Анатомия: строение и функции слухового анализатора. Слуховой анализатор, строение, функции Слуховой анализатор кратко

Возрастная анатомия и физиология Антонова Ольга Александровна

5.5. Слуховой анализатор

5.5. Слуховой анализатор

Основной функцией органов слуха является восприятие колебаний воздушной среды. Органы слуха тесно связаны с органами равновесия. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе.

Филогенетически они имеют общее происхождение. Оба рецепторных аппарата иннервируются волокнами третьей пары черепных нервов, оба реагируют на физические показатели: вестибулярный аппарат воспринимает угловые ускорения, слуховой – воздушные колебания.

Слуховые восприятия очень тесно связаны с речью – ребенок, потерявший слух в раннем детстве, утрачивает речевую способность, хотя речевой аппарат у него абсолютно нормален.

У зародыша органы слуха развиваются из слухового пузырька, который вначале сообщается с наружной поверхностью тела, но по мере развития эмбриона отшнуровывается от кожных покровов и образует три полукружных канала, расположенных в трех взаимно перпендикулярных плоскостях. Часть первичного слухового пузырька, которая связывает эти каналы, называют преддверием. Оно состоит из двух камер – овальной (маточки) и круглой (мешочка).

В нижнем отделе преддверия из тонких перепончатых камер образуется полый выступ, или язычок, который у зародышей вытягивается, а затем скручивается в виде улитки. Язычок образует кортиев орган (воспринимающую часть органа слуха). Этот процесс происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается миелинизация волокон слухового нерва. В последние месяцы внутриутробного развития начинается дифференцировка клеток в корковом отделе слухового анализатора, протекающая особенно интенсивно в первые два года жизни. Заканчивается формирование слухового анализатора к 12-13-летнему возрасту.

Орган слуха. Орган слуха человека состоит из наружного уха, среднего уха и внутреннего уха. Наружное ухо служит для улавливания звуков, его образуют ушная раковина и наружный слуховой проход. Ушная раковина образована эластическим хрящом, снаружи покрытым кожей. Внизу ушная раковина дополнена кожной складкой – мочкой, которая заполнена жировой тканью. Определение направления звука у человека связано с бинауральным слухом, т. е. со слышанием двумя ушами. Любой боковой звук поступает в одно ухо раньше, чем в другое. Разница во времени (несколько долей миллисекунды) прихода звуковых волн, воспринимаемых левым и правым ухом, дает возможность определить направление звука. При поражении одного уха человек определяет направление звука вращением головы.

Наружный слуховой проход у взрослого человека имеет длину 2,5 см, емкость – 1 куб. см. Кожа, выстилающая слуховой проход, имеет тонкие волоски и видоизмененные потовые железы, вырабатывающие ушную серу. Они выполняют защитную роль. Ушная сера состоит из жировых клеток, содержащих пигмент.

Наружное и среднее ухо разделяются барабанной перепонкой, представляющей собой тонкую соединительно-тканную пластинку. Толщина барабанной перепонки – около 0,1 мм, снаружи она покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка располагается наклонно и начинает колебаться при попадании на нее звуковых волн. Поскольку барабанная перепонка не имеет собственного периода колебаний, то она колеблется при любом звуке соответственно его длине волны.

Среднее ухо представляет собой барабанную полость, которая имеет форму маленького плоского барабана с туго натянутой колеблющейся перепонкой и слуховой трубой. В полости среднего уха находятся сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Рукоятка молоточка вплетена в барабанную перепонку; другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно сочленена со стремечком. К стремечку прикреплена стременная мышца, которая удерживает его у перепонки овального окна, отделяющего внутреннее ухо от среднего. Функцией слуховых косточек является обеспечение увеличения давления звуковой волны при передаче с барабанной перепонки на перепонку овального окна. Это увеличение (примерно в 30–40 раз) помогает слабым звуковым волнам, падающим на барабанную перепонку, преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо, трансформируясь там в колебания эндолимфы.

Барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см, очень узкой (2 мм), поддерживающей одинаковое давление снаружи и изнутри на барабанную перепонку, обеспечивая тем самым наиболее благоприятные условия для ее колебания. Отверстие трубы в глотке чаще всего находится в спавшемся состоянии, и воздух проходит в барабанную полость во время акта глотания и зевания.

Внутреннее ухо находится в каменистой части височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани, который как бы вставлен в костный лабиринт и повторяет его форму. Между костным и перепончатым лабиринтами имеется жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа. Кроме овального окошка, в стенке, отделяющей среднее ухо от внутреннего, есть круглое окно, которое делает возможным колебание жидкости.

Костный лабиринт состоит из трех частей: в центре находится преддверие, спереди от него – улитка, а сзади – полукружные каналы. Костная улитка – спирально извивающийся канал, образующий два с половиной оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки – 0,04 мм, на вершине – 0,5 мм. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части – лестницы.

Внутри среднего канала улитки находится спиральный (кортиев) орган. Он имеет базилярную (основную) пластинку, состоящую примерно из 24 тыс. тонких фиброзных волоконец различной длины. Эти волоконца очень упругие и слабо связаны друг с другом. На основной пластинке вдоль нее в пять рядов располагаются опорные и волосковые чувствительные клетки – это и есть слуховые рецепторы.

Внутренние волосковые клетки расположены в один ряд, по всей длине перепончатого канала их насчитывается 3,5 тыс. Наружные волосковые клетки располагаются в три-четыре ряда, их насчитывается 12–20 тыс. Каждая рецепторная клетка имеет удлиненную форму, на ней имеется 60–70 мельчайших волосков (длиной 4–5 мкм). Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой, которая нависает над ними. Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва. В продолговатом мозге находится второй нейрон слухового пути; потом путь идет, перекрещиваясь, к задним буграм четверохолмия, а от них – в височную область коры, где располагается центральная часть слухового анализатора.

В коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов. Другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку.

Механизм восприятия звука. Для слухового анализатора звук является адекватным раздражителем. Звуковые волны возникают как чередование сгущений и разрежений воздуха и распространяются во все стороны от источника звука. Все вибрации воздуха, воды или другой упругой среды распадаются на периодические (тоны) и непериодические (шумы).

Тоны бывают высокие и низкие. Низким тонам соответствует меньшее число колебаний в секунду. Каждый звуковой тон характеризуется длиной звуковой волны, которой соответствует определенное число колебаний в секунду: чем больше число колебаний, тем короче длина волны. У высоких звуков волна короткая, она измеряется в миллиметрах. Длина волны низких звуков измеряется метрами.

Верхний звуковой порог у взрослого человека составляет 20 000 Гц; самый низкий – 12–24 Гц. Дети имеют более высокую верхнюю границу слуха – 22 000 Гц; у пожилых людей она ниже – около 15 000 Гц. Наибольшей восприимчивостью обладает ухо к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость уха сильно понижается.

У новорожденных полость среднего уха заполнена амниотической жидкостью. Это затрудняет колебания слуховых косточек. Со временем жидкость рассасывается, и вместо нее из носоглотки через евстахиеву трубу проникает воздух. Новорожденный ребенок при громких звуках вздрагивает, у него изменяется дыхание, он перестает плакать. Более четким слух у детей становится к концу второго – началу третьего месяца. Через два месяца ребенок дифференцирует качественно различные звуки, в 3–4 месяца различает высоту звука, в 4–5 месяцев звуки для него становятся условно-рефлекторными раздражителями. К 1–2 годам дети различают звуки с разницей в один-два, а к четырем-пяти годам – даже 3/4 и 1/2 музыкального тона.

Слуховой анализатор (слуховая сенсорная система) – второй по значению дистантный анализатор человека. Слух играет важнейшую роль именно у человека в связи с возникновением членораздельной речи. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего, сенсорная информация передаётся в слуховую область коры большого мозга (височный отдел) через ряд последовательных структур.

Орган слуха (ухо) – это периферический отдел слухового анализатора, в котором расположены слуховые рецепторы. Строение и функции уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха

Строение

Функции

Наружное ухо

Ушная раковина, наружный слуховой проход, барабанная перепонка

Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.

Среднее ухо

Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба

Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку

Внутреннее ухо

Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат

Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий

Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат

Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела

Рис . 12.10. Органы слуха и равновесия . Наружное, среднее и внутреннее ухо, а также отходящие от рецепторных элементов органа слуха (кортиев орган) и равновесия (гребешки и пятна) слуховая и преддверная (вестибулярная) ветви преддверно–улиткового нерва (VIII пара черепных нервов).

Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются покровной (текториальной) мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передаётся далее на волокна преддверно-улиткового нерва (рис. 12.11).

Рис . 12.11. Перепончатый канал и спиральный (кортиев) орган . Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал (средняя лестница), в котором расположен кортиев орган. Перепончатый канал отделён от барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками.

Расположение и структура рецепторных клеток кортиевого органа. На основной мембране расположены два вида рецепторных волосковых клеток: внутренние и наружные, отделённые друг от друга кортиевыми дугами.

Внутренние волосковые клетки располагаются в один ряд; общее число их по всей длине перепончатого канала достигает 3 500. Наружные волосковые клетки располагаются в 3-4 ряда; их общее число 12 000-20 000. Каждая волосковая клетка имеет удлинённую форму; один её полюс фиксирован на основной мембране, второй находится в полости перепончатого канала улитки. На конце этого полюса есть волоски, или стереоцилии . Их число на каждой внутренней клетке составляет 30-40 и они очень короткие – 4-5 мкм; на каждой наружной клетке число волосков достигает 65-120, они тоньше и длиннее. Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной (текториальной) мембраной, которая по всему ходу перепончатого канала расположена над волосковыми клетками.

Механизм слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей (микрофиламентов), связывающих между собой верхушки соседних волосков данной клетки. Это натяжение чисто механически открывает от 1 до 5 ионных каналов в мембране стереоцилии. Через открытый канал в волосок начинает течь калиевый ионный ток. Сила натяжения нити, необходимая для открытия одного канала, ничтожна, около 2·10 -13 ньютон. Ещё более удивительным кажется то, что наиболее слабые из ощущаемых человеком звуков растягивают вертикальные нити, связывающие верхушки соседних стереоцилий, на расстояние, вдвое меньшее, чем диаметр атома водорода.

Тот факт, что электрический ответ слухового рецептора достигает максимума уже через 100-500 мкс (микросекунд), означает, что ионные каналы мембраны открываются непосредственно механическим стимулом без участия вторичных внутриклеточных посредников. Это отличает механорецепторы от значительно медленнее работающих фоторецепторов.

Деполяризация пресинаптического окончания волосковой клетки приводит к выходу в синаптическую щель нейромедиатора (глутамата или аспартата). Воздействуя на постсинаптическую мембрану афферентного волокна, медиатор вызывает генерацию возбуждения постсинаптического потенциала и далее генерацию распространяющихся в нервных центрах импульсов.

Открытие всего нескольких ионных каналов в мембране одной стереоцилии явно мало для возникновения рецепторного потенциала достаточной величины. Важным механизмом усиления сенсорного сигнала на рецепторном уровне слуховой системы является механическое взаимодействие всех стереоцилий (около 100) каждой волосковой клетки. Оказалось, что все стереоцилии одного рецептора связаны между собой в пучок тонкими поперечными нитями. Поэтому, когда сгибается один или несколько более длинных волосков, они тянут за собой все остальные волоски. В результате этого открываются ионные каналы всех волосков, обеспечивая достаточную величину рецепторного потенциала.

Бинауральный слух. Человек и животные обладают пространственным слухом, т.е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора (бинауральный слух).

Острота бинаурального слуха у человека очень высока: он способен определять расположение источника звука с точностью порядка 1 углового градуса. Физиологической основой этого служит способность нейронных структур слухового анализатора оценивать интерауральные (межушные) различия звуковых стимулов по времени их прихода на каждое ухо и по их интенсивности. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и большей силы, чем на другое. Оценка удалённости звука от организма связана с ослаблением звука и изменением его тембра.

Слух человека устроен так, чтобы улавливать широкий диапазон звуковых волн и превращать их в электрические импульсы, чтобы направлять в мозг для анализа. В отличие от связанного с органом слуха вестибулярного аппарата, нормально работающего практически с рождения человека, слух формируется достаточно долго. Формирование слухового анализатора заканчивается не раньше, чем в 12 лет, и наибольшая острота слуха достигается к 14-19-летнему возрасту. слуховой анализатор имеет три отдела: периферический или орган слуха (ухо); проводниковый, включающий нервные пути; корковый, расположенный в височной доле головного мозга. Причём в коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов, другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку.

Строение человеческого уха Слуховой анализатор человека воспринимает звуковые волны с частотой колебаний от 16 до 20 тыс. в секунду (16-20000 герц, Гц). Верхний звуковой порог у взрослого человека составляет 20 000 Гц; нижний порог – в пределах от 12 до 24 Гц. Дети имеют более высокую верхнюю границу слуха в районе 22000 Гц; у пожилых людей, наоборот, она, обычно, ниже – около 15 000 Гц. Наибольшей восприимчивостью ухо обладает к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость органа слуха сильно понижается. Ухо - сложный вестибулярно-слуховой орган. Как и все наши органы чувств, орган слуха человека выполняет две функции. Он воспринимает звуковые волны и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе. Устройство вестибулярной системы можно посмотреть отдельно, а сейчас перейдём к описанию строения частей органа слуха.



Орган слуха состоит из 3-х частей: наружное, среднее и внутреннее ухо, причём наружное и среднее ухо играют роль звукопроводящего аппарата, а внутреннее ухо – звуковоспринимающего. Процесс начинается со звука - колебательного движения воздуха или вибрации, при которой к слушателю распространяются звуковые волны, достигающие, в конце концов, барабанной перепонки. При этом наше ухо чрезвычайно чувствительно и способно почувствовать изменения давления всего в 1-10 атмосфер.

Строение наружного уха Наружное ухо состоит из ушной раковины и наружного слухового прохода. Вначале звук достигает ушных раковин, которые действуют как приёмники звуковых волн. Ушная раковина образована эластичным хрящом, снаружи покрытым кожей. Определение направления звука у человека связано с бинауральным слухом, т. е. со слышанием двумя ушами. Любой боковой звук поступает в одно ухо раньше, чем в другое. Разница во времени (несколько долей миллисекунды) прихода звуковых волн, воспринимаемых левым и правым ухом, даёт возможность определить направление звука. Иными словами, естественное восприятие нами звука – стереофоническое.

Ушная раковина человека имеет свой неповторимый рельеф из выпуклостей, вогнутостей и канавок. Это необходимо для тончайшего акустического анализа, позволяя также распознавать направление и источник звука. Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации источника звука. Таким образом, мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при проектировании динамиков и наушников. Ушная раковина также усиливает звуковые волны, которые далее входят в наружный слуховой проход - пространство от раковины к барабанной перепонке длиной около 2,5 см и диаметром около 0,7 см. Слуховой проход имеет слабо выраженный резонанс на частоте около 3000Гц.

Еще одной интересной характеристикой наружного слухового прохода является наличие ушной серы, которая постоянно выделяется из желёз. Ушная сера - воскообразный секрет 4000 сальных и серных желез слухового прохода. В ее функции входит защита кожи этого прохода от бактериальной инфекции и инородных частиц или, например, насекомых, которые могут попасть в ухо. У разных людей количество серы различно. При избыточном скоплении серы возможно образование серной пробки. Если слуховой проход при этом полностью закупорен, появляются ощущения заложенности уха и понижение слуха, в том числе резонанс собственного голоса в заложенном ухе. Эти нарушения развиваются внезапно, чаще всего при попадании в наружный слуховой проход воды во время купания.

Наружное и среднее ухо разделяются барабанной перепонкой, представляющей собой тонкую соединительно-тканную пластинку. Толщина барабанной перепонки – около 0,1 мм, а диаметр около 9 миллиметров. Снаружи она покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка располагается наклонно и начинает колебаться при попадании на нее звуковых волн. Барабанная перепонка чрезвычайно чувствительна, однако после определения и передачи колебания перепонка возвращается в исходное положение всего за 0,005 секунды.

Строение среднего уха В нашем ухе звук движется к чувствительным клеткам, воспринимающим звуковые сигналы, через согласующее и усиливающее устройство – среднее ухо. Среднее ухо представляет собой барабанную полость, которая имеет форму маленького плоского барабана с туго натянутой колеблющейся перепонкой и слуховой (евстахиевой) трубой. В полости среднего уха находятся сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек. Достигнув барабанной перепонки, звук заставляет ее колебаться. Рукоятка молоточка вплетена в барабанную перепонку и, покачиваясь, она приводит молоточек в движение. Другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно сочленена со стремечком. К стремечку прикреплена стременная мышца, которая удерживает его у перепонки овального окна (окна преддверия), отделяющего среднее ухо от внутреннего, заполненного жидкостью. В результате передачи движения стремечко, основание которого напоминает поршень, постоянно толкается в перепонку овального окна внутреннего уха.

Функцией слуховых косточек является обеспечение увеличения давления звуковой волны при передаче от барабанной перепонки на перепонку овального окна. Этот усилитель (примерно в 30–40 раз) помогает слабым звуковым волнам, падающим на барабанную перепонку, преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо. При переходе звуковой волны из воздушной среды в жидкую значительная часть звуковой энергии теряется и, поэтому, необходим механизм усиления звука. Однако, при громком звуке этот же механизм понижает чувствительность всей системы, чтобы её не повредить.

Давление воздуха внутри среднего уха должно быть таким же, как и давление вне барабанной перепонки, для обеспечения нормальных условий её колебаний. Для выравнивания давления барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см и диаметром около 2 мм. При глотании, зевании и жевании евстахиева труба открывается, впуская внешний воздух. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями. Нарушения работы трубки приводит к болям и даже кровотечению в ухе.

Строение внутреннего уха. Механические движения косточек во внутреннем ухе превращаются в электрические сигналы. Внутреннее ухо - полое костное образование в височной кости, разделенное на костные каналы и полости, содержащие рецепторные аппараты слухового анализатора и органа равновесия. Этот отдел органа слуха и равновесия из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка. Улитка представляет собой канал длиной около 32 мм, свёрнутый спиралью и заполненный лимфатическими жидкостями. Получив вибрацию от барабанной перепонки, стремечко своим движением давит на мембрану окна преддверия и создаёт колебания давления внутри жидкости улитки. Эта вибрация распространяется в жидкости улитки и достигает там собственно органа слуха, спирального или кортиева органа. Он и превращает вибрации жидкости в электрические сигналы, которые через нервы идут в головной мозг. Чтобы стремечко могло передать давление через жидкость, в центральной части лабиринта, преддверии, есть круглое окно улитки, покрытое гибкой мембраной. Когда поршень стремечка входит в овальное окно преддверия, мембрана окна улитки выпячивается под давлением жидкости улитки. Колебания в замкнутой полости возможны лишь при наличии отдачи. Роль такой отдачи и выполняет перепонка круглого окна.

Костный лабиринт улитки завёрнут в форме спирали с 2,5 оборотами и содержит внутри перепончатый лабиринт такой же формы. В некоторых местах перепончатый лабиринт соединительными тяжами прикреплён к надкостнице костного лабиринта. Между костным и перепончатым лабиринтом находится жидкость – перилимфа. Звуковая волна, усиленная на 30-40 дБ с помощью системы барабанная перепонка - слуховые косточки, достигает окна преддверия, и ее колебания передаются на перилимфу. Звуковая волна проходит сначала по перилимфе до верхушки спирали, где через отверстие колебания распространяются до окна улитки. Внутри перепончатый лабиринт заполнен другой жидкостью – эндолимфой. Жидкость внутри перепончатого лабиринта (улитковый проток) сверху отделена от перилимфы гибкой покровной пластинкой, а снизу - эластичной основной мембраной, составляющими вместе перепончатый лабиринт. На основной мембране находится звуковоспринимающий аппарат, кортиев орган. Основная мембрана состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны. Эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями.

Нервные клетки кортиевого органа превращают колебательные движения пластинок в электрические сигналы. Они называются волосковыми клетками. Внутренние волосковые клетки расположены в один ряд, их насчитывается 3,5 тыс. Наружные волосковые клетки располагаются в три-четыре ряда, их насчитывается 12–20 тыс. Каждая волосковая клетка имеет удлиненную форму, на ней имеется 60–70 мельчайших волосков (стереоцилий) длиной 4–5 мкм.

Вся энергия звука оказывается сосредоточенной в пространстве, ограниченном стенкой костной улитки и основной мембраной (единственное податливое место). Волокна основной мембраны имеют разную длину и, соответственно, разную резонансную частоту. Самые короткие волокна расположены около овального окна, их резонансная частота около 20000 Гц. Самые длинные – в верхушке спирали, имеют резонансную частоту около 16 Гц. Получается, что каждая волосковая клетка, в зависимости от расположения на основной мембране, настроена на определенную звуковую частоту, причем клетки, настроенные на низкие частоты, располагаются в верхней части улитки, а высокие частоты улавливаются клетками нижней части улитки. Когда волосковые клетки по каким-то причинам гибнут, человек теряет способность воспринимать звуки соответствующих частот.

Звуковая волна распространяется по перилимфе от окна преддверия до окна улитки практически мгновенно, примерно за 4*10-5 секунды. Вызванное этой волной гидростатическое давление сдвигает покровную пластинку относительно поверхности кортиева органа. В результате покровная пластинка деформирует пучки стереоцилий волосковых клеток, что приводит к их возбуждению, передающемуся окончаниям первичных сенсорных нейронов.

Различия ионного состава эндолимфы и перилимфы создают разность потенциалов. И между эндолимфой и внутриклеточной средой рецепторных клеток разность потенциалов достигает примерно 0,16 вольт. Столь значительная разность потенциалов способствует возбуждению волосковых клеток даже при действии слабых звуковых сигналов, вызывающих незначительные колебания основной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению регулятора, действующего на окончания волокон слуховых нервов и тем самым возбуждающего их.

Волосковые клетки связаны с окончаниями нервных волокон, по выходе из кортиева органа образующих слуховой нерв (улитковую ветвь преддверно-улиткового нерва). Звуковые волны, преобразованные в электрические импульсы, передаются по слуховому нерву в височную зону коры головного мозга.

Слуховой нерв состоит из тысяч тончайших нервных волокон. Каждое из них начинается от определенного участка улитки и, тем самым, передает определенную звуковую частоту. С каждым волокном слухового нерва связано несколько волосковых клеток, так что в центральную нервную систему приходит около 10000 волокон. Импульсы от низкочастотных звуков, передаются по волокнам, исходящим из верхушки улитки, а от высокочастотных - по волокнам, связанным с ее основанием. Таким образом, функцией внутреннего уха является преобразование механических колебаний в электрические, так как мозг может воспринимать только электрические сигналы.

Орган слуха – это аппарат, через который мы получаем звуковую информацию. Но слышим мы так, как воспринимает, перерабатывает и запоминает наш мозг. В мозгу создаются звуковые представления или образы. И, если в нашей голове звучит музыка или вспоминается чей-то голос, то благодаря тому, что мозг имеет входные фильтры, запоминающее устройство и звуковую карту, и может быть для нас и надоевшим динамиком, и удобным музыкальным центром.

Слуховой анализатор, строение уха, функция рецепторов.
1).Слуховой анализатор обеспечивает восприятие звуковой информации и ее обработку в центральных отделах коры головного мозга. Периферическую часть анализатора образуют: внутренне ухо и слуховой нерв. Центральная часть образована подкорковыми центрами среднего и промежуточного мозга и височной зоной коры.

В органе слуха заложены рецепторы трех видов: а) рецепторы, воспринимающие звуковые колебания (колебания воздушных волн), которые мы ощущаем как звук; б) рецепторы, дающие нам возможность определить положение нашего тела в пространстве; в) рецепторы, воспринимающие изменения направления и быстроты движения.

2.) Нормальный анализ крови здорового человека.

Кровь состоит из 55% плазмы. Клеток крови и кровяных пластинок 45% В составе плазмы 90-92% Воды, 7-8% белков, 0.12% глюкозы, 0.7-0.9% жиров, 0.8% минеральных солей.

3.) Строение и свойства нейронов.
Основное свойство нейрона – это способность возбуждаться, то есть образовывать электрический импульс, и передавать (проводить) это возбуждение другим нейронам, мышечным или железистым клеткам. Основные свойства нейронов: раздражимость, возбудимость, проводимость, лабильность, инертность, утомляемость, торможение, регенерация и др.
2.)

Билет 12.

1. Зрительный анализатор, строение глаза, оптическая система глаза.
По чувствительным нервам нервные импульсы от рецепторов передаются в соответствующих зону коры больших полушарий. Совокупность нервных элементом, воспринимающих, проводящих, и анализирующих раздражения, физиолог И.П. Павлов назвал анализаторами. Таким образом анализаторы состоят из трех отделов:
1) периферическая часть, воспринимающая раздражение, - рецептор орган, в котором он находится.

2)проводящая часть-нерв, который проводит возбуждение от рецепторов в мозг

3)центральная часть-зона коры больших полушарий, где происходит анализ полученных возбуждений


Оптическая система глаза - оптический аппарат глаза; состоит из 4 преломляющих сред: роговицы, камерной влаги, хрусталика и стекловидного тела .

2. Закаливание организма.
Закаливание-это повышение и развитие устойчивости организма к неблагоприятным условиям внешней среды. оно достигается различными путями: прогулки на свежем воздухе, купание в холодной воде, солнечные ванны. Наше тело адаптируется(привыкает).

3. Головной мозг человека, его отделы. Функции отделов головного мозга
Головной мозг расположен в мозговом отделе черепа. Средняя его масса 1300-1400 г. состоит из белого и серого вещества.
Отелы головного мозга: мозг состоит из пяти отделов
1. Продолговатый мозг-продолжение верхней части спинного мозга в полости черепа
Рефлексы продолговатого мозга
-защитные(чихание кашель рвота слезотечение)
-пищевые(сосание глотание выделение слюны и пищеварительных соков)
-сердечно-сосудистые (регуляция работы сердца и кровеносных сосудов)
-дыхательные(центр дыхания регулирующий вдох и выдох)


4. 2. Задний мозг-стоит из варолиева моста и можечка. Варолиев мост лежит между продолговатым и средним мозгом и соединяет их, поэтому он и называется мостом. Отростки нейронов можечка соединяются со всеми отделами головного мозга. Можечок поддерживает тонус скелетных мышц. Повреждение можечка приводит к нарушению координации движений, равновесия тела, быстрой утомляемости рук и ног, снижение тонуса мышц.
3. Средний мозг-рассположен между задним и промежуточным. Через него проходят входящие и исходящие проводящие пути(А еще это гигабайты свежей информации)при помощи него осуществляется ориентировочные рефлексы.

5. 4. Промежуточный мозг-лежит выше и спереди среднего мозга. через промежуточный мозг передаются в кору больших полушарий импульсы от всех рецепторов тела. Промежутчный мозг регулирует обмен вещестсердечно-сосудистую деятельность, работу желез внутренней секруции, выделение, сон. а так же терморегуляция.

1. В чем заключаются особенности экономико-географического подхода к оценке экологического состояния территории?

2. Какими факторами определяется экологическое состояние территории?

3. Какие виды районирования с учетом экологического фактора выделяются в современной географической литературе?

4. Каковы критерии и в чем заключаются особенности экологического, эколого-экономического и природно-хозяйственного районирования?

5. Как можно классифицировать антропогенное воздействие?

6. Что можно отнести к первичным и вторичным последствиям антропогенного воздействия?

7. Как изменились основные параметры антропогенного воздействия в России в переходный период?

Литература:

1. Бакланов П. Я., Поярков В. В., Каракин В. П. Природно-хозяйственное районирование: общая концепция и исходные принципы. // География и природные ресурсы. - 1984, №1.

2. Битюкова В. Р. Новый подход к методике районирования состояния городской среды (на примере Москвы). // Изв. РГО. 1999. Т. 131. Вып. 2.

3. Блануца В. И. Интегральное экологическое районирование: концепция и методы. - Новосибирск: Наука, 1993.

4. Борисенко И. Л. Экологическое районирование городов по техногенным аномалиям в почвах (на примере Московской области) // Матер. науч. семин. по экол. районир. «Экорайон-90». - Иркутск, 1991.

5. Булатов В. И. Российская экология на рубеже ХХI века. - ЦЕРИС, Новосибирск, 2000.Владимиров В. В. Расселение и экология. - М., 1996.

6. Гладкевич Г. И., Сумина Т. И. Оценка силы воздействия промышленных центров природно-хозяйственных районов СССР на природную среду. // Вестник Моск. ун-та, сер. 5, геогр. - 1981., №6.

7. Исаченко А. Г. Экологическая география России. - С.П-б.: Изд.-во С-Пб. ун.-та, 2001.

8. Кочуров Б. И., Иванов Ю. Г. Оценка эколого-хозяйственного состояния территории административного района. // География и природные ресурсы. - 1987, №4.

9. Малхазова С. М. Медико-географический анализ территорий: картографирование, оценка, прогноз. - М.: Научный мир, 2001.

10. Моисеев Н. Н. Экология в современном мире // Экология и образование. - 1998, №1

11. Мухина Л. И., Преображенский В.С., Ретеюм А.Ю. География, техника, проектирование. - М.: Знание, 1976.

12. Преображенский В. С., Райх Е. А. Контуры концепции общей экологии человека. // Предмет экологии человека. Ч. 1. - М. 1991.

13. Приваловская Г. А. Волкова И. Н. Регионализация ресурсопользования и охрана окружающей среды. // Регионализация в развитии России: географические процессы и проблемы. - М.: УРСС, 2001.

14. Приваловская Г. А., Рунова Т. Г. Территориальная организация промышленности и природные ресурсы СССР. - М.: Наука, 1980

15. Прохоров Б. Б. Медико-экологическое районирование и региональный прогноз здоровья населения России: Конспект лекций к спецкурсу. - М.: Изд-во МНЭПУ, 1996.

16. Ратанова М. П. Битюкова В. Р. Территориальные различия степени экологической напряженности Москвы. // Вестник Моск. ун-та, сер. 5, геогр. - 1999, №1.

17. Регионализация в развитии России: географические процессы и проблемы. - М.: УРСС, 2001.

18. Реймерс Н. Ф. Природопользование: Словарь-справочник. - М.: Мысль, 1990.

19. Чистобаев А. И., Шарыгин М. Д. Экономическая и социальная география. Новый этап. - Л.: Наука, 1990.

Глава 3. СТРОЕНИЕ И ФУНКЦИИ СЛУХОВОГО АНАЛИЗАТОРА.

3.1 Строение органа слуха. Переферический отдел слухового анализатора представлен ухом, с помощью которого человек воспринимает воздействие внешней среды, выраженное в виде звуковых колебаний, оказывающих физическое давление на барабанную перепонку. Через орган слуха человек получает значительно меньше информации, чем с помощью органа зрения (примерно 10%). Но слух имеет большое значение для общего развития и формирования личности и, в частности, для развития речи у ребенка, оказывающей решающее влияние на его психическое развитие.

Орган слуха и равновесия содержит чувствительные клетки нескольких видов: рецепторы, воспринимающие звуковые колебания; рецепторы, определяющие положение тела в пространстве; рецепторы, воспринимающие изменения направления и быстроты движения. Выделяют три части органа: наружное, среднее и внутреннее ухо (рис. 7).

Наружное ухо воспринимает звуки и направляет их к барабанной перепонке. Оно включает проводящие отделы – ушную раковину и наружный слуховой проход.

Рис. 7. Строение органа слуха.

Ушная раковина состоит из эластического хряща, покрытого тонким слоем кожи. Наружный слуховой проход представляет собой изогнутый канал длиной 2,5 – 3 см. Канал имеет два отдела: хрящевой наружный слуховой проход и внутренний костный слуховой проход, находящийся в височной кости. Наружный слуховой проход выстлан кожей с тонкими волосками и особыми потовыми железами, которые выделяют ушную серу.

Его конец изнутри закрыт тонкой полупрозрачной пластинкой – барабанной перепонкой, отделяющей наружное ухо от среднего. Последнее включает в себя несколько образований, заключенных в барабанную полость: барабанную перепонку, слуховые косточки, слуховую (евстахиеву) трубу. На стенке, обращенной к внутреннему уху, находятся два отверстия – овальное окно (окно преддверия) и круглое окно (окно улитки). На стенке барабанной полости, обращенной к наружному слуховому проходу, находится барабанная перепонка, воспринимающая звуковые колебания воздуха и передающая их звукопроводящей системе среднего уха – комплексу слуховых косточек (его можно сравнить со своеобразным микрофоном). Едва заметные колебания барабанной перепонки здесь усиливаются и преобразуются, передаваясь во внутреннее ухо. Комплекс состоит из трех косточек: молоточка, наковальни и стремечка. Молоточек (длиной 8 – 9 мм) плотно сращен с внутренней поверхностью барабанной перепонки своей рукояткой, а головкой сочленен с наковальней, которая из-за наличия двух ножек напоминает коренной зуб с двумя корнями. Одна ножка (длинная) выполняет функцию рычага для стремени. Стремечко имеет размер 5 мм, своим широким основанием вставлено в овальное окно преддверия, плотно прилегая к его перепонке. Движения слуховых косточек обеспечиваются мышцей, напрягающей барабанную перепонку, и стременной мышцей.

Слуховая труба (длиной 3,5 - 4 см) соединяет барабанную полость с верхним отделом глотки. Через нее из носоглотки в полость среднего уха попадает воздух, благодаря чему выравнивается давление на барабанную перепонку со стороны наружного слухового прохода и барабанной полости. Когда затруднено прохождение воздуха по слуховой трубе (воспалительный процесс), то преобладает давление со стороны наружного слухового прохода, и барабанная перепонка вдавливается в полость среднего уха. Это приводит к значительной потере возможностей барабанной перепонки совершать колебательные движения в соответствии с частотой звуковых волн.

Внутреннее ухо – очень сложно устроенный орган, внешне напоминает лабиринт или улитку, имеющую 2,5 круга в своем “домике”. Оно расположено в пирамиде височной кости. Внутри костного лабиринта находится замкнутый соединительный перепончатый лабиринт, повторяющий форму внешнего. Пространство между стенками костного и перепончатого лабиринтов заполнено жидкостью – перилимфой, а полость перепончатого лабиринта – эндолимфой.

Преддверие – небольшая овальная полость в средней части лабиринта. На медиальной стенке преддверия гребень отделяет друг от друга две ямки. Задняя ямка – эллиптическое углубление – лежит ближе к полукружным каналам, которые открываются в преддверие пятью отверстиями, а передняя – сферическое углубление – связана с улиткой.

В перепончатом лабиринте, который располагается внутри костного и в основном повторяет его очертания, выделяют эллиптический и сферичекий мешочки.

Стенки мешочков покрыты плоским эпителием, за исключением небольшого участка – пятна. Пятно выстлано цилиндрическим эпителием, содержащим опорные и волосковые сенсорные клетки, имеющие на своей поверхности тонкие отростки, обращенные в полость мешочка. От волосковых клеток начинаются нервные волокна слухового нерва (его вестибулярной части).Поверхность эпителия покрыта особой тонковолокнистой и студенистой мембраной, называемой отолитовой, так как в ней находятся кристаллы отолиты, состоящие из карбоната кальция.

Сзади к преддверию примыкают три взаимоперпендикулярных полукружных канала – один в горизонтальной и два в вертикальных плоскостях. Все они представляют собой узкие трубочки, наполненные жидкостью – эндолимфой. Каждый канал заканчивается расширением – ампулой; в слуховом гребешке ее сконцентрированы клетки чувствительного эпителия, от которого начинаются ветви вестибулярного нерва.

Спереди от преддверия находится улитка. Канал улитки загибается по спирали и образует 2,5 оборота вокруг стержня. Стержень улитки состоит из губчатой костной ткани, между балками которой расположены нервные клетки, образующие спиральный ганглий. От стержня отходит в виде спирали тонкий костный листок, состоящий из двух пластин, между которыми проходят миелинизированные дендриты нейронов спирального ганглия. Верхняя пластина костного листка переходит в спиральную губу, или лимб, нижняя – в спиральную основную, или базиллярную, мембрану, которая простирается до наружной стенки улиткового канала. Плотная и упругая спиральная мембрана представляет собой соединительнотканную пластинку, которая состоит из основного вещества и коллагеновых волокон – струн, натянутых между спиральной костной пластинкой и наружной стенкой улиткового канала. У основания улитки волокна более короткие. Их длина составляет 104 мкм. По направлению к вершине длина волокон увеличивается до 504 мкм. Общее их число составляет около 24 тыс.

От костной спиральной пластинки к наружной стенке костного канала под углом к спиральной мембране отходит еще одна мембрана, менее плотная – вестибулярная, или рейснерова.

Полость канала улитки разделена мембранами на три отдела: верхний канал улитки, или вестибулярная лестница, начинается от окна преддверия; средний канал улитки – между вестибулярной и спиральной мембранами и нижний канал, или барабанная лестница, начинающаяся от окна улитки. У вершины улитки вестибулярная и барабанная лестницы сообщаются посредством маленького отверстия – геликотремы. Верхний и нижний каналы заполнены перилимфой. Средний канал – это улитковый проток, который тоже представляет собой спирально извитый канал в 2,5 оборота. На наружной стенке улиткового протока расположена сосудистая полоска, эпителиальные клетки которой обладают секреторной функцией, продуцируя эндолимфу. Вестибулярная и барабанная лестницы заполнены перилимфой, а средний канал – эндолимфой. Внутри улиткового протока, на спиральной мембране, располагается сложное устройство (в виде выступа нейроэпителия), представляющее собой собственно воспринимающий аппарат слуховой перцепции, - спиральный (кортиев) орган (рис. 8).

Кортиев орган образован чувствительными волосковыми клетками. Различают внутренние и наружные волосковые клетки. Внутренние волосковые клетки несут на своей поверхности от 30 до 60 коротких волосков, расположенных в 3 – 5 рядов. Число внутренних волосковых клеток составляет у человека около 3500. Наружные волосковые клетки расположены в три ряда, каждая из них имеет около 100 волосков. Общее число наружных волосковых клеток составляет у человека 12 – 20 тысяч. Наружные волосковые клетки более чувствительны к действию звуковых раздражителей, чем внутренние.

Над волосковыми клетками расположена текториальная мембрана. Она имеет лентовидную форму и желеобразную консистенцию. Ее ширина и толщина увеличиваются от основания улитки к вершине.

Информация от волосковых клеток передается по дендритам клеток, образующих спиральный узел. Второй отросток этих клеток -– аксон – в составе преддверно-улиткового нерва направляется к стволу мозга и к промежуточному мозгу, где происходит переключение на следующие нейроны, отростки которых идут в височный отдел коры головного мозга.

Рис. 8. Схема органа Корти:

1 - покровная пластинка; 2, 3 - наружные (3-4 ряда) и внутренние (1-й ряд) волосковые клетки; 4 - опорные клетки; 5 - волокна улиткового нерва (в поперечном разре­зе); 6 - наружные и внутренние столбы; 7 - улитковый нерв; 8 - основная пластинка

Спиральный орган является аппаратом, принимающим звуковые раздражения. Преддверие и полукружные каналы обеспечивают равновесие. Человек может воспринимать до 300 тыс. различных оттенков звуков и шумов в диапазоне от 16 до 20 тыс. Гц. Наружное и среднее ухо способны усилить звук почти в 200 раз, однако усиливаются только слабые звуки, сильные ослабляются.

3.2 Механизм передачи и восприятия звука. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке, которая начинает колебаться в соответствии с частотой звуковых волн. Колебания барабанной перепонки передаются цепи косточек среднего уха и при их участии мембране овального окна. Колебания мембраны окна преддверия передаются перилимфе и эндолимфе, что вызывает колебания основной мембраны вместе с расположенным на ней кортиевым органом. При этом волосковые клетки своими волосками касаются текториальной мембраны, и вследствие механического раздражения в них возникает возбуждение, которое передается далее на волокна преддверно-улиткового нерва.

Слуховой анализатор человека воспринимает звуковые волны с частотой их колебаний от 20 до 20 тыс. в секунду. Высота тона определяется частотой колебаний: чем она больше, тем выше по тону воспринимаемый звук. Анализ звуков по частоте осуществляется периферическим отделом слухового анализатора. Под влиянием звуковых колебаний прогибается мембрана окна преддверия, смещая при этом какой-то объем перилимфы. При малой частоте колебаний частицы перилимфы перемещаются по вестибулярной лестнице вдоль спиральной мембраны по направлений к геликотреме и через нее по барабанной лестнице к мембране круглого окна, которая прогибается на такую же величину, что и мембрана овального окна. Если же действует большая частота колебаний, возникает быстрое смещение мембраны овального окна и повышение давления в вестибулярной лестнице. От этого прогибается спиральная мембрана в сторону барабанной лестницы и реагирует участок мембраны вблизи окна преддверия. При повышении давления в барабанной лестнице изгибается мембрана круглого окна, основная мембрана благодаря своей упругости возвращается в исходное положение. В это время частицы перилимфы смещают следующий, более инерционный участок мембраны, и волна пробегает по всей мембране. Колебания окна преддверия вызывают бегущую волну, амплитуда которой возрастает, и максимум ее соответствует какому-то определенному участку мембраны. По достижении максимума амплитуды волна затухает. Чем выше высота звуковых колебаний, тем ближе к окну преддверия находится максимум амплитуды колебаний спиральной мембраны. Чем меньше частота, тем ближе к геликотреме отмечаются наибольшие ее колебания.

Установлено, что при действии звуковых волн с частотой колебаний до 1000 в секунду в колебание приходит весь столб перилимфы вестибулярной лестницы и вся спиральная мембрана. При этом их колебания происходят в точном соответствии с частотой колебания звуковых волн. Соответственно в слуховом нерве возникают потенциалы действия с такой же частотой. При частоте звуковых колебаний свыше 1000 колеблется не вся основная мембрана, а какой-то ее участок, начиная от окна преддверия. Чем выша частота колебаний, тем меньший по длине участок мембраны, начиная от окна преддверия, приходит в колебание и тем меньшее число волосковых клеток приходит в состояние возбуждения. В слуховом нерве в этом случае регистрируются потенциалы действия, частота которых меньше частоты звуковых волн, действующих на ухо, причем при высокочастотных звуковых колебаниях импульсы возникают в меньшем числе волокон, чем при низкочастотных колебаниях, что связано с возбуждением лишь части волосковых клеток.

Значит при действии звуковых колебаний происходит пространственное кодирование звука. Ощущение той или иной высоты звука зависит от длины колеблющегося участка основной мембраны, а следовательно, от числа расположенных на ней волосковых клеток и от места их расположения. Чем меньше колеблющихся клеток и чем ближе они расположены к окну преддверия, тем более высоким воспринимается звук.

Колеблющиеся волосковые клетки вызывают возбуждение в строго определенных волокнах слухового нерва, а значит, и в определенных нервных клетках головного мозга.

Сила звука определяется амплитудой звуковой волны. Ощущение интенсивности звука связано с различным соотношением числа возбужденных внутренних и внешних волосковых клеток. Поскольку внутренние клетки менее возбудимы, чем внешние, возбуждение большого числа их возникает при действии сильных звуков.

3.3 Возрастные особенности слухового анализатора. Формирование улитки происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается уже миелинизация волокон улиткового нерва в нижнем (основном) завитке улитки. Миелинизация в среднем и верхнем завитках улитки начинается значительно позднее.

Дифференцировка отделов слухового анализатора, которые расположены в головном мозге, проявляется в формировании клеточных слоев, в увеличении пространства между клетками, в росте клеток и изменении их структуры: в увеличении числа отростков, шипиков и синапсов.

Подкорковые структуры, относящиеся к слуховому анализатору, созревают раньше, чем его корковый отдел. Их качественное развитие заканчивается на 3-м месяце после рождения. Структура корковых полей слухового анализатора отличается от таковой у взрослых до 2 – 7 лет.

Слуховой анализатор начинает функционировать сразу же после рождения. Уже у новорожденных возможно осуществление элементарного анализа звуков. Первые реакции на звук носят характер ориентировочных рефлексов, осуществляемых на уровне подкорковых образований. Они отмечаются даже у недоношенных детей и проявляются в закрывании глаз, открывании рта, вздрагивании, уменьшении частоты дыхания, пулься, в различных мимических движениях. Звуки, одинаковые по интенсивности, но разные по тембру и высоте, вызывают разные реакции, что свидетельствует о способности их различесния новорожденным ребенком.

Условные пищевые и оборонительные рефлексы на звуковые раздражения вырабатываются с 3 – 5 недель жизни ребенка. Упрочнение этих рефлексов возможно лишь с 2 месяцев жизни. Дифференцирование разнородных звуков возможно с 2 – 3 месяцев. В 6 – 7 месяцев дети дифференцируют тоны, отличающиеся от исходного на 1 – 2 и даже на 3 – 4,5 музыкального тона.

Функциональное развитие слухового анализатора продолжается до 6 – 7 лет, что проявляется в образовании тонких дифференцировок на речевые раздражители. Различны у детей разного возраста пороги слышимости. Острота слуха и, следовательно, наименьший порог слышимости уменьшаются до 14 – 19 лет, когда отмечается самая малая величина порога, а затем вновь нарастают. Чувствительность слухового анализатора к разным частотам неодинакова в разном возрасте. До 40 лет наименьший порог слышимости падает на частоту 3000 Гц, в 40 – 49 лет – 2000 Гц, после 50 лет – 1000 Гц, причем с этого возраста понижается верхняя граница воспринимаемых звуковых колебаний.

Поделиться