воздушную полость, которая через евстахиеву трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают 3 слуховые косточки, соединенные друг с другом, - молоточек, наковальня и стремечко, а последнее через перепонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе - перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. В среднем ухе имеется особый механизм адаптации к изменениям интенсивности звука. При сильных звуках специальные мышцы увеличивают натяжение барабанной перепонки и уменьшают подвижность стремечка. Тем самым снижается амплитуда колебаний, и внутреннее ухо предохраняется от повреждений.

Внутреннее ухо с расположенной в нем улиткой находится в пирамидке височной кости. Улитка у человека образует 2,5 спиральных витка. Улитковый канал разделен двумя перегородками (основной мембраной и вестибулярной мембраной) на 3 узких хода: верхний (вестибулярная лестница), средний (перепончатый канал) и нижний (барабанная лестница). На вершине улитки имеется отверстие, соединяющее верхний и нижний каналы в единый, идущий от овального окна к вершине улитки и далее к круглому окну. Полость их заполнена жидкостью - перилимфой, а полость среднего перепончатого канала заполнена жидкостью иного состава - эндолимфой. В среднем канале расположен звуковоспринимающий аппарат - кортиев орган, в котором находятся рецепторы звуковых колебаний - волосковые клетки.

Механизм восприятия звука. Физиологический механизм восприятия звука основан на двух процессах, происходящих в улитке: 1) разделение звуков различной частоты по месту их наибольшего воздействия на основную мембрану улитки и 2) преобразование рецепторными клетками механических колебаний в нервное возбуждение. Звуковые колебания, поступающие во внутреннее ухо через овальное окно, передаются перилимфе, а колебания этой жидкости приводят к смещениям основной мембраны. От высоты звука зависит высота столба колеблющейся жидкости и, соответственно, место наибольшего смещения основной мембраны. Таким образом, при различных по высоте звуках возбуждаются разные волосковые клетки и разные нервные волокна. Увеличение силы звука приводит к увеличению числа возбужденных волосковых клеток и нервных волокон, что позволяет различать интенсивность звуковых колебаний.
Преобразование колебаний в процесс возбуждения осуществляется специальными рецепторами - волосковыми клетками. Волоски этих клеток погружены в покровную мембрану. Механические колебания при действии звука приводят к смещению покровной мембраны относительно рецепторных клеток и изгибанию волосков. В рецепторных клетках механическое смещение волосков вызывает процесс возбуждений.

Проводимость звука. Различают воздушную и костную проводимость. В обычных условиях у человека преобладает воздушная проводимость: звуковые волны улавливаются наружным ухом, и воздушные колебания передаются через наружный слуховой проход в среднее и внутреннее ухо. В случае костной проводимости звуковые колебания передаются через кости черепа непосредственно улитке. Этот механизм передачи звуковых колебаний имеет значение при погружениях человека под воду.
Человек обычно воспринимает звуки с частотой от 15 до 20 000 Гц (в диапазоне 10-11 октав). У детей верхний предел достигает 22 000 Гц, с возрастом он понижается. Наиболее высокая чувствительность обнаружена в области частот от 1000 до 3000 Гц. Эта область соответствует наиболее часто встречающимся частотам человеческой речи и музыки.

Улитка является гибкой трубкой, сформированной из трех наполненных жидкостью камер. Жидкость практически несжимаема, так что любое движение подножной пластинки стремени в овальном окне должно сопровождаться движением жидкости в другом месте. На слуховых частотах улитка, наполненная жидкостью, водопровод преддверья, и другие связующие пути между улиткой и спинномозговой жидкостью фактически закрыты, и это отражается на мембране круглого окна, которая обеспечивает подвижность подножной пластинки.

Когда подножная пластинка стремени двигается внутрь, круглое окно отклоняется кнаружи. (Подножная пластинка и круглое окно имеют приблизительно одинаковую объемную скорость, но двигаются в противоположных направлениях). Именно это взаимодействие круглого и овального окон, а также несжимаемость жидкостей улитки определяет важную для стимуляции внутреннего уха роль разницы звукового давления, оказываемого на два улитковых окна.

Улитка разделяется на камеры посредством базилярной мембраны, органа Корти, улиткового протока и мембраны Рейсснера. Механические свойства камер улитки во многом зависят от механических свойств базиллярной мембраны; последняя является узкой, жесткой, толстой у основания и более широкой, подвижной и тонкой на верхушке. По причине того, что жидкость, по сути, несжимаема, движение стремени внутрь вызывает мгновенную передачу движения через жидкости улитки, в результате чего происходит выпячивание круглого окна.

Таким образом, с движением жидкостей , происходит почти мгновенное распределение давления по различным отделам улитки. Реакция разных отделов улитки с их различными механическими свойствами по отношению к распределению давления, приводит к появлению бегущей волны и смещению камер улитки. Максимальное смещение этой волны зависит от тональности и соответствуют определенным участкам, где наблюдается разница в механических свойствах. Высокочастотные звуки продуцируют максимальное смещение вблизи жесткого и толстого основания, в то время как звуки низкой частоты провоцируют максимальное смещение на податливой и тонкой верхушке.

Поскольку волна начинает свой путь от основания к вершине, а также останавливается сразу после места максимального смещения, существует асимметрия в движении разных отделов улитки. Все звуки производят некоторое смещение базальной мембраны, в то время как звуки низких частот провоцируют преимущественное смещение на верхушке. Эта асимметрия влияет на наше восприятие сложных звуков (где низкочастотные звуки могут влиять на возможность нашего восприятия высокочастотных звуков, но не наоборот) и как считается, влияет на чувствительность основания улитки, ответственного за звуки высокой частоты при звуковой травме или пресбиакузисе. Движение внутренних структур улитки стимулирует волосковые клетки кортиева органа, обеспечивая больший стимул при сильном движении.

Анатомия уха в трех срезах .
Наружное ухо : 1 - ушная раковина; 2 - наружный слуховой проход; 3 - барабанная перепонка.
Среднее ухо : 4 - барабанная полость; 5 - слуховая труба.
Внутреннее ухо : 6 и 7 - лабиринт с внутренним слуховым проходом и преддверно-улитковым нервом; 8 - внутренняя сонная артерия;
9 - хрящ слуховой трубы; 10-мышца, поднимающая нёбную занавеску;
11 - мышца, напрягающая нёбную занавеску; 12 - мышца, напрягающая барабанную перепонку (мышца Тойнби).

а) Разность фаз звувковой волны улитковых окон . Как отмечалось ранее, улитка реагирует на разницу звукового давления между окнами улитки, где звуковое давление, оказываемое на овальное окно, является суммой давления, создаваемого системой слуховых косточек и акустического давления в полости среднего уха. Важно понимать каким образом эта разница (важнейший стимул для внутреннего уха) зависит от относительной амплитуды и фазы отдельных звуковых давлений в двух окнах.

При значительной разнице амплитуд звукового давления между овальным и круглым окном (как в здоровом ухе, так и в ухе после успешной тимпанопластики, когда система слуховых косточек усиливает давление, воздействующее на овальное окно) разница фаз имеет незначительный эффект в определении разницы давления в окнах.

Снижение важности фазы при различии магнитуд показано на рисунке ниже, демонстрирующем гипотетическую ситуацию, при которой магнитуда звукового давления овального окна в десять раз (20 дБ) больше чем звуковое давление круглого окна. Диапазон возможных разностей давлений в окнах показан двумя кривыми, одна из которых с амплитудой 9 представляет собой разницу в то время, когда давления окон находятся в фазе (разность фаз 0°) и другой кривой (с амплитудой 11), показывающей разницу давления, когда окно полностью вне фазы (разность фаз 180°). Даже при максимальном эффекте изменения разности фаз две кривые, показанные на рисунке ниже аналогичны по магнитуде, в пределах 2 дБ.

При значительной разнице в магнитуде, около 100 и 1000 (40-60 дБ), возникающей в нормальном ухе и в ушах, которые подверглись успешной тимпанопла-стике, разница в фазе имеет незначительный эффект.

Тем не менее, разность фаз может быть значимой в условиях, когда магнитуды звукового давления в области овального и круглого окон похожи (например, при поражении цепи слуховых косточек). При сходной амплитуде и фазе давления окон возникает тенденция взаимной нейтрализации и создания лишь небольшой разницы давления. С другой стороны, если давления окон имеют схожую амплитуду, но противоположные фазы, они будут потенцировать друг друга, в результате будет возникать разница давления окон, аналогичная магнитуде приложенного давления.


Если существует достоверная разница в магнитуде между давлениями на окнах улитки, то разница в фазах не имеет большого значения в определении разницы между двумя звуковыми давлениями.
В представленном конкретном случае звуковое давление у овального окна в 10 раз (20 дБ) больше, чем у круглого окна.
Один цикл волны изменения давления на окнах (P WD) представлен для двух состояний.
Пунктирная линия показывает P WD при совпадении давления на овальном и круглом окне по фазе, в результате пиковая амплитуда изменения давления составляет 9 = 10-1.
Сплошная линия показывает P WD при отсутствии совпадения по фазе, и в результате амплитуда P WD составляет 11 = 10-(-1).
Отметим, что обе разницы пиковых амплитуд различаются менее чем на 2 дБ (20log 10 11/9= 1,7 дБ), даже при условии, что разница в фазах обусловлена максимальной разницей возможных магнитуд.
Таким образом, в нормальном ухе и в ухе, подвергшемся успешной тимпанопластике, когда звуковое давление на овальном окне больше из-за более значимой проводимости звука по цепи слуховых косточек, разница в фазах звукового давления на овальном и круглом окнах имеет незначительный эффект в определении исхода слуха.

б) Пути звуковой стимуляции внутреннего уха . Вклад среднего уха в разницу давления окон, которая стимулирует внутреннее ухо, может быть разделена на несколько стимулирующих путей. В предыдущем разделе было описано, каким образом система слуховых косточек трансформирует звуковое давление в наружном слуховом проходе, передавая его на овальное окно. Этот путь был назван передачей слуховых косточек, Существует другой механизм, названный акустической передачей, посредством которой среднее ухо может стимулировать внутреннее.

Движение барабанной перепонки в ответ на звук, возникающий в , создает звуковое давление в полости среднего уха. Несколько миллиметров расстояния между окнами улитки служат причинной того, что акустическое звуковое давление на овальном и круглом окнах схожи, но не идентичны. Небольшие различия между магнитудами и фазами звуковых давлений с наружной стороны двух окон приводят к малой, но измеримой разнице звукового давления между ними. В нормальном ухе магнитуда разницы давления, которая обеспечивается акустической передачей, мала и составляет около 60 дБ, что меньше, чем передача через слуховые косточки. Следовательно, передача слуховых косточек доминирует в здоровом среднем ухе, и акустическую передачу можно игнорировать.

Однако, ниже будет показано , что акустическая передача может иметь большое значение в случае дефекта цепи слуховых косточек, возникающего при определенных заболеваниях, а также в ухе, подвергшемся реконструкции.

Звук окружающей среды может также достигать внутреннего уха, посредством вибрации всего тела или головы, так называемой звуковой проводимости тела. Это более общий процесс, чем костная проводимость, при которой вибрация воздействует лишь на сосцевидный отросток. Вызываемые звуком вибрации всего тела и головы могут стимулировать внутреннее ухо:
(1) генерируя давление в наружном слуховом проходе или среднем ухе, посредством оказания давления на их стенки,
(2) продуцируя взаимные движения между слуховыми косточками и внутренним ухом и
(3) непосредственным сдавлением внутреннего уха и его содержимого через сжатие окружающей жидкости и кости.

О роли звукопроводности тела в нормальной слуховой функции известно немногое. Однако измерения потери слуха по причине таких патологических состояний, как врожденная атрезия слухового прохода, предполагают, что все тело может обеспечивать стимулирование внутреннего уха, которое будет на 60 дБ меньше, чем при нормальной работе слуховых косточек.


Схема путей проводимости по цепи слуховых косточек и акустической проводимости.
Передача слуховых косточек создается движением барабанной перепонки, слуховыми косточками и подножной пластинки стремени.
Акустическая передача возникает из-за звукового давления в среднем ухе, которое создается звуковым давлением наружного слухового прохода и движением барабанной перепонки.
По причине того, что окна улитки пространственно отдалены, звуковые давления в полости среднего уха, воздействующие на овальное и круглое окна (RW), схожи, но не идентичны.
Небольшое отличие между амплитудами фазами давления у двух окон приводит к малой, но измеряемой разнице в звуковом давлении между двумя окнами.
Эта разница называется акустической передачей. В нормальном ухе акустическая передача крайне мала, и ее магнитуда приблизительно на 60 дБ меньше, чем передача по слуховым косточкам.

в) Аудиология костной проводимости . Передаваемая черепу при вибрации кости акустическая энергия (камертон или электромагнитная вибрация аудиометра), приводит в движение базальную мембрану и воспринимается как звук. Клинические тесты костной проводимости проводят для диагностики функции улитки. Механизмы, посредством которых костная вибрация стимулирует внутреннее ухо, были описаны Tonndorf и другими и аналогичны тем, которые ранее описывали проведение звука всем телом. Важно понимать, что все гипотетические механизмы звукопроведения учитывают относительную подвижность между слуховыми косточками и внутренним ухом, а также то, что слышимость при костной проводимости зависит от патологического состояния наружного слухового прохода и среднего уха.

Состоит из наружного, среднего и внутреннего уха. Среднее и внутреннее ухо находятся внутри височной кости.

Наружное ухо состоит из ушной раковины (улавливает звуки) и наружного слухового прохода, который заканчивается барабанной перепонкой.

Среднее ухо - это камера, заполненная воздухом. В ней содержатся слуховые косточки (молоточек, наковальня и стремечко), передающие колебания с барабанной перепонки на перепонку овального окна - они в 50 раз усиливают колебания. Среднее ухо соединено с носоглоткой с помощью евстахиевой трубы, через которую давление в среднем ухе выравнивается с атмосферным.

Во внутреннем ухе имеется улитка - заполненный жидкостью закрученный в 2,5 оборота костный канал, перегороженный продольной перегородкой. На перегородке имеется кортиев орган, содержащий волосковые клетки - это слуховые рецепторы, превращающие звуковые колебания в нервные импульсы.

Работа уха: когда стремечко нажимает на перепонку овального окна, столб жидкости в улитке сдвигается, и перепонка круглого окна выпячивается внутрь среднего уха. Движение жидкости приводит к тому, что волоски касаются покровной пластинки, из-за этого волосковые клетки возбуждаются.

Вестибулярный аппарат: во внутреннем ухе, кроме улитки, имеются полукружные каналы и мешочки преддверия. Волосковые клетки в полукружных каналах чувствуют движение жидкости, реагируют на ускорение; волосковые клетки в мешочках чувствуют движение прикрепленного к ним камешка-отолита, определяют положение головы в пространстве.

Установите соответствие между структурами уха и отделами, в которых они находятся: 1) наружное ухо, 2) среднее ухо, 3) внутреннее ухо. Запишите цифры 1, 2 и 3 в правильном порядке.
А) ушная раковина
Б) овальное окно
В) улитка
Г) стремечко
Д) евстахиева труба
Е) молоточек

Ответ


Установите соответствие между функцией органа слуха и отделом, который эту функцию выполняет: 1) среднее ухо, 2) внутреннее ухо
А) преобразование звуковых колебаний в электрические
Б) усиление звуковых волн за счет колебаний слуховых косточек
В) выравнивание давления на барабанную перепонку
Г) проведение звуковых колебаний за счет движения жидкости
Д) раздражение слуховых рецепторов

Ответ


1. Установите последовательность передачи звуковой волны на слуховые рецепторы. Запишите соответствующую последовательность цифр.
1) колебания слуховых косточек
2) колебания жидкости в улитке
3) колебания барабанной перепонки
4) раздражение слуховых рецепторов

Ответ


2. Установите правильную последовательность прохождения звуковой волны в органе слуха человека. Запишите соответствующую последовательность цифр.
1) барабанная перепонка
2) овальное окошко
3) стремечко
4) наковальня
5) молоточек
6) волосковые клетки

Ответ


3. Установите, в какой последовательности звуковые колебания передаются рецепторам органа слуха. Запишите соответствующую последовательность цифр.
1) Наружное ухо
2) Перепонка овального окна
3) Слуховые косточки
4) Барабанная перепонка
5) Жидкость в улитке
6) Рецепторы органа слуха

Ответ


4. Установите последовательность расположения структур уха человека, начиная с улавливающей звуковую волну. Запишите соответствующую последовательность цифр.
1) овальное окно улитки внутреннего уха
2) наружный слуховой проход
3) барабанная перепонка
4) ушная раковина
5) слуховые косточки
6) кортиев орган

Ответ


5. Установите последовательность передачи звуковых колебаний к рецепторам органа слуха человека. Запишите соответствующую последовательность цифр.
1) наружный слуховой проход
2) мембрана овального окна
3) слуховые косточки
4) барабанная перепонка
5) жидкость в улитке
6) волосковые клетки улитки

Ответ



1. Выберите три верно обозначенные подписи к рисунку «Строение уха».
1) наружный слуховой проход
2) барабанная перепонка
3) слуховой нерв
4) стремя
5) полукружный канал
6) улитка

Ответ



2. Выберите три верно обозначенные подписи к рисунку «Строение уха». Запишите цифры, под которыми они указаны.
1) слуховой проход
2) барабанная перепонка
3) слуховые косточки
4) слуховая труба
5) полукружные каналы
6) слуховой нерв

Ответ



4. Выберите три верно обозначенные подписи к рисунку «Строение уха».
1) слуховые косточки
2) лицевой нерв
3) барабанная перепонка
4) ушная раковина
5) среднее ухо
6) вестибулярный аппарат

Ответ


1. Установите последовательность передачи звука в слуховом анализаторе. Запишите соответствующую последовательность цифр.
1) колебание слуховых косточек
2) колебание жидкости в улитке
3) генерирование нервного импульса

5) передача нервного импульса по слуховому нерву в височную долю коры больших полушарий
6) колебание мембраны овального окна
7) колебание волосковых клеток

Ответ


2. Установите последовательность процессов, происходящих в слуховом анализаторе. Запишите соответствующую последовательность цифр.
1) передача колебаний на мембрану овального окна
2) улавливание звуковой волны
3) раздражение рецепторных клеток с волосками
4) колебание барабанной перепонки
5) движение жидкости в улитке
6) колебание слуховых косточек
7) возникновение нервного импульса и передача его по слуховому нерву в головной мозг

Ответ


3. Установите последовательность процессов прохождения звуковой волны в органе слуха и нервного импульса в слуховом анализаторе. Запишите соответствующую последовательность цифр.
1) движение жидкости в улитке
2) передача звуковой волны через молоточек, наковальню и стремечко
3) передача нервного импульса по слуховому нерву
4) колебание барабанной перепонки
5) проведение звуковой волны по наружному слуховому проходу

Ответ


4. Установите путь звуковой волны автомобильной сирены, которую услышит человек, и нервного импульса, возникающего при её звуке. Запишите соответствующую последовательность цифр.
1) рецепторы улитки
2) слуховой нерв
3) слуховые косточки
4) барабанная перепонка
5) слуховая зона коры

Ответ


Выберите один, наиболее правильный вариант. Рецепторы слухового анализатора расположены
1) во внутреннем ухе
2) в среднем ухе
3) на барабанной перепонке
4) в ушной раковине

Ответ


Выберите один, наиболее правильный вариант. Звуковой сигнал преобразуется в нервные импульсы в
1) улитке
2) полукружных каналах
3) барабанной перепонке
4) слуховых косточках

Ответ


Выберите один, наиболее правильный вариант. В организме человека инфекция из носоглотки попадает в полость среднего уха через
1) овальное окно
2) гортань
3) слуховую трубу
4) внутреннее ухо

Ответ


Установите соответствие между отделами уха человека и их строением: 1) наружное ухо, 2) среднее ухо, 3) внутреннее ухо. Запишите цифры 1, 2, 3 в порядке, соответствующем буквам.
А) включает ушную раковину и наружный слуховой проход
Б) включает улитку, в которой заложен начальный отдел звуковоспринимающего аппарата
В) включает три слуховые косточки
Г) включает преддверие с тремя полукружными каналами, в которых находится аппарат равновесия
Д) полость, заполненная воздухом, сообщается через слуховую трубу с полостью глотки
Е) внутренний конец затянут барабанной перепонкой

Ответ


Установите соответствие между характеристиками и анализаторами человека: 1) зрительный, 2) слуховой. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) воспринимает механические колебания окружающей среды
Б) включает палочки и колбочки
В) центральный отдел расположен в височной доле коры больших полушарий
Г) центральный отдел расположен в затылочной доле коры больших полушарий
Д) включает кортиев орган

Ответ



Выберите три верно обозначенных подписи к рисунку «Строение вестибулярного аппарата». Запишите цифры, под которыми они указаны.
1) евстахиева труба
2) улитка
3) известковые кристаллики
4) волосковые клетки
5) нервные волокна
6) внутреннее ухо

Ответ


Выберите один, наиболее правильный вариант. Давление на барабанную перепонку, равное атмосферному, со стороны среднего уха обеспечивается у человека
1) слуховой трубой
2) ушной раковиной
3) перепонкой овального окна
4) слуховыми косточками

Ответ


Выберите один, наиболее правильный вариант. Рецепторы, определяющие положение тела человека в пространстве, находятся в
1) перепонке овального окна
2) евстахиевой трубе
3) полукружных каналах
4) среднем ухе

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Слуховой анализатор включает в себя:
1) слуховые косточки
2) рецепторные клетки
3) слуховую трубу
4) слуховой нерв
5) полукружные каналы
6) кору височной доли

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Что входит в состав слуховой сенсорной системы?
1) полукружные каналы
2) костный лабиринт
3) рецепторы улитки
4) слуховая труба
5) преддверноулитковый нерв
6) височная зона коры больших полушарий

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Среднее ухо в органе слуха человека включает в себя
1) рецепторный аппарат
2) наковальню
3) слуховую трубу
4) полукружные каналы
5) молоточек
6) ушную раковину

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Что следует считать верными признаками органа слуха человека?
1) Наружный слуховой проход соединён с носоглоткой.
2) Чувствительные волосковые клетки расположены на мембране улитки внутреннего уха.
3) Полость среднего уха заполнена воздухом.
4) Среднее ухо расположено в лабиринте лобной кости.
5) Наружное ухо улавливает звуковые колебания.
6) Перепончатый лабиринт усиливает звуковые колебания.

Ответ



Установите соответствие между характеристиками и отделами органа слуха, представленными на схеме. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) усиливает звуковые колебания
Б) преобразует механические колебания в нервный импульс
В) содержит слуховые косточки
Г) заполнен несжимаемой жидкостью
Д) содержит кортиев орган
Е) участвует в выравнивании давления воздуха

Ответ


© Д.В.Поздняков, 2009-2019

Поделиться