Силы которые действуют на маятник. Тайны маятника

Математический маят­ник - это материальная точка, подвешенная на невесомой и нерас­тяжимой нити, находящейся в поле тяжести Земли. Математический маятник - это идеализированная модель, правильно описывающая реальный маятник лишь при определенных условиях. Реальный ма­ятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела, масса нити ничтожна мала по сравнению с массой тела, а деформации нити настолько малы, что ими вообще можно пренебречь.

Колебательную систему в данном случае образуют нить, присо­единенное к ней тело и Земля, без которой эта система не могла бы служить маятником.

где а х ускорение, g – ускорение свободного падения, х - смещение, l – длина нити маятника.

Это уравнение называется урав­нением свободных колебаний математического маятника. Оно правильно описывает рассматриваемые колебания лишь тогда, когда выполнены следующие предположения:

2) рассматриваются лишь малые колебания маятника с небольшим углом размаха.

Свободные колебания любых систем во всех слу­чаях описываются аналогичными уравнениями.

Причинами свободных колебаний математическо­го маятника являются:

1. Действие на маятник силы натяжения и силы тяжести, пре­пятствующей его смещению из положения равновесия и заставляю­щей его снова опускаться.

2. Инертность маятника, благодаря которой он, сохраняя свою скорость, не останавливается в положении равновесия, а проходит через него дальше.

Период свободных колебаний математического ма­ятника

Период свободных колебаний математического маятника не за­висит от его массы, а определяется лишь длиной нити и ускорением свободного падения в том месте, где находится маятник.

Превращение энергии при гармонических колебаниях

При гармонических колебаниях пружинного маятника проис­ходят превращения потенциальной энергии упруго деформированного тела в его кинетическую энергию , гдеk коэффициент упругости,х - модуль смещения маятника из поло­жения равновесия,m - масса маятника,v - его скорость. В соот­ветствии с уравнением гармонических колебаний:

, .

Полная энергия пружинного маятника:

.

Полная энергия для математического маятника:

В случае математического маятника

Превращения энергии при колебаниях пружинного маятника происходи в соответствии с законом сохранения механической энергии (). При движении маятника вниз или вверх от положения равновесия его потенциальная энергия увеличивается, а кинетическая - уменьшается. Когда маятник проходит положение равно­весия (х = 0), его потенциальная энергия равна нулю и кинетическая энергия маятника имеет наибольшее значение, равное его полной энергии.

Таким образом, в процессе свободных колебаний маятника его потенциальная энергия превращается в кинетическую, кинетическая в потенциальную, потенциальная затем снова в кинетическую и т. д. Но полная механическая энергия при этом остается неизменной.

Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внеш­ней периодической силы, называются вынужден­ными колебаниями . Внешняя периодическая си­ла, называемая вынуждающей, сообщает колеба­тельной системе дополнительную энергию, которая идет на восполнение энергетических потерь, проис­ходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или коси­нуса, то вынужденные колебания будут гармониче­скими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из со­стояния равновесия), в случае вынужден­ных колебаний система поглощает эту энергию от источника внешней периоди­ческой силы непрерывно. Эта энергия восполняет потери, расходуемые на пре­одоление трения, и потому полная энергия колебательной системы no-прежнему ос­тается неизменной.

Частота вынужденных колебаний равна часто­те вынуждающей силы . В случае, когда частота вынуждающей силы υ совпадает с собственной ча­стотой колебательной системы υ 0 , происходит рез­кое возрастание амплитуды вынужденных колеба­ний - резонанс . Резонанс возникает из-за того, что при υ = υ 0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает по­ложительную работу: энергия колеблющегося те­ла увеличивается, и амплитуда его колебаний ста­новится большой. График зависимости амплитуды вынужденных колебаний А т от частоты вынужда­ющей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ря­де природных, научных и производственных про­цессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Маятник Фуко — маятник, который используют для экспериментальной демонстрации суточного вращения Земли.

Маятник Фуко представляет собой массивный груз, подвешенный на проволоке или нити, верхний конец которой укреплён (например с помощью карданного шарнира) так, что позволяет маятнику качаться в любой вертикальной плоскости. Если маятник Фуко отклонить от вертикали и отпустить без начальной скорости, то действующие на груз маятника силы тяжести и натяжения нити будут лежать всё время в плоскости качаний маятника и не смогут вызвать её вращения по отношению к звёздам (к инерциальной системе отсчёта, связанной со звёздами). Наблюдатель же, находящийся на Земле и вращающийся вместе с ней (т. е. находящийся в неинерциальной системе отсчёта), будет видеть, что плоскость качаний маятник Фуко медленно поворачивается относительно земной поверхности в сторону, противоположную направлению вращения Земли. Этим и подтверждается факт суточного вращения Земли.

На Северном или Южном полюсе плоскость качаний маятник Фуко совершит поворот на 360° за звёздные сутки (на 15 o за звёздный час). В точке земной поверхности, географическая широта которого равна φ, плоскость горизонта вращается вокруг вертикали с угловой скоростью скоростью ω 1 = ω sinφ (ω -модуль угловой скорости Земли) и плоскость качания маятника вращается с той же угловой скоростью. Поэтому видимая угловая скорость вращения плоскости качаний маятника Фуко на широте φ, выраженная в градусах за звёздный час, имеет значение ω м =15 o sinφ , т. е. будет тем меньше, чем меньше φ, и на экваторе обращается в нуль (плоскость не вращается). В Южном полушарии вращение плоскости качаний будет наблюдаться в сторону, противоположную наблюдаемой в Северном полушарии. Уточнённый расчёт даёт значение


ω м = 15 o sinφ

где а -амплитуда колебаний груза маятника, l — длина нити. Добавочный член, уменьшающий угловую скорость, тем меньше, чем больше l . Поэтому для демонстрации опыта целесообразно применять маятник Фуко с возможно большей длиной нити (в несколько десятков м).

История

Впервые этот прибор сконструировал Французский учёный Жан Бернар Леон Фуко.

Этот прибор представлял собой пятикилограммовый латунный шар, подвешенный к потолку на двухметровой стальной проволоке.

Первый опыт Фуко провёл в подвале собственного дома 8 января 1851 года . Об этом была сделана запись в научной дневнике учёного.

3 февраля 1851 года Жан Фуко продемонстрировал свой маятник в Парижской обсерватории академикам, которые получили письма такого содержания: «Приглашаю Вас проследить за вращением Земли».

Первая публичная демонстрация опыта произошла по инициативе Луи Бонапарта в парижском Пантеоне в апреле того же года. Под куполом Пантеона был подвешен металлический шар массой 28 кг с закреплённым на нём остриём на стальной проволоке диаметром 1,4 мм и длиной 67 м. Крепление маятника позволяло ему свободно колебаться во всех направлениях. Под точкой крепления было сделано круговое ограждение диаметром 6 метров , по краю ограждения была насыпана песчаная дорожка таким образом , чтобы маятник в своём движении мог при её пересечении прочерчивать на песке отметки . Чтобы избежать бокового толчка при пуске маятника , его отвели в сторону и привязали верёвкой , после чего верёвку пережгли. Период колебаний составлял 16 секунд.

Эксперимент имел большой успех и вызвал широкий резонанс в научных и общественных кругах Франции и других стран мира. Только в 1851 году были созданы другие маятники по образцу первого, и были проведены опыты Фуко в Парижской обсерватории, в кафедральном соборе Реймса, в церкви св.Игнатия в Риме, в Ливерпуле, в Оксфорде, Дублине, в Рио-де-Жанейро, в городе Коломбо на Цейлоне, Нью-Йорке.

Во всех этих экспериментах размеры шара и длина матяника были разными, но все они подтверждали выводы Жан Бернара Леона Фуко.

Элементы маятника, который был продемонстрирован в Пантеоне, сейчас хранятся в парижском Музее искусств и ремёсел. А маятники Фуко сейчас находятся во многих уголках мира: в политехнических и научно-природоведческих музеях, научных обсерваториях, планетариях, университетских лабораториях и библиотеках.

В Украине есть три маятника Фуко. Один хранится в Национальном техническом университете Украины «КПИ им. Игоря Сикорского», второй – в Харьковском национальном университете им. В.Н. Каразина, третий – в Харьковском планетарии .

Математический маятник – это модель обычного маятника. Под математическим маятником – понимается материальная точка, которая подвешена на длинной невесомой и нерастяжимой нити.

Выведем шарик из положения равновесия и отпустим. На шарик будут действовать две силы: сила тяжести и сила натяжения нити. При движении маятника, на него еще будет действовать сила трения воздуха. Но мы будем считать её очень маленькой.

Разложим силу тяжести на две составляющих: силу, направленную вдоль нити, и силу направленную перпендикулярно касательной к траектории движения шарика.

Эти две силы составят в сумме силу тяжести. Силы упругости нити и составляющая силы тяжести Fn сообщают шарику центростремительное ускорение. Работа этих сил будет равняться нулю, и следовательно они будут лишь менять направление вектора скорости. В любой момент времени, он будет направлен по касательной к дуге окружности.

Под действием составляющей силы тяжести Fτ шарик будет двигаться по дуге окружности с нарастающей по модулю скоростью. Значение этой сила всегда изменяется по модулю, при прохождении положения равновесия она равняется нулю.

Динамика колебательного движения

Уравнение движения тела, колеблющегося под действием силы упругости.

Общее уравнение движения:

Колебания в системе происходят под действием силы упругости, которая согласно закону Гука прямо пропорциональна смещению груза

Тогда уравнение движения шарика примет следующий вид:

Разделим это уравнение на m, получим следующую формулу:

И так как масса и коэффициент упругости величины постоянные, то и отношение (-k/m) тоже будет постоянное. Мы получили уравнение, которые описывают колебания тела под действием силы упругости.

Проекция ускорения тела будет прямо пропорциональна его координате, взятой с противоположным знаком.

Уравнение движения математического маятника

Уравнение движения математического маятника описывается следующей формулой:

Это уравнение имеет такой же вид, что и уравнение движения груза на пружине. Следовательно, колебания маятника и движения шарика на пружине происходят одинаковым образом.

Смещение шарика на пружине и смещение тела маятника от положения равновесия изменяются со временем по одинаковым законам.

Маятники, изображенные на рис. 2, представляют собой протяженные тела различной формы и размеров, совершающие колебания около точки подвеса или опоры. Такие системы называются физическими маятниками. В состоянии равновесия, когда центр тяжести находится на вертикали под точкой подвеса (или опоры), сила тяжести уравновешивается (через упругие силы деформированного маятника) реакцией опоры. При отклонении из положения равновесия сила тяжести и упругие силы определяют в каждый момент времени угловое ускорение маятника, т. е. определяют характер его движения (колебания). Мы рассмотрим теперь динамику колебаний подробнее на простейшем примере так называемого математического маятника, который представляет собой грузик малого размера, подвешенный на длинной тонкой нити.

В математическом маятнике мы можем пренебречь массой нити и деформацией грузика, т. е. можем считать, что масса маятника сосредоточена в грузике, а упругие силы сосредоточены в нити, которую считают нерастяжимой. Посмотрим теперь, под действием каких сил происходит колебание нашего маятника после того, как он каким-либо способом (толчком, отклонением) выведен из положения равновесия.

Когда маятник покоится в положении равновесия, то сила тяжести, действующая на его грузик и направленная вертикально вниз, уравновешивается силой натяжения нити. В отклоненном положении (рис. 15) сила тяжести действует под углом к силе натяжения , направленной вдоль нити. Разложим силу тяжести на две составляющие: по направлению нити () и перпендикулярно к нему (). При колебаниях маятника сила натяжения нити несколько превышает составляющую - на величину центростремительной силы, которая заставляет груз двигаться по дуге. Составляющая же всегда направлена в сторону положения равновесия; она как бы стремится восстановить это положение. Поэтому ее часто называют возвращающей силой. По модулю тем больше, чем больше отклонен маятник.

Рис. 15. Возвращающая сила при отклонении маятника от положения равновесия

Итак, как только маятник при своих колебаниях начинает отклоняться от положения равновесия, скажем, вправо, появляется сила , замедляющая его движение тем сильнее, чем дальше он отклонен. В конечном счете эта сила его остановит и повлечет обратно к положению равновесия. Однако по мере приближения к этому положению сила будет становиться все меньше и в самом положении равновесия обратится в нуль. Таким образом, через положение равновесия маятник проходит по инерции. Как только он начнет отклоняться влево, опять появится растущая с увеличением отклонения сила , но теперь уже направленная вправо. Движение влево опять будет замедляться, затем маятник на мгновение остановится, после чего начнется ускоренное движение вправо и т. д.

Что происходит с энергией маятника при его колебаниях?

Два раза в течение периода - при наибольших отклонениях влево и вправо- маятник останавливается, т. е. в эти моменты скорость равна нулю, а значит, равна нулю и кинетическая энергия. Зато именно в эти моменты центр тяжести маятника поднят на наибольшую высоту и, следовательно, потенциальная энергия наибольшая. Наоборот, в моменты прохождения через положение равновесия потенциальная энергия наименьшая, а скорость и кинетическая энергия достигают наибольшего значения.

Мы предположим, что силами трения маятника о воздух и трением в точке подвеса можно пренебречь. Тогда по закону сохранения энергии эта наибольшая кинетическая энергия как раз равна избытку потенциальной энергии в положении наибольшего отклонения над потенциальной энергией в положении равновесия.

Итак, при колебаниях маятника происходит периодический переход кинетической энергии в потенциальную и обратно, причем период этого процесса вдвое короче периода колебаний самого маятника. Однако полная энергия маятника (сумма потенциальной и кинетической энергий) все время постоянна. Она равна той энергии, которая была сообщена маятнику при пуске, безразлично - в виде ли потенциальной энергии (начальное отклонение) или в виде кинетической (начальный толчок).

Так обстоит дело при всяких колебаниях в отсутствие трения или каких-либо иных процессов, отнимающих энергию у колеблющейся системы или сообщающих ей энергию. Именно поэтому амплитуда сохраняется неизменной и определяется начальным отклонением или силой толчка.

Те же самые изменения возвращающей силы и такой же переход энергии мы получим, если вместо подвешивания шарика на нити заставим его кататься в вертикальной плоскости в сферической чашке или в изогнутом по окружности желобе. В этом случае роль натяжения нити возьмет на себя давление стенок чашки или желоба (трением шарика о стенки и воздух мы опять-таки пренебрегаем).

Механическая система, которая состоит из материальной точки (тела), висящей на нерастяжимой невесомой нити (ее масса ничтожно мала по сравнению с весом тела) в однородном поле тяжести, называется математическим маятником (другое название - осциллятор). Бывают и другие виды этого устройства. Вместо нити может быть использован невесомый стержень. Математический маятник может наглядно раскрыть суть многих интересных явлений. При малой амплитуде колебания его движение называется гармоническим.

Общие сведения о механической системе

Формула периода колебания этого маятника была выведена голландским ученым Гюйгенсом (1629-1695 гг.). Этот современник И. Ньютона очень увлекался данной механической системой. В 1656 г. он создал первые часы с маятниковым механизмом. Они измеряли время с исключительной для тех времен точностью. Это изобретение стало важнейшим этапом в развитии физических экспериментов и практической деятельности.

Если маятник находится в положении равновесия (висит отвесно), то будет уравновешиваться силой натяжения нити. Плоский маятник на нерастяжимой нити является системой с двумя степенями свободы со связью. При смене всего одного компонента меняются характеристики всех ее частей. Так, если нитку заменить на стержень, то у данной механической системы будет всего 1 степень свободы. Какими же свойствами обладает математический маятник? В этой простейшей системе под воздействием периодического возмущения возникает хаос. В том случае, когда точка подвеса не двигается, а совершает колебания, у маятника появляется новое положение равновесия. При быстрых колебаниях вверх-вниз эта механическая система приобретает устойчивое положение «вверх тормашками». У нее есть и свое название. Ее называют маятником Капицы.

Свойства маятника

Математический маятник имеет очень интересные свойства. Все они подтверждаются известными физическими законами. Период колебаний любого другого маятника зависит от разных обстоятельств, таких как размер и форма тела, расстояние между точкой подвеса и центром тяжести, распределение массы относительно данной точки. Именно поэтому определение периода висящего тела является довольно сложной задачей. Намного легче вычисляется период математического маятника, формула которого будет приведена ниже. В результате наблюдений над подобными механическими системами можно установить такие закономерности:

Если, сохраняя одинаковую длину маятника, подвешивать различные грузы, то период их колебаний получится одинаковым, хотя их массы будут сильно различаться. Следовательно, период такого маятника не зависит от массы груза.

Если при запуске системы отклонять маятник на не слишком большие, но разные углы, то он станет колебаться с одинаковым периодом, но по разным амплитудам. Пока отклонения от центра равновесия не слишком велики, колебания по своей форме будут достаточно близки гармоническим. Период такого маятника никак не зависит от колебательной амплитуды. Это свойство данной механической системы называется изохронизмом (в переводе с греческого «хронос» - время, «изос» - равный).

Период математического маятника

Этот показатель представляет собой период Несмотря на сложную формулировку, сам процесс очень прост. Если длина нити математического маятника L, а ускорение свободного падения g, то эта величина равна:

Период малых собственных колебаний ни в какой мере не зависит от массы маятника и амплитуды колебаний. В этом случае маятник двигается как математический с приведенной длиной.

Колебания математического маятника

Математический маятник совершает колебания, которые можно описать простым дифференциальным уравнением:

x + ω2 sin x = 0,

где х (t) - неизвестная функция (это угол отклонения от нижнего положения равновесия в момент t, выраженный в радианах); ω - положительная константа, которая определяется из параметров маятника (ω = √g/L, где g - это ускорение свободного падения, а L - длина математического маятника (подвес).

Уравнение малых колебаний вблизи положення равновесия (гармоническое уравнение) выглядит так:

x + ω2 sin x = 0

Колебательные движения маятника

Математический маятник, который совершает малые колебания, двигается по синусоиде. Дифференциальное уравнение второго порядка отвечает всем требованиям и параметрам такого движения. Для определения траектории необходимо задать скорость и координату, из которых потом определяются независимые константы:

x = A sin (θ 0 + ωt),

где θ 0 - начальная фаза, A - амплитуда колебания, ω - циклическая частота, определяемая из уравнения движения.

Математический маятник (формулы для больших амплитуд)

Данная механическая система, совершающая свои колебания со значительной амплитудой, подчиняется более сложным законам движения. Для такого маятника они рассчитываются по формуле:

sin x/2 = u * sn(ωt/u),

где sn - синус Якоби, который для u < 1 является периодической функцией, а при малых u он совпадает с простым тригонометрическим синусом. Значение u определяют следующим выражением:

u = (ε + ω2)/2ω2,

где ε = E/mL2 (mL2 - энергия маятника).

Определение периода колебания нелинейного маятника осуществляется по формуле:

где Ω = π/2 * ω/2K(u), K - эллиптический интеграл, π - 3,14.

Движение маятника по сепаратрисе

Сепаратрисой называют траекторию динамической системы, у которой двумерное фазовое пространство. Математический маятник движется по ней непериодически. В бесконечно дальнем моменте времени он падает из крайнего верхнего положения в сторону с нулевой скоростью, затем постепенно набирает ее. В конечном итоге он останавливается, вернувшись в исходное положение.

Если амплитуда колебаний маятника приближается к числу π , это говорит о том, что движение на фазовой плоскости приближается к сепаратрисе. В этом случае под действием малой вынуждающей периодической силы механическая система проявляет хаотическое поведение.

При отклонении математического маятника от положения равновесия с некоторым углом φ возникает касательная силы тяжести Fτ = -mg sin φ. Знак «минус» означает, что эта касательная составляющая направляется в противоположную от отклонения маятника сторону. При обозначении через x смещения маятника по дуге окружности с радиусом L его угловое смещение равняется φ = x/L. Второй закон предназначенный для проекций и силы, даст искомое значение:

mg τ = Fτ = -mg sin x/L

Исходя из этого соотношения, видно, что этот маятник представляет собой нелинейную систему, поскольку сила, которая стремится вернуть его в положение равновесия, всегда пропорциональна не смещению x, а sin x/L.

Только тогда, когда математический маятник осуществляет малые колебания, он является гармоническим осциллятором. Иными словами, он становится механической системой, способной выполнять гармонические колебания. Такое приближение практически справедливо для углов в 15-20°. Колебания маятника с большими амплитудами не является гармоническим.

Закон Ньютона для малых колебаний маятника

Если данная механическая система выполняет малые колебания, 2-й закон Ньютона будет выглядеть таким образом:

mg τ = Fτ = -m* g/L* x.

Исходя из этого, можно заключить, что математического маятника пропорционально его смещению со знаком «минус». Это и является условием, благодаря которому система становится гармоническим осциллятором. Модуль коэффициента пропорциональности между смещением и ускорением равняется квадрату круговой частоты:

ω02 = g/L; ω0 = √ g/L.

Эта формула отражает собственную частоту малых колебаний этого вида маятника. Исходя из этого,

T = 2π/ ω0 = 2π√ g/L.

Вычисления на основе закона сохранения энергии

Свойства маятника можно описать и при помощи закона сохранения энергии. При этом следует учитывать, что маятника в поле тяжести равняется:

E = mg∆h = mgL(1 - cos α) = mgL2sin2 α/2

Полная равняется кинетической или максимальной потенциальной: Epmax = Ekmsx = E

После того как будет записан закон сохранения энергии, берут производную от правой и левой частей уравнения:

Поскольку производная от постоянных величин равняется 0, то (Ep + Ek)" = 0. Производная суммы равняется сумме производных:

Ep" = (mg/L*x2/2)" = mg/2L*2x*x" = mg/L*v + Ek" = (mv2/2) = m/2(v2)" = m/2*2v*v" = mv* α,

следовательно:

Mg/L*xv + mva = v (mg/L*x + m α) = 0.

Исходя из последней формулы находим: α = - g/L*x.

Практическое применение математического маятника

Ускорение изменяется с географической широтой, поскольку плотность земной коры по всей планете не одинакова. Там, где залегают породы с большей плотностью, оно будет несколько выше. Ускорение математического маятника нередко применяют для геологоразведки. В его помощью ищут различные полезные ископаемые. Просто подсчитав количество колебаний маятника, можно обнаружить в недрах Земли каменный уголь или руду. Это связано с тем, что такие ископаемые имеют плотность и массу больше, чем лежащие под ними рыхлые горные породы.

Математическим маятником пользовались такие выдающиеся ученые, как Сократ, Аристотель, Платон, Плутарх, Архимед. Многие из них верили в то, что эта механическая система может влиять на судьбу и жизнь человека. Архимед использовал математический маятник при своих вычислениях. В наше время многие оккультисты и экстрасенсы пользуются этой механической системой для осуществления своих пророчеств или поиска пропавших людей.

Известный французский астроном и естествоиспытатель К. Фламмарион для своих исследований также использовал математический маятник. Он утверждал, что с его помощью ему удалось предсказать открытие новой планеты, появление Тунгусского метеорита и другие важные события. Во время Второй мировой войны в Германии (г. Берлин) работал специализированный Институт маятника. В наши дни подобными исследованиями занят Мюнхенский институт парапсихологии. Свою работу с маятником сотрудники этого заведения называют «радиэстезией».

Поделиться