Соматосенсорные вызванные потенциалы. Метод вызванных потенциалов

Электроэнцефалография - метод регистрации и анализа электроэнцефалограммы (ЭЭГ), т.е. суммарной биоэлектрической активности, отводимой как со скальпа, так и из глубоких структур мозга . Последнее у человека возможно лишь в клинических условиях. В 1929 г. австрийский психиатрХ. Бергеробнаружил, что с поверхности черепа можно регистрировать "мозговые волны". Он установил, что электрические характеристики этих сигналов зависят от состояния испытуемого. Наиболее заметными были синхронные волны относительно большой амплитуды с характерной частотой около 10 циклов в секунду. Бергер назвал их альфа-волнами и противопоставил их высокочастотным "бета-волнам", которые проявляются тогда, когда человек переходит в более активное состояние. Открытие Бергера привело к созданию электроэнцефалографического метода изучения мозга, состоящего в регистрации, анализе и интерпретации биотоков мозга животных и человека. Одна из самых поразительных особенностей ЭЭГ - ее спонтанный, автономный характер. Регулярная электрическая активность мозга может быть зафиксирована уже у плода (т.е. до рождения организма) и прекращается только с наступлением смерти. Даже при глубокой коме и наркозе наблюдается особая характерная картина мозговых волн. Сегодня ЭЭГ является наиболее перспективным, но пока еще наименее расшифрованным источником данных для психофизиолога.

Условия регистрации и способы анализа ЭЭГ. В стационарный комплекс для регистрации ЭЭГ и ряда других физиологических показателей входит звукоизолирующая экранированная камера, оборудованное место для испытуемого, моногоканальные усилители, регистрирующая аппаратура (чернилопишущий энцефалограф, многоканальный магнитофон). Обычно используется от 8 до 16 каналов регистрации ЭЭГ от различных участков поверхности черепа одновременно. Анализ ЭЭГ осуществляется как визуально, так и с помощью ЭВМ. В последнем случае необходимо специальное программное обеспечение.

    По частоте в ЭЭГ различают следующие типы ритмических составляющих:

    • дельта-ритм (0,5-4 Гц);

      тэта-ритм (5-7 Гц);

      альфа-ритм (8-13 Гц) - основной ритм ЭЭГ, преобладающий в состоянии покоя;

      мю-ритм - по частотно-амплитудным характеристикам сходен с альфа-ритмом, но преобладает в передних отделах коры больших полушарий;

      бета-ритм (15-35 Гц);

      гамма-ритм (выше 35 Гц).

Следует подчеркнуть, что подобное разбиение на группы более или менее произвольно, оно не соответствует никаким физиологическим категориям. Зарегистрированы и более медленные частоты электрических потенциалов головного мозга вплоть до периодов порядка нескольких часов и суток. Запись по этим частотам выполняется с помощью ЭВМ.

Основные ритмы и параметры энцефалограммы. 1. Альфа-волна - одиночное двухфазовое колебание разности потенциалов длительностью 75-125 мс., по форме приближается к синусоидальной. 2. Альфа-ритм - ритмическое колебание потенциалов с частотой 8-13 Гц, выражен чаще в задних отделах мозга при закрытых глазах в состоянии относительного покоя, средняя амплитуда 30-40 мкВ, обычно модулирован в веретена. 3. Бета-волна - одиночное двухфазовое колебание потенциалов длительностью менее 75 мс.и амплитудой 10-15 мкВ (не более 30). 4. Бета-ритм - ритмическое колебание потенциалов с частотой 14-35 Гц. Лучше выражен в лобно-центральных областях мозга. 5. Дельта-волна - одиночное двухфазовое колебание разности потенциалов длительностью более 250 мс. 6. Дельта-ритм - ритмическое колебание потенциалов с частотой 1-3 Гц и амплитудой от 10 до 250 мкВ и более. 7. Тета-волна - одиночное, чаще двухфазовое колебание разности потенциалов длительностью 130-250 мс. 8. Тета-ритм - ритмическое колебание потенциалов с частотой 4-7 Гц, чаще двухсторонние синхронные, с амплитудой 100-200 мкВ, иногда с веретенообразной модуляцией, особенно в лобной области мозга.

Другая важная характеристика электрических потенциалов мозга - амплитуда, т.е. величина колебаний. Амплитуда и частота колебаний связаны друг с другом. Амплитуда высокочастотных бета-волн у одного и того человека может быть почти в 10 раз ниже амплитуды более медленных альфа-волн. Важное значение при регистрации ЭЭГ имеет расположение электродов, при этом электрическая активность одновременно регистрируемая с различных точек головы может сильно различаться. При записи ЭЭГ используют два основных метода: биполярный и монополярный. В первом случае оба электрода помещаются в электрически активные точки скальпа, во втором один из электродов располагается в точке, которая условно считается электрически нейтральной (мочка уха, переносица). При биполярной записи регистрируется ЭЭГ, представляющая результат взаимодействия двух электрически активных точек (например, лобного и затылочного отведений), при монополярной записи - активность какого-то одного отведения относительно электрически нейтральной точки (например, лобного или затылочного отведения относительно мочки уха). Выбор того или иного варианта записи зависит от целей исследования. В исследовательской практике шире используется монополярный вариант регистрации, поскольку он позволяет изучать изолированный вклад той или иной зоны мозга в изучаемый процесс. Международная федерация обществ электроэнцефалографии приняла так называемую систему "10-20", позволяющую точно указывать расположение электродов. В соответствии с этой системой у каждого испытуемого точно измеряют расстояние между серединой переносицы (назионом) и твердым костным бугорком на затылке (инионом), а также между левой и правой ушными ямками. Возможные точки расположения электродов разделены интервалами, составляющими 10% или 20% этих расстояний на черепе. При этом для удобства регистрации весь череп разбит на области, обозначенные буквами: F - лобная, О - затылочная область, Р - теменная, Т - височная, С - область центральной борозды. Нечетные номера мест отведения относятся к левому, а четные - к правому полушарию. Буквой Z - обозначается отведение от верхушки черепа. Это место называется вертексом и его используют особенно часто(см. Хрестомат. 2.2).

Клинический и статический методы изучения ЭЭГ. С момента возникновения выделились и продолжают существовать как относительно самостоятельные два подхода к анализу ЭЭГ: визуальный (клинический) и статистический.Визуальной (клинический) анализ ЭЭГ используется, как правило, в диагностических целях. Электрофизиолог, опираясь на определенные способы такого анализа ЭЭГ, решает следуюшие вопросы: соответствует ли ЭЭГ общепринятым стандартам нормы; если нет, то какова степень отклонения от нормы, обнаруживаются ли у пациента признаки очагового поражения мозга и какова локализация очага поражения. Клинический анализ ЭЭГ всегда строго индивидуален и носит преимущественно качественный характер. Несмотря на то, что существуют общепринятые в клинике приемы описания ЭЭГ, клиническая интерпретация ЭЭГ в большей степени зависит от опыта электрофизиолога, его умения "читать" электроэнцефалограмму, выделяя в ней скрытые и нередко очень вариативные патологические признаки. Следует, однако, подчеркнуть, что в широкой клинической практике грубые макроочаговые нарушения или другие отчетливо выраженные формы патологии ЭЭГ встречаются редко. Чаще всего (70-80% случаев) наблюдаются диффузные изменения биоэлектрической активности мозга с симптоматикой, трудно поддающейся формальному описанию. Между тем именно эта симптоматика может представлять особый интерес для анализа того контингента испытуемых, которые входят в группу так называемой "малой" психиатрии - состояний, граничащих между "хорошей" нормой и явной патологией. Именно по этой причине сейчас предпринимаются особые усилия по формализации и даже разработки компьютерных программ для анализа клинической ЭЭГ.Статистические методы исследования электроэнцефалограммы исходят из того, что фоновая ЭЭГ стационарна и стабильна. Дальнейшая обработка в подавляющем большинстве случаев опирается на преобразование Фурье, смысл которого состоит в том, что волна любой сложной формы математически идентична сумме синусоидальных волн разной амплитуды и частоты. Преобразование Фурье позволяет преобразовать волновойпаттерн фоновой ЭЭГ в частотный и установить распределение мощности по каждой частотной составляющей. С помощью преобразования Фурье самые сложные по форме колебания ЭЭГ можно свести к ряду синусоидальных волн с разными амплитудами и частотами. На этой основе выделяются новые показатели, расширяющие содержательную интерпретацию ритмической организации биоэлектрических процессов. Например, специальную задачу составляет анализ вклада, или относительной мощности, разных частот, которая зависит от амплитуд синусоидальных составляющих. Она решается с помощью построения спектров мощности. Последний представляет собой совокупность всех значений мощности ритмических составляющих ЭЭГ, вычисляемых с определенным шагом дискретизации (в размере десятых долей герца). Спектры могут характеризовать абсолютную мощность каждой ритмической составляющей или относительную, т.е. выраженность мощности каждой составляющей (в процентах) по отношению к общей мощности ЭЭГ в анализируемом отрезке записи.

Спектры мощности ЭЭГ можно подвергать дальнейшей обработке, например, корреляционному анализу, при этом вычисляют авто- и кросскорреляционные функции, а такжекогерентность , которая характеризует меру синхронности частотных диапазонов ЭЭГ в двух различных отведениях . Когерентность изменяется в диапазоне от +1 (полностью совпадающие формы волны) до 0 (абсолютно различные формы волн). Такая оценка проводится в каждой точке непрерывного частотного спектра или как средняя в пределах частотных поддиапазонов. При помощи вычисления когерентности можно определить характер внутри- и межполушарных отношений показателей ЭЭГ в покое и при разных видах деятельности. В частности, с помощью этого метода можно установить ведущее полушарие для конкретной деятельности испытуемого, наличие устойчивой межполушарной асимметрии и др. Благодаря этому спектрально-корреляционный метод оценки спектральной мощности (плотности) ритмических составляющих ЭЭГ и их когерентности является в настоящее время одним из наиболее распространенных.

Источники генерации ЭЭГ. Парадоксально, но собственно импульсная активностьнейронов не находит отражения в колебаниях электрического потенциала, регистрируемого с поверхности черепа человека. Причина в том, что импульсная активность нейронов не сопоставима с ЭЭГ по временным параметрам. Длительность импульса (потенциала действия) нейрона составляет не более 2 мс. Временные параметры ритмических составляющих ЭЭГ исчисляются десятками и сотнями милисекунд. Принято считать, что в электрических процессах, регистрируемых с поверхности открытого мозга или скальпа, находит отражениесинаптическая активность нейронов. Речь идет о потенциалах, которые возникают в постсинаптической мембране нейрона, принимающего импульс. Возбуждающие постсинаптические потенциалы имеют длительность более 30 мс, а тормозные постсинаптические потенциалы коры могут достигать 70 мс и более. Эти потенциалы (в отличие от потенциала действия нейрона, который возникает по приниципу "все или ничего") имеют градуальный характер и могут суммироваться. Несколько упрощая картину, можно сказать, что положительные колебания потенциала на поверхности коры связаны либо с возбуждающими постсинаптическими потенциалами в ее глубинных слоях, либо с тормозными постсинаптическими потенциалами в поверхностных слоях. Отрицательные колебания потенциала на поверности коры предположительно отражают противоположное этому соотношение источников электрической активности. Ритмический характер биоэлектрической активности коры, и в частности альфа-ритма, обусловлен в основном влиянием подкорковых структур, в первую очередь таламуса (промежуточный мозг). Именно в таламусе находятся главные, но не единственныепейсмекеры или водители ритма. Одностороннее удаление таламуса или его хирургическая изоляция от неокортекса приводит к полному исчезновению альфа-ритма в зонах коры прооперированного полушария. При этом в ритмической активности самого таламуса ничто не меняется. Нейроны неспецифического таламуса обладают свойством авторитмичности. Эти нейроны через соответствующие возбуждающие и тормозные связи способны генерировать и поддерживать ритмическую активность в коре больших полушарий. Большую роль в динамике электрической активности таламуса и коры играетретикулярная формация ствола мозга. Она может оказывать синхронизирующее влияние, т.е. способствующее генерации устойчивого ритмическогопаттерна , и дезинхронизирующее, нарушающее согласованную ритмическую активность(см. Хрестомат. 2.3).

Синаптическая активность нейронов

Функциональное значение ЭЗГ и её составляющих. Существенное значение имеет вопрос о функциональном значении отдельных составляющих ЭЭГ. Наибольшее внимание исследователей здесь всегда привлекалальфа-ритм - доминирующий ритм ЭЭГ покоя у человека. Существует немало предположений, касающихся функциональной роли альфа-ритма. Основоположник кибернетики Н. Винер и вслед за ним ряд других исследователей считали, что этот ритм выполняет функцию временного сканирования ("считывания") информации и тесно связан с механизмами восприятия и памяти. Предполагается, что альфа-ритм отражает реверберацию возбуждений, кодирующих внутримозговую информацию и создающих оптимальный фон для процесса приема и переработкиафферентных сигналов. Его роль состоит в своеобразной функциональной стабилизации состояний мозга и обеспечении готовности реагирования. Предполагается также, что альфа-ритм связан с действием селектирующих механизмов мозга, выполняющих функцию резонансного фильтра, и таким образом регулирующих поток сенсорных импульсов. В покое в ЭЭГ могут присутствовать и другие ритмические составляющие, но их значение лучше всего выясняется при изменениии функциональных состояний организма (Данилова , 1992). Так, дельта-ритм у здорового взрослого человека в покое практически отсутствует, но он доминирует в ЭЭГ на четвертой стадии сна, которая получила свое название по этому ритму (медленноволновой сон или дельта-сон). Напротив, тэта-ритм тесно связан с эмоциональным и умственным напряжением. Его иногда так и называют стресс-ритм или ритм напряжения. У человека одним из ЭЭГ симптомов эмоционального возбуждения служит усиление тэта-ритма с частотой колебаний 4-7 Гц, сопровождающее переживание как положительных, так и отрицательных эмоций. При выполнении мыслительных заданий может усиливаться и дельта-, и тета-активность. Причем усиление последней составляющей положительно соотносится с успешностью решения задач. По своему происхождению тэта-ритм связан скортико-лимбическим взаимодействием. Предполагается, что усиление тэта-ритма при эмоциях отражает активацию коры больших полушарий со стороны лимбической системы. Переход от состояния покоя к напряжению всегда сопровождается реакцией десинхронизации, главным компонентом которой служит высокочастотная бета-активность. Умственная деятельность у взрослых сопровождается повышением мощности бета-ритма, причем значимое усиление высокочастотной активности наблюдается при умственной деятельности, включающей элементы новизны, в то время как стереотипные, повторяющиеся умственные операции сопровождаются ее снижением. Установлено также, что успешность выполнения вербальных заданий и тестов на зрительно-пространственные отношения оказывается положительно связанной с высокой активностью бета-диапазона ЭЭГ левого полушария. По некоторым предположениям, эта активность связана с отражением деятельности механизмов сканирования структуры стимула, осуществляемой нейронными сетями, продуцирующими высокочастотную активность ЭЭГ (см. Хрестомат. 2.1;Хрестомат. 2.5).

Магнитоэнцефалография -регистрация параметров магнитного поля, обусловленных биоэлектрической активностью головного мозга . Запись этих параметров осуществляется с помощью сверхпроводящих квантовых интерференционных датчиков и специальной камеры, изолирующей магнитные поля мозга от более сильных внешних полей. Метод обладает рядом преимуществ перед регистрацией традиционной электроэнцефалограммы. В частности, радиальные составляющие магнитных полей, регистрируемые со скальпа, не претерпевают таких сильных искажений, как ЭЭГ. Это позволяет более точно рассчитывать положение генераторов ЭЭГ-активности, регистрируемой со скальпа.

2.1.2. Вызванные потенциалы головного мозга

Вызванные потенциалы (ВП) -биоэлектрические колебания, возникающие в нервных структурах в ответ на внешнее раздражение и находящиеся в строго определенной временной связи с началом его действия. У человека ВП обычно включены в ЭЭГ, но на фоне спонтанной биоэлектрической активности трудно различимы (амплитуда одиночных ответов в несколько раз меньше амплитуды фоновой ЭЭГ). В связи с этим регистрация ВП осуществляется специальными техническими устройствами, которые позволяют выделять полезный сигнал из шума путем последовательного его накопления, или суммации. При этом суммируется некоторое число отрезков ЭЭГ, приуроченных к началу действия раздражителя.

Широкое использование метода регистрации ВП стало возможным в результате компьютеризации психофизиологических исследований в 50-60 гг. Первоначально его применение в основном было связано с изучением сенсорных функций человека в норме и при разных видах аномалий. Впоследствии метод стал успешно применяться и для исследования более сложных психических процессов, которые не являются непосредственной реакцией на внешний стимул. Способы выделения сигнала из шума позволяют отмечать в записи ЭЭГ изменения потенциала, которые достаточно строго связаны во времени с любым фиксированным событием. В связи с этим появилось новое обозначение этого круга физиологических явлений - событийно-связанные потенциалы (ССП).

    Примерами здесь служат:

    • колебания, связанные с активностью двигательной коры (моторный потенциал, или потенциал, связанный с движением);

      потенциал, связанный с намерением произвести определенное действие (так называемая Е-волна);

      потенциал, возникающий при пропуске ожидаемого стимула.

Эти потенциалы представляют собой последовательность позитивных и негативных колебаний, регистрируемых, как правило, в интервале 0-500 мс. В ряде случаев возможны и более поздние колебания в интервале до 1000 мс. Количественные методы оценки ВП и ССП предусматривают, в первую очередь, оценку амплитуд илатентностей . Амплитуда - размах колебаний компонентов, измеряется в мкВ, латентность - время от начала стимуляции до пика компонента, измеряется в мс. Помимо этого, используются и более сложные варианты анализа.

    В исследовании ВП и ССП можно выделить три уровня анализа:

    • феноменологический;

      физиологический;

      функциональный.

Феноменологический уровень включает описание ВП как многокомпонентной реакции с анализом конфигурации, компонентного состава и топографических особенностей. Фактически этот уровень анализа, с которого начинается любое исследование, применяющее метод ВП. Возможности этого уровня анализа прямо связаны с совершенствованием способов количественной обработки ВП, которые включают разные приемы, начиная от оценки латентностей и амплитуд и кончая производными, искусственно сконструированными показателями. Многообразен и математический аппарат обработки ВП, включающий факторный, дисперсионный, таксономический и другие виды анализа.Физиологический уровень. По этим результатам на физиологическом уровне анализа происходит выделение источников генерации компонентов ВП, т.е. решается вопрос о том, в каких структурах мозга возникают отдельные компоненты ВП. Локализация источников генерации ВП позволяет установить роль отдельных корковых и подкорковых образований в происхождении тех или иных компонентов ВП. Наиболее признанным здесь является деление ВП наэкзогенные и эндогенные компоненты. Первые отражают активность специфических проводящих путей и зон, вторые - неспецифических ассоциативных проводящих систем мозга. Длительность тех и других оценивается по-разному для разных модальностей. В зрительной системе, например, экзогенные компоненты ВП не превышают 100 мс от момента стимуляции.Третий уровень анализа - функциональный предполагает использование ВП как инструмента, позволяющего изучать физиологические механизмы поведения и познавательной деятельности человека и животных.

ВП как единица психофизиологического анализа. Под единицей анализа принято понимать такой объект анализа, который в отличие от элементов обладает всеми основными свойствами, присущими целому, причем свойства являются далее неразложимыми частями этого единства. Единица анализа - это такое минимальное образование, в котором непосредственно представлены существенные связи и существенные для данной задачи параметры объекта. Более того, подобная единица сама должна быть единым целым, своего рода системой, дальнейшее разложение которой на элементы лишит ее возможности представлять целое как таковое. Обязательным признаком единицы анализа является также то, что ее можно операционализировать, т.е. она допускает измерение и количественную обработку. Если рассматривать психофизиологический анализ как метод изучения мозговых механизмов психической деятельности, то ВП отвечают большинству требований, которые могут быть предъявлены единице такого анализа.Во-первых , ВП следует квалифицировать как психонервную реакцию, т.е. такую, которая прямо связана с процессами психического отражения.Во-вторых , ВП - это реакция, состоящая из ряда компонентов, непрерывно связанных между собой. Таким образом, она структурно однородна и может быть операционализирована, т.е. имеет количественные характеристики в виде параметров отдельных компонентов (латентностей и амплитуд). Существенно, что эти параметры имеют разное функциональное значение в зависимости от особенностей экспериментальной модели.В-третьих , разложение ВП на элементы (компоненты), осуществляемое как метод анализа, позволяет охарактеризовать лишь отдельные стадии процесса переработки информации, при этом утрачивается целостность процесса как такового. В наиболее выпуклой форме идеи о целостности и системности ВП как корреляте поведенческого акта нашли отражение в исследованиях В.Б. Швыркова. По этой логике ВП, занимая весь временной интервал между стимулом и реакцией, соответствуют всем процессам, приводящим к возникновению поведенческого ответа, при этом конфигурация ВП зависит от характера поведенческого акта и особенностей функциональной системы, обеспечивающей данную форму поведения. При этом отдельные компоненты ВП рассматриваются как отражение этапов афферентного синтеза, принятия решения, включения исполнительных механизмов, достижения полезного результата. В такой интерпретации ВП выступают как единица психофизиологического анализа поведения. Однако магистральное русло применения ВП в психофизиологии связано с изучением физиологических механизмов икоррелятов познавательной деятельности человека. Это направление определяется каккогнитивная психофизиология. ВП в нем используются в качестве полноценной единицы психофизиологического анализа. Такое возможно, потому что, по образному определению одного из психофизиологов, ВП имеют уникальный в своем роде двойной статус, выступая в одно и то же время как "окно в мозг" и "окно в познавательные процессы"(см. Хрестомат. 2.4).

Мозг – святая святых организма. Его работа протекает в сфере сверхслабых электрических разрядов и сверхбыстрых импульсов.

Анализ слуховых вызванных потенциалов незаменим при поиске причин и слуха у детей, т.к. позволяют установить, на какой стадии передачи звукового сигнала происходит сбой: или это периферическое нарушение, или поражение ЦНС.

Вызванные потенциалы слухового анализатора включены в стандарт обследования младенцев на предмет ранней диагностики отклонений в развитии.

Если зрительные и слуховые вызванные потенциалы касались только отделов головного и мозга и его ствола, то соматосенсорные вызывают реакцию периферических отделов ЦНС.

Стимулирующий импульс на своем пути раздражает многие нервные центры и позволяет диагностировать их работу. Этот метод способен дать общую картину нарушений работы центральной нервной системы.

ССВП назначается для уточнения диагноза и степени тяжести заболевания; для контроля эффективности лечения; составления прогноза развития заболевания.

Для стимуляции выбирается чаще всего два нервных центра: на руке и на ноге:

  1. Срединный нерв на лучезапястном суставе , принимая импульс, передает его в точку над плечевым сплетением (здесь ставится 1-й регистрирующий электрод); далее следует точка над седьмым шейным позвонком (2-й электрод); лобная область; симметричные точки по обеим сторонам темени проецируют центры управления правой и левой рукой в коре головного мозга. Ответная реакция регистрируемых нервных центров на графике будет обозначена символами: N9 (отклик плечевого сплетения)→ N11 (шейный отдел спинного мозга) → N29 – P25 (кора головного мозга).
  2. Большеберцовый нерв на голеностопном суставе →поясничный отдел позвоночника →шейные отделы позвоночника →лобная часть →темя (проекция центра коры, управляющего нижними конечностями). Это 2-й путь ССВП.

Соответствующие реакции выделяются методом суммации и усреднения из общей картины ЭЭГ на основе 500 – 1000 электрических импульсов.

Снижение амплитуды компонентов ССВП указывает на патологию нервных центров в этом месте или ниже его уровня; увеличение латентного периода говорит о повреждении волокон нервов, передающих импульс (демиелинизирующий процесс), отсутствие реакции в коре головного мозга при наличии компонентов ССВП в периферических центрах нервной системы диагностирует смерть мозга.

В заключение надо заметить, что метод вызванных потенциалов в первую очередь должен работать для ранней диагностики детских болезней и отклонений в развитии, когда правильным лечением можно свести негативные явления к минимуму. Поэтому родителям полезно знать о его возможностях и взять на вооружение в борьбе за здоровье своих детей.

Вызванные потенциалы мозга - это методика инструментального исследования, что позволяет регистрировать ответную реакцию определенных участков мозга на внешние раздражители. Стимулы поступают через группу рецепторов, связанных с конкретным участком коры головного мозга.

В здоровом состоянии мозг четко и с определенной скоростью реагирует на те или иные внешние раздражающие сигналы. При различных нарушениях реакция может запаздывать или отличаться по характеру от нормального ответа. Вызванные потенциалы могут показать, на каком этапе пути передачи возбуждения происходит торможение или изменение сигнала.

Для каждой группы рецепторов существуют свои виды раздражителей, которые преобразовываются в возбуждение, которое передается по путям периферической и вегетативной нервной системы в головной мозг. Цель обследования - вызвать ответную реакцию на соответствующий сигнал. В качестве раздражителей используется электрическое, акустическое и световое воздействие.

В упрощенном варианте суть исследования сводится к анализу всего пути от поступления сигнала через основные органы чувств и рецепторы кожи до мозга и обратной реакции в ответ на раздражитель. По данным обследования можно найти именно тот участок нервной системы, где происходит торможение передачи возбуждения от периферических нервов через спинной мозг к коре головного мозга.

Показания к исследованию вызванных потенциалов

С помощью данного обследования проводится диагностирование патологий:

  • сосудистых заболеваний (инсультов);
  • поражений центральной, периферической и вегетативной нервной системы;
  • последствий травматических поражений мозга;
  • синдрома гиперактивности и дефицита внимания (СДВГ) у детей;
  • сенсорных нарушений и т.д.

С помощью исследования вызванных потенциалов можно изучить нервные и мозговые функции и у абсолютно здоровых людей. В данном виде метод востребован в спорте, научных изысканиях и при оценке темпов развития детей, особенно у недоношенных младенцев.

В медицинской практике наиболее часто применяются три вида исследований вызванных потенциалов головного мозга:

  1. Зрительные вызванные потенциалы: дают возможность произвести наблюдение зрительного пути от сетчатки глаза до соответствующего отдела коры головного мозга. Данное обследование является одной из самых информативных методик при диагностике пациентов с признаками таких патологий, как рассеянный склероз, височный артериит, воспалительные и опухолевые заболевания, сахарный диабет, поражения вегетативной нервной системы, зрительных нервов и сетчатки. По результатам исследования специалист может произвести прогноз нарушений зрения при целом ряде заболеваний различной этиологии (неврологических, сосудистых, эндокринных).
  2. Слуховые вызванные потенциалы - один из способов центральных, периферических и вегетативных поражений акустической системы. В результате обследования удается довольно точно выяснить характер, степень и локализацию нарушений слухового и вестибулярного аппарата человека. Результат исследования имеет высокую ценность при изучении рассеянного склероза (даже при условии отсутствия внешних симптомов), болезней лицевого и тройничного нерва, неврита слухового нерва, отита, отосклероза, сосудистых патологий мозга, скрытых и глубинных опухолевых патологий.
  3. Соматосенсорные вызванные потенциалы - исследование пути нервного сигнала от рецепторов кожи рук и ног до коры мозга. Цель обследования - оценка сенсорных проводящих путей, анализ функционирования и сохранности нервных структур спинного и головного мозга, выявление степени нарушения и проверка медикаментозного воздействия. Данная методика применяется для диагностики различных патологий спинного мозга, рассеянного склероза, заболеваний периферической и вегетативной нервной системы (невропатий, травматических поражений нервных тканей и др.) Соматосенсорные вызванные потенциалы - один из наиболее информативных методов исследования заболеваний спинного мозга и лучший способ мониторинга эффективности проводимого лечения.

Подготовка к исследованию вызванных потенциалов

Подготовка пациента к исследованию вызванных потенциалов мозга не требует никаких специальных манипуляций. Перед проведением диагностики потребуется прекратить прием препаратов, воздействующих на кровеносные сосуды и нервную систему. Нежелательно перед исследованием употреблять напитки и продукты, содержащие кофеин. Во время диагностики необходимо снять любые металлические предметы, часы и украшения.

Методика исследования вызванных потенциалов

Пациенту объясняют суть и процесс обследования - рассказывают, что во время процедуры он будет находиться в положении лежа или полулежа. В зависимости от характера исследования к голове, рукам, ногам шее или пояснице прикрепляются электроды, которые не причинят ему никакого вреда или дискомфорта.

Такая психологическая подготовка необходима, чтобы пациент был максимально расслаблен и спокоен. Любая двигательная активность может привести к искажению результатов. Все данные с датчиков о скорости реакции мозга фиксируются, после чего врач может провести сравнение показателей пациента с нормой и выявить характер поражения.

Противопоказания к исследованию вызванных потенциалов

Метод вызванных потенциалов противопоказан при любых поражениях кожных покровов в месте прикрепления электродов. В некоторых случаях не рекомендуется проводить обследование пациентам с частыми эпилептическими приступами, тяжелой степенью стенокардии, некоторыми видами психических расстройств.

Осложнения исследования вызванных потенциалов

При соблюдении всех правил методики осложнения крайне редки. При наличии относительных противопоказаний (стенокардия, эпилепсия, психоз) возможны приступы гипертонии, психический припадок, резкое повышение артериального давления.

Соматосенсорные потенциалы представляют собой афферентные ответы с различных структур сенсомоторной системы в ответ на электростимуляцию периферических нервов. Большой вклад по внедрению вызванных потенциалов внес Dawson именно исследуя ССВП при стимуляции локтевого нерва. ССВП разделяются на длиннолатентные и коротколатентные в ответ на стимуляцию нервов верхних или нижних конечностей. В клинической практике чаще применяют коротколатентные ССВП (КССВП). В случае соблюдения необходимых технических и методических условий при регистрации ССВП можно получить четкие ответы со всех уровней соматосенсорного пути и коры, что является вполне адекватной информацией о поражении как проводящих путей головного и спинного мозга, так и сенсомоторной коры. Стимулирующий электрод чаще всего устанавливают на проекцию n.medianus, n.ulnaris, n.tibialis, n.perineus.

КССВП при стимуляции верхних конечностей. При стимуляции n.medianus сигнал проходит по афферентным путям через плечевое сплетение (первое переключение в ганглиях), затем в задние рога спинного мозга на уровне С5-С7, через продолговатый мозг в ядра Голя-Бурдаха (второе переключение), и через спинно-таламический путь в таламус, где после переключения сигнал проходит в первичную сенсомоторную кору (1-2 поле по Бродману). ССВП при стимуляции верхних конечностей в клинике применяют при диагностике и прогнозе таких заболеваний как рассеянный склероз, различные травматические поражения плечевого сплетения, плечевого нервного узла, повреждений шейного отдела спинного мозга при травмах позвоночника, опухолях мозга, сосудистых заболеваниях, оценке сенсорных чувствительных расстройств у истерических больных, оценке и прогнозе коматозных состояний для определения тяжести повреждения мозга и смерти мозга.

Условия регистрации. Активные регистрирующие электроды устанавливают на С3-С4 по международной системе «10-20%», на уровень шеи в проекции между С6-С7 позвонками, в области средней части ключицы в точке Эрба. Референтный электрод располагают в области лба в точке Fz. Обычно используют чашечковые электроды, а в условиях операционной или реанимационного отделения игольчатые. До наложения чашечных электродов кожа обрабатывается абразивной пастой и затем между кожей и электродом накладывается электропроводная паста.

Стимулирующий электрод располагают в области лучезапястного сустава, в проекции n.medianus, заземляющий электрод несколько выше стимулирующего. Используется сила тока 4-20 мА, при длительности импульсов 0,1-0,2 мс. Постепенно увеличивая силу тока, подбирают порог стимуляции до двигательного ответа с большого пальца. Частота стимуляции 4-7 в сек. Фильтры пропускания частот от 10-30 Гц до 2-3 кГц. Эпоха анализа 50 мс. Число усреднений 200-1000. Коэффициент резжекции сигнала позволяет получить наиболее чистые ответы за короткий период времени и улучшить отношение сигнал/шум. Необходимо записывать две серии ответов.

Параметры ответов. У КССВП после верификации анализируют следующие компоненты: N10 – уровень прохождения импульса в составе волокон плечевого сплетения; N11 – отражает прохождение афферентного сигнала на уровне С6-С7 позвонков по задним рогам спинного мозга; N13 связан с прохождением импульса через ядра Голя –Бурдаха в продолговатом мозге. N19 – потенциал отдаленного поля, отражает активность нейрогенераторов таламуса; N19-Р23 – таламо-кортикальные пути (регистрируется с контралатеральной стороны), Р23-ответы, генерируемые в постцентральной извилине контралатерального полушария (рис. 1).

Негативный компонент N30 генерируется в прецентральной фронтальной области, регистрируется в лобно-центральной области контралатерального полушария. Позитивный компонент Р45 регистрируется в ипсилатеральном полушарии его центральной области и генерируется в области центральной борозды. Негативный компонент N60 регистрируется контралатерально и имеет те же источники генерации, что и Р45.

На параметры ССВП оказывают влияние такие факторы как рост и возраст, а также пол исследуемого.

Измеряются и оцениваются следующие показатели ответов:

1. Временные характеристики ответов в точке Эрба (N10), компонентов N11 и N13 при ипси- и контралатеральном отведении.

2. Латентное время компонентов N19 и Р23.

3. Амплитуда Р23 (между пиками N19-Р23).

4. Скорость проведения импульса по афферентным сенсомоторным периферическим путям, рассчитываемая путем деления расстояния от точки стимуляции до точки Эрба на время прохождения импульса до точки Эрба.

5. Разность между латентностью N13 и латентностью N10.

6. Центральное время проведения – время проведения от ядер Голя –Бурдаха N13 до таламуса N19-N20 (лемнисковый путь в кору).

7. Время проведения афферентных нервных импульсов от плечевого сплетения до первичной сенсорной коры – разность между компонентами N19-N10.

В таблице 1 и 2 приведены амплитудно-временные характеристики основных компонентов ССВП у здоровых людей.

Таблица 1.

Временные значения ССВП при стимуляции срединного нерва в норме (мс).

Мужчины Женщины
Среднее значение Верхняя граница нормы Среднее Значение Верхняя граница нормы
N10 9,8 11,0 9,5 10,5
N10-N13 3,5 4,4 3,2 4,0
N10-N19 9,3 10,5 9,0 10,1
N13-N19 5,7 7,2 5,6 7,0

Таблица 2

Амплитудные значения ССВП при стимуляции срединного нерва в норме (мкВ).

Мужчины и женщины
Среднее значение Нижняя граница нормы
N10 4,8 1,0
N13 2,9 0,8
N19-Р23 3,2 0,8

Основными критериями отклонения от нормы ССВП при стимуляции верхних конечностей являются следующие изменения:

1. Наличие амплитудно-временной асимметрии ответов при стимуляции правой и левой руки.

2. Отсутствие компонентов N10, N13, N19, Р23, что может указывать на поражение процессов генерации ответов или нарушение проведения сенсомоторного импульса на определенном участке соматосенсорного пути. Например, отсутствие компонента N19- Р23 может свидетельствовать о поражении коры или подкорковых структур. Необходимо дифференцировать истинные нарушения проведения соматосенсорного сигнала от технических погрешностей при регистрации ССВП.

3. Абсолютные значения латентностей зависят от индивидуальных особенностей исследуемого, например от роста и температуры, и, соответственно, необходимо это учитывать при анализе полученных результатов.

4. Наличие увеличения межпиковых латентностей по сравнению с нормативными показателями может оцениваться как патологическое и указывать на задержку проведения сенсомоторного импульса на определенном уровне. На рис. 2. отмечается увеличение латентности компонентов N19, Р23 и центрального времени проведения у больного с травматическим поражением в области среднего мозга.

КССВП при стимуляции нижних конечностей. Чаще всего в клинической практике используют стимуляцию n.tibialis для получения наиболее стабильных и четких ответов.

Условия регистрации. Стимулирующий электрод с электропроводной пастой фиксируется на внутренней поверхности лодыжки. Заземляющий электрод устанавливают проксимальнее стимулирующего. При двухканальной регистрации ответов регистрирующие электроды устанавливают: активный в проекции L3 и референтный L1, активный скальповый электрод Сz и референтный Fz. Подбирают порог стимуляции до мышечного ответа – сгибание стопы. Частота стимуляции 2-4 в сек. при силе тока 5-30 мА и длительности импульсов 0,2-0,5 мс, число усреднений до 700-1500 в зависимости от чистоты получаемых ответов. Анализируется эпоха 70-100мс

Верифицируются и анализируются следующие компоненты ССВП: N18, N22 – пики, отражающие прохождение сигнала на уровне спинного мозга в ответ на периферическую стимуляцию, Р31 и Р34 – компоненты подкоркового происхождения, Р37 и N45 – компоненты коркового происхождения, которые отражают активацию первичной соматосенсорной коры проекции ноги (рис. 3).

На параметры ответов КССВП при стимуляции нижних конечностей влияют рост, возраст исследуемого, температура тела и ряд других факторов. Сон, наркоз, нарушение сознания влияют в основном на поздние компоненты ССВП. Помимо основных пиковых латентностей оцениваются межпиковые латентности N22-P37 – время проведения от LIII до первичной соматосенсорной коры. Также оценивается время проведения от LIII до ствола мозга и между стволом мозга и корой (N22 -Р31 и Р31-Р37 соответственно).

Измеряются и оцениваются следующие параметры ответов ССВП:

1. Временные характеристики компонентов N18-N22, отражающих потенциал действия в проекции LIII.

2. Временные характеристики компонентов P37-N45.

3. Межпиковые латентности N22-P37, время проведения от поясничного отдела позвоночника (место выхода корешков) до первичной сенсомоторной коры.

4. Оценка проведения нервных импульсов по отдельности между поясничным отделом и стволом мозга и стволом и корой, соответственно N22-P31, P31-P37.

Наиболее значимыми отклонениями от нормы считаются следующие изменения ССВП:

1. Отсутствие основных компонентов, которые стабильно регистрируются у здоровых испытуемых N18, Р31, Р37. Отсутствие компонента Р37 может свидетельствовать о поражении корковых или подкорковых структур соматосенсорного пути. Отсутствие других компонентов может указывать на дисфункцию как непосредственно генератора, так и восходящих проводящих путей.

2. Увеличение межпиковой латентности N22-P37. Увеличение более чем на 2-3 мс по сравнению с нормальными показателями указывает на задержку проведения между соответствующими структурами и оценивается как патологическое. На рис. 4. показано увеличение межпиковой латентности при рассеянном склерозе.

3. Значения латентностей и амплитуды, а также конфигурации основных компонентов, не могут служить надежным критерием отклонения от нормы, так как находятся под влиянием таких факторов, как рост. Более надежным показателем являются межпиковые латентности.

4. Асимметрия при стимуляции правой и левой сторон является важным диагностическим показателем.

В клинике КССВП при стимуляции нижних конечностей применяют: при рассеянном склерозе, травмах спинного мозга (методика может быть применена для оценки уровня и степени поражения), оценки состояния сенсорной коры, оценки нарушений сенсорных чувствительных функций у истерических больных, при невропатиях, в прогнозе и оценки комы и смерти мозга. При рассеянном склерозе можно наблюдать увеличение латентностей основных компонентов ССВП, межпиковых латентностей, снижение амплитудных характеристик на 60% и более. При стимуляции нижних конечностей изменения ССВП носят более выраженный характер, что можно объяснить прохождением нервного импульса через большее расстояние, чем при стимуляции верхних конечностей и с большей вероятностью обнаружения патологических изменений.

При травматическом повреждении спинного мозга выраженность изменений ССВП зависит от тяжести повреждения. При частичном нарушении изменения ССВП носят характер негрубых нарушений в виде изменения конфигурации ответа, изменения ранних компонентов. В случае полного перерыва проводящих путей компоненты ССВП от выше располагающихся отделов пропадают.

При невропатиях с помощью ССВП при стимуляции нижних конечностей можно определять причину заболевания, например синдром «конского хвоста», спинномозгового клонуса, компрессионного синдрома и т.д. Важное клиническое значение имеет методика ССВП при церебральных поражениях. Многие авторы, по результатам многочисленных исследований, считают целесообразным проводить исследование на 2-3 неделе или 8-12 неделе ишемического инсульта. У больных с обратимой неврологической симптоматикой при нарушениях мозгового кровообращения в каротидном и вертебро-базилярном бассейнах выявляются лишь небольшие отклонения от нормальных значений ССВП, а у пациентов, у которых при дальнейшем наблюдении отмечаются более выраженные последствия заболевания при последующих исследованиях изменения ССВП оказались более существенными.

Длиннолатентные соматосенсорные вызванные потенциалы. ДССВП позволяют оценивать процессы обработки сенсомоторной информации не только в первичной коре, но и во вторичной коре. Особенно информативна методика при оценке процессов, связанных с уровнем сознания, наличием болей центрального генеза и т.д.

Условия регистрации. Активные регистрирующие электроды устанавливают на Сz, референтный электрод располагают в области лба в точке Fz. Стимулирующий электрод располагают в области лучезапястного сустава, в проекции n.medianus, заземляющий электрод несколько выше стимулирующего. Используется сила тока 4-20 мА, при длительности импульсов 0,1-0,2 мс. Частота при стимуляции единичными импульсами 1-2 в сек., при стимуляции сериями 1 серия в сек. по 5-10 импульсов с межстимульным интервалом 1-5 мс. Фильтры пропускания частот от 0,3-0,5 до 100-200 Гц. Эпоха анализа не менее 500 мс. Число усредненных единичных ответов 100-200. Для правильной трактовки и проведения анализа полученных данных необходимо записывать две серии ответов.

Параметры ответов. У ДССВП наиболее стабильным является компонент Р250 с латентностью 230-280 мс (рис.5), после верификации которого определяются амплитуда и латентность.

Показано изменение амплитудно-временных характеристик ДССВП у больных с хроническими болевыми синдромами различного генеза в виде увеличения амплитуды и снижения латентного времени. При нарушениях сознания компонент Р250 может не регистрироваться или регистрироваться со значительным увеличением латентного времени.

Зрительные вызванные потенциалы (ЗВП) - метод, с помощью которого исследуют зрительные пути на всем протяжении от сетчатки до зрительной коры. Стимуляцией обычно служит реверсивный шахматный паттерн, эффективнее всего тестирующий центральное зрение. Ответ на подобную стимуляцию отличается стабильностью и относительной простотой.

Генератор главного компонента вызванных потенциалов находится в окципитальной коре, но его характеристики могут меняться вследствие поражения на любом участке оптического пути. Как правило, выделяют 3 колебания:

  • негативное с латентностью 75 мс (N75);
  • позитивное 100 мс (P100);
  • негативное 145 мс (N145).

В первую очередь изучают латентность и амплитуду компонента P100. Стимулы подаются монокулярно в целях оценки проведения по прехиазмальным участкам с левой и правой сторон. В некоторых случаях используют стимуляцию полуполей зрения: если требуется оценить ретрохиазмальные участки.

В процессе проведения исследования методом потенциалов используются также специальные светодиодные очки. При этом ответ тоже выглядит как серия последовательных колебаний с определенной латентностью. Однако реакция на такую стимуляцию отличается меньшей стабильностью по сравнению с применением шахматного паттерна, меньшей специфичностью для оценки центрального зрения, в большей степени служит функцией освещенности.

Тем не менее вызывать реакцию на вспышку в определенных случаях предпочтительнее. Такая стимуляция не требует кооперации пациента, подходит для исследования функций головного мозга младенцев, больных в блоке интенсивной терапии и интраоперационно.

Регистрация ответов зрительных нервов выполняется с помощью электродов, которые располагаются слева, справа и сагиттально над затылочной корой. В зависимости от поставленных задач можно сделать обследование вызванными потенциалами с монокулярной стимуляцией или стимулируя полуполя зрения по очереди с левой и правой стороны. Чтобы выделить ответы из ЭЭГ, производится подача 100-200 стимулов периодичностью 1 стимул в секунду, с усреднением ответов в интервале времени 250-500 мс.

В случае нарушения проведения увеличивается латентность и/или снижается амплитуда компонента P100. Изменения носят неспецифичный характер.

Есть сведения, что задержка компонента выраженнее, чем снижение амплитуды, может косвенно указывать на демиелинизирующие особенности процесса. Между тем атрофия зрительного нерва проявляется снижением амплитуды.

Следует отметить, что с помощью ЗВП выполняют регистрацию реакций мозга при проведении раздражителей от сетчатки до 17 поля, т. е. поражения, не входящие в область первичной зрительной коры, не исключаются.

В каких случаях используется метод зрительных вызванных потенциалов?

  • рассеянный склероз;
  • опухоли и сосудистые мальформации со сдавлением зрительного тракта или нерва;
  • диабет;
  • ретробульбарный неврит;
  • ишемическая, токсическая или метаболическая оптическая нейропатия;
  • амблиопия;
  • окулярная гипертензия.

Вызванные потенциалы имеют неспецифичные изменения, поэтому интерпретация результатов исследования выполняется с учетом общей клинической картины заболевания.

Сделать ЗВП по доступной цене пациентам любого возраста можно в нашем центре. Вы можете получить и другую квалифицированную медицинскую помощь в центре детской и взрослой неврологии «Невро-Мед» в Москве.



Поделиться