Красные ядра обеспечивают функцию. Средний мозг

Одним из отделов большого головного мозга является самая маленькая его часть – средний мозг (mesencephalon), представленный в виде четырех «холмиков», в которые заключены ядра, выполняющие функцию центров зрения и слуха, проводником их сигналов. «Холмики» mesencephalon являются ключевой частью в области переработки информации, воспринимаемой органами чувств.

Что такое средний мозг

Между мостом и промежуточным мозгом находится серое вещество, размером около 2 см длиной и 3 см шириной, представляет собой второй верхний (superius) зрительный проводной центр. Там же расположены ядра медиального слухового анализатора, который выделился, стал отдельной структурой уже у древнейших людей и необходим для более качественной передачи сигналов от органов чувств к конечным слуховым центрам.

Расположение

Ядра mesencephalon, варолиев мост и продолговатый мозг составляют важнейшую структуру – ствол большого головного мозга, являющийся продолжением спинного. Расположилась стволовая часть в канале первого, второго шейного позвонков и частично в затылочной ямке. Комплекс нейронов иногда рассматривают не как отдельную самостоятельную часть, а как некую продольную разделительную прослойку или бугор мозгового вещества между варолиевым мостом и промежуточным мозгом.

Строение среднего мозга

Через стволовую часть проходят проводящие пути, связывающие кору больших полушарий с нейронами спинно-мозгового вещества и стволом, в которых выделяют:

  • подкорковые первичные центры зрительного анализатора;
  • подкорковые первичные центры слухового анализатора;
  • все проводящие пути, связывающие ядра больших полушарий со спинным мозгом;
  • комплексы (пучки) белого вещества, обеспечивающие прямое взаимодействие всех отделов головного мозга.

Исходя из этого, средний мозг (mesencephalon) состоит из двух основных частей: покрышки (или крыши), которой находятся первичные подкорковые центры слуха и зрения, ножки мозга с межножковым пространством, представляющих проводящие пути. Важнейшей составляющей является сильвиев водопровод – канал, соединяющий полость третьего желудочка с пазухой четвертого.

Водопровод со всех сторон окружает серое и белое центральное вещество. Серое вещество содержит ретикулярную формацию, ядра черепных нервов. В месте перехода водопровода в четвертый желудочек формируется мозговой парус (на латыни velum medullare). На боковых сечениях сильвиев водопровод имеет вид треугольника или узкой щели и выступает как ориентировочный элемент, который помогает отмечать местоположение мозговых отделов на рентгеновских снимках.

Крыша

Пластинка четверохолмия или крыша среднего мозга представляет собой две пары бугорков – верхние и нижние. Между ними пролегает большая щель –субпинеальный треугольник. От всех бугорков в направлении к нейронам больших полушарий отходят пучки волокон или коленчатых тел. Первая пара холмиков представляет собой первичные зрительные центры, а вторая – первичные слуховые.

Ножки

Два толстых тяжа, берущие свое начало из-под варолиева моста, называются ножками. В них размещены несколько групп нервных клеток чувствительного назначения вместе с нейронами двигательного. В мозговом веществе выделяют образования черного и красного цвета, которые регулируют произвольные, непроизвольные движения волокон поперечно-полосатой мышечной ткани.

Красные ядра

Структура, напрямую регулирующая координацию всех произвольных движений человека наравне с мозжечковыми нейронами. Красные ядра состоят из двух частей: мелкоклеточной, являющейся основой проводящих путей, а также крупноклеточной – образующей основу ядер. Располагаются в верхней покрышке рядом с черной субстанцией, представляют собой основные пирамидальные центры двигательной активности – основную часть мозга, контролирующую все осознанные и рефлекторные движения человеческого тела.

Черная субстанция

Местоположение черной субстанции в виде полумесяца – между покрышкой и ножками. В веществе содержится много пигмента меланина, который придает субстанции темный цвет. Принадлежит субстанция к экстрапирамидной двигательной системе, регулирует преимущественно тонус мышц и как будут выполняться автоматические движения. Особенность мозгового вещества состоит в том, что если черное вещество по каким-то причинам не выполняет свою функцию, то ее берут на себя красные ядра среднего мозга.

Функции среднего мозга

Долгое время сети ядер приписывали лишь одно назначение в анатомии – разделение ствола и больших полушарий. В ходе дальнейших исследований стало понятно, что они выполняют практически все функции, присущие высокодифференцированной нервной ткани, являются точкой пересечения большей части чувствительных нервных путей. Выделяют следующие функции среднего мозга человека:

  1. Регуляция физиологии двигательной реакции на сильный внешний раздражитель (боль, яркий свет, шум).
  2. Функция бинокулярного зрения – обеспечение способности видеть одновременно четкое изображение двумя глазами.
  3. Реакция в органах зрения, носящая вегетативный характер, проявляется аккомодацией.
  4. Рефлексы среднего мозга, обеспечивающие одновременный поворот глаз и головы на внешний раздражитель любой силы.
  5. Центр краткой обработки первичной сенсорного, чувствительного сигнала (зрение, слух, обоняние, осязание) и дальнейшее его направление в основные центры анализаторов).
  6. Регулировка осознанного и рефлекторного тонуса скелетной мускулатуры, позволяющая произвольные мышечные сокращения.

Видео

На его вентральной поверхности находятся два массивных пучка нервных волокон — ножки мозга, по которым проводятся сигналы из коры в нижележащие структуры мозга.

Рис. 1. Важнейшие структурные образования среднего мозга (поперечный срез)

В среднем мозге присутствуют различные структурные образования: четверохолмие, красное ядро, черная субстанция и ядра глазодвигательного и блокового нервов. Каждое образование выполняет определенную роль и способствует регуляции целого ряда приспособительных реакций. Через средний мозг проходят все восходящие пути, передающие импульсы к таламусу, большим полушариям и мозжечку, и нисходящие пути, проводящие импульсы к продолговатому и спинному мозгу. К нейронам среднего мозга поступают импульсы через спинной и продолговатый мозг от мышц, зрительных и слуховых рецепторов по афферентным нервам.

Передние бугры четверохолмия являются первичными зрительными центрами, и к ним поступает информация от зрительных рецепторов. При участии передних бугров осуществляются зрительные ориентировочные и сторожевые рефлексы путем движения глаз и поворота головы в сторону действия зрительных раздражителей. Нейроны задних бугров четверохолмия образуют первичные слуховые центры и при получении возбуждения от слуховых рецепторов обеспечивают осуществление слуховых ориентировочных и сторожевых рефлексов (у животного напрягаются ушные раковины, оно настораживается и поворачивает голову в сторону нового звука). Ядра задних бугров четверохолмия обеспечивают сторожевую приспособительную реакцию на новый звуковой раздражитель: перераспределение мышечного тонуса, усиление тонуса сгибателей, учащение сокращений сердца и дыхания, повышение артериального давления, т.е. животное подготавливается к защите, бегу, нападению.

Черная субстанция получает информацию с рецепторов мышц и тактильных рецепторов. Она связана с полосатым телом и бледным шаром. Нейроны черной субстанции участвуют в формировании программы действия, обеспечивающей координирование сложных актов жевания, глотания, а также тонуса мышц и двигательных реакций.

Красное ядро получает импульсы с рецепторов мышц, от коры больших полушарий, подкорковых ядер и мозжечка. Оказывает регулирующее влияние на мотонейроны спинного мозга через ядро Дейтерса и руброспиналъный тракт. Нейроны красного ядра имеют многочисленные связи с ретикулярной формацией ствола мозга и совместно с ней регулируют мышечный тонус. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели.

Устранение связи красного ядра с ретикулярной формацией верхней части продолговатого мозга вызывает резкое повышение тонуса разгибательных мышц. Это явление называется децеребрационной ригидностью.

Основные ядра среднего мозга

Название

Функции среднего мозга

Ядра крыши верхнего и нижнего бугорков четверохолмия

Подкорковые центры зрения и слуха, от которых берет начало тектоспинальный путь, посредством которого осуществляются ориентировочные слуховые и зрительные рефлексы

Ядро продольного медиального пучка

Участвует в обеспечении сочетанного поворота головы и глаз на действие неожиданных зрительных раздражителей, а также при раздражении вестибулярного аппарата

Ядра III и IV пар черепно-мозговых нервов

Участвуют в сочетанием движении глаз за счет иннервации наружных мышц глаза, а волокна вегетативных ядер после переключения в цилиарном ганглии иннервируют мышцу, суживающую зрачок и мышцу ресничного тела

Красные ядра

Являются центральным звеном экстрапирамидной системы, поскольку на них заканчиваются пути от мозжечка (tr. cerebellotegmenlalis) и базальных ядер (tr. pallidorubralis) и от этих ядер начинается руброспинальный путь

Черная субстанция

Имеет связь с полосатым телом и корой, участвует в сложной координации движений, регуляции тонуса мышц и позы, а также в согласовании актов жевания и глотания, входит в состав экстрапирамидной системы

Ядра ретикулярной формации

Активирующие и тормозные влияния на ядра спинного мозга и различные зоны коры головною мозга

Серое центральное околоводопроводное вещество

Входит в состав антиноцицептивной системы

Структуры среднего мозга принимают непосредственное участие в интеграции разнородных сигналов, необходимых для координации движений. При непосредственном участии красного ядра, черной субстанции среднего мозга формируется нейронная сеть стволового генератора движений и, в частности, генератора движений глаз.

На основе анализа сигналов, поступающих в стволовые структуры от проприорецепторов, вестибулярной, слуховой, зрительной, тактильной, болевой и других сенсорных систем, в стволовом генераторе движений формируется поток эфферентных двигательных команд, посылаемых в спинной мозг по нисходящим путям: руброспинальному, реткулоспинальному, вестибулоспинальному, тектоспинальному. В соответствии с выработанными в стволе мозга командами становится возможным осуществление не просто сокращения отдельных мышц или мышечных групп, а формирование определенной позы тела, поддержание равновесия тела в различных позах, совершение рефлекторных и приспособительных движений при осуществлении различных видов перемещения тела в пространстве (рис. 2).

Рис. 2. Расположение некоторых ядер в стволе мозга и гипоталамусе (R. Schmidt, G. Thews, 1985): 1 — паравентрикулярное; 2 — дорсомедиальное: 3 — преоптическое; 4 — супраоптическое; 5 — заднее

Структуры стволового генератора движений могут активироваться произвольными командами, которые поступают из моторных областей коры больших полушарий. Их активность может усиливаться или тормозиться сигналами сенсорных систем и мозжечка. Эти сигналы могут модифицировать уже выполняемые моторные программы так, что их исполнение изменяется в соответствии с новыми требованиями. Так, например, приспособление позы к целенаправленным движениям (как и организация подобных движений) возможно только при участии моторных центров коры больших полушарий мозга.

Важную роль в интегративных процессах среднего мозга и его ствола играет красное ядро. Его нейроны непосредственно участвуют в регуляции, распределении тонуса скелетных мышц и движений, обеспечивающих сохранение нормального положения тела в пространстве и принятие позы, создающей готовность к выполнению определенных действий. Эти влияния красного ядра на спинной мозг реализуются через руброспинальный тракт, волокна которого оканчиваются на вставочных нейронах спинного мозга и оказывают возбуждающее влияние на а- и у-мотонейроны сгибателей и тормозят большинством ото нейронов мышц-разгибателей.

Роль красного ядра в распределении тонуса мышц и поддержании позы тела хорошо демонстрируется в условиях эксперимента на животных. При перерезке ствола головного мозга (децеребрации) на уровне среднего мозга ниже красного ядра развивается состояние, называемое децеребрационной ригидностью. Конечности животного становятся выпрямленными и напряженными, голова и хвост запрокинуты к спине. Это положение тела возникает вследствие нарушения баланса между тонусом мышц-антагонистов в сторону резкого преобладания тонуса разгибателей. После перерезки устраняется тормозное действие красного ядра и коры мозга на мышцы- разгибатели и сохраняется неизмененным возбуждающее действие на них ретикулярного и вестибулярного (Дейгерса) ядер.

Децеребрационная ригидность возникает немедленно после пересечения ствола мозга ниже уровня красного ядра. В происхождении ригидности важнейшее значение имеет у-петля. Ригидность исчезает после пересечения задних корешков и прекращения притока афферентных нервных импульсов к нейронам спинного мозга от мышечных веретен.

К происхождению ригидности имеет отношение вестибулярная система. Разрушение латерального вестибулярного ядра устраняет или снижает тонус экстензоров.

В осуществлении интегративных функций структур ствола мозга важную роль играет черная субстанция, которая участвует в регуляции тонуса мышц, позы и движений. Она участвует в интеграции сигналов, необходимых для координации работы множества мышц, участвующих в актах жевания и глотания, влияет на формирование дыхательных движений.

Через черную субстанцию на моторные процессы, инициируемые стволовым генератором движений, оказывают влияние базальные ганглии. Между черной субстанцией и базальными ганглиями существуют двусторонние связи. Имеется пучок волокон, проводящий нервные импульсы от полосатого тела к черной субстанции, и путь, проводящий импульсы в обратном направлении.

Черная субстанция посылает сигналы также к ядрам таламуса, и далее по аксонам нейронов таламуса эти потоки сигналов достигают коры. Таким образом, черная субстанция участвует в замыкании одного из нейронных кругов, по которым циркулируют сигналы между корой и подкорковыми образованиями.

Функционирование красного ядра, черной субстанции и других структур стволового генератора движений контролируется корой мозга. Ее влияние осуществляется как по прямым связям со многими ядрами ствола, так и опосредованно через мозжечок, который посылает пучки эфферентных волокон к красному ядру и другим стволовым ядрам.

Средний мозг (mesencephalon) развивается из среднего мозгового пузыря и входит в состав ствола мозга. С вентральной стороны к нему примыкает задняя поверхность сосцевидных тел спереди и передний край моста сзади (рис. 3.14, 3.15 ). На дорсальной поверхности передней границей среднего мозга является уровень задней спайки и основание шишковидного тела (эпифиза), а задней – передний край мозгового паруса. В состав среднего мозга входят ножки мозга и крыша среднего мозга (рис. 3.27; Атл.). Полостью этого отдела ствола мозга является водопровод мозга – узкий канал, который снизу сообщается с четвертым желудочком, а сверху – с третьим (рис. 3.27). В среднем мозге находятся подкорковые зрительные и слуховые центры и проводящие пути, связывающие кору больших полушарий с другими образованиями мозга, а также проводящие пути, проходящие транзитом через средний мозг и собственные пути.

Черная субстанция

Черная субстанция разделяет основание и покрышку ножек мозга. Ее клетки содержат пигмент меланин. Этот пигмент существует только у человека и появляется в возрасте 3–4 лет. Черная субстанция получает импульсы от коры головного мозга, полосатого тела и мозжечка и передает их нейронам верхнего двухолмия и ядрам ствола, а далее – на мотонейроны спинного мозга. Черная субстанция играет существенную роль в интеграции всех движений и в регуляции пластического тонуса мышечной системы. Нарушение структуры и функции этих клеток вызывает паркинсонизм.

Красное ядро

В области ядер III пары нервов лежит парасимпатическое ядро; оно развивается на месте пограничной борозды и состоит из вставочных нейронов автономной нервной системы. В верхней части покрышки среднего мозга проходит дорсальный продольный пучок, связывающий таламус и гипоталамус с ядрами ствола мозга.

На уровне нижнего двухолмия совершается перекрест волокон верхних ножек мозжечка. Большая их часть заканчивается в лежащих впереди массивных клеточных скоплениях – красных ядрах (nucleus ruber), а меньшая часть проходит сквозь красное ядро и продолжается к таламусу, образуя зубчато-таламический путь.

В красном ядре оканчиваются также волокна из больших полушарий. От его нейронов идут восходящие пути, в частности, к таламусу. Основной нисходящий путь красных ядер – рубро-спинальный (красноядерно-спинно-мозговой). Его волокна, сразу по выходе из ядра совершающие перекрест, направляются вдоль покрышек ствола головного мозга и бокового канатика спинного мозга к мотонейронам передних рогов спинного мозга. У низших млекопитающих этот путь передает им, а затем мускулатуре тела переключенные в красном ядре импульсы, главным образом от мозжечка. У высших млекопитающих красные ядра функционируют под контролем коры больших полушарий. Они являются важным звеном экстрапирамидной системы, регулирующей мышечный тонус и оказывающей тормозное действие на структуры продолговатого мозга.

Красное ядро состоит из крупноклеточной и мелкоклеточной частей. Крупноклеточная часть развита в значительной степени у низших млекопитающих, в то время как мелкоклеточная – у высших и у человека. Прогрессивное развитие мелкоклеточной части идет параллельно с развитием переднего мозга. Эта часть ядра является как бы промежуточным узлом между мозжечком и передним мозгом. Крупноклеточная же часть у человека постепенно редуцируется.

Латинское название: nucleus ruber.

В среднем мозге красные ядра находятся в самом центре. Если сделать горизонтальный срез через средний мозг, то на диагонали между и мы увидим два бледно-розовых пятна. Это и будут красные ядра. Считается что своим цветом они обязаны железу, которое содержится в них в двух разных формах - гемоглобин и ферритин.

На следующем скриншоте вы можете видеть сагиттальный срез ствола мозга. Низ красного ядра лежит на восходящих волокнах верхних ножек мозжечка на уровне верха нижнего . Сверху - они доходят до уровня гипоталамуса.

Более подробно ознакомиться с тем, где располагается красное ядро можно на нашей .


Красное ядро - моторное, отвечает за тонус мышц и рефлексы.

Выделяют две части:

  • задняя крупноклеточная (магноцеллюлярная) - меньше развита у человека, чем у других позвоночных, т.к. у людей значительно сильнее развита кора головного мозга, которая забирает часть функций у крупноклеточной части.
  • передняя мелкоклеточная (парвоцеллюлярная) - передает информацию от моторной коры к мозжечку через оливы.

Некоторые исследователи выделяют отдельно заднемедиальную часть.

Тракты

Контроль движений возможен благодаря руброспинальному тракту. Его волокна начинаются в красных ядрах, а именно в задней, крупноклеточной части, и сразу пересекают середину (перекрест находится на уровне вентральной части срединного шва). Далее проходят через ножки мозга, мост и продолговатый мозг, достигают спинного мозга. там его волокна пролегают в боковых канатиках, в итоге соединяясь с передними рогами.

Часть волокон руброспинального тракта, берущих свое начало в красных ядрах и идущие к моторным ядрам моста, называют красноядрерно-мостовым путем.

Можно также выделить руброоливные волокна, которые соединяют мелкоклеточную часть красного ядра с нижней оливой со своей стороны. С этими волокнами пока не все ясно - их относят к рубро- и кортикоспинальному трактам, хотя некоторые авторы считают их волокнами центрального тегментрального тракта.

в красных ядрах заканчивается большая часть волокон верхних мозжечковых ножек после перекреста в среднем мозге. Транзитом (без взаимодействий) через них проходят волокна зубчато-таломического пути.

Функции

У человека руброспинальный тракт идущий от красного ядра отчасти контролирует походку и движения плечевого пояса. "Отчасти" означает, что он контролирует только крупные движения. За мелкую моторику отвечает кортикоспинальный тракт. Если его "отключить" и оставить только руброспинальный, то движения такого человека станут резкими, размашистыми.

Также отмечу, что руброспинальный тракт отвечает за рефлекторые движения.

Опыты на животных показывают, что электрическая стимуляция руброспинального тракта ведет к возбуждению мотонейронов мышц сгибателей и к ингибированию мотонейронов мышц-разгибателей. Таким образом при перерезании тракта на уровне среднего мозга конечности выпрямляются и остаются напряженными в таком положении. голова запрокидывается.

Поражения

Существует большое количество синдромов связанных с поражением красных ядер, их трактов и близлежащих структур. Но это не медицинская статья, поэтому остановимся лишь на нескольких особенно интересных.

В случае поражения рострального отдела красного ядра у больного возникает сильный тремор и снижается чувствительность контралатеральной половины тела.

Если тот же тремор возникает в сочетании с "застывшей рукой", то можно говорить о руброталамическом синдроме.

Зачастую вместе с красным ядром страдает и глазодвигательная система. В таких случаях одновременно наблюдаются слабость мышц или тремор и расходящееся косоглазие, опущение века и прочие симптомы связанные с глазами.

Контрольные вопросы:

  • где расположено красное ядро и почему оно так называется?
  • какова его основная роль?

Средний мозг состоит из:

Бугров четверохолмия,

Красного ядра,

Черной субстанции,

Ядер шва.

Красное ядро – обеспечивает тонус скелетной мускулатуры, перераспределение тонуса при изменении позы. Просто потянуться – это мощная работа головного и спинного мозга, за которую отвечает красное ядро. Красное ядро обеспечивает нормальный тонус нашей мускулатуры. Если разрушить красное ядро возникает децеробрационная регидность, при этом резко повышается тонус у одних животных сгибателей, у других – разгибателей. А при абсолютном разрушении повышается сразу оба тонуса, и все зависит от того какие мышцы сильнее.

Черная субстанция – Каким образом возбуждение от одного нейрона передается к другому нейрону? Возникает возбуждение – это биоэлектрический процесс. Он дошел до конца аксона, где выделяется химическое вещество – медиатор. Каждая клетка имеет какой-то свой медиатор. В черной субстанции в нервных клетках вырабатывается медиатор дофамин . При разрушении черной субстанции возникает болезнь Паркинсона (постоянно дрожат пальцы рук, голова, или присутствует скованность в результате того, что к мышцам идет постоянный сигнал) потому, что в мозге не хватает дофамина. Черная субстанция обеспечивает тонкие инструментальные движения пальцев и оказывает влияние на все двигательные функции. Черная субстанция оказывает тормозное влияние на моторную кору через стриполидарную систему. При нарушении невозможно выполнять тонкие операции и возникает болезнь Паркинсона (скованность, тремор).

Сверху - передние бугры четверохолмия, а внизу - задние бугры четверохолмия. Смотрим мы глазами, а видим затылочной корой больших полушарий, где находится зрительное поле, где формируется образ. От глаза отходит нерв, проходит через ряд подкорковых образований, доходит до зрительной коры, зрительной коры нет, и мы ничего не увидим. Передние бугры четверохолмия – это первичная зрительная зона. С их участием возникает ориентировочная реакция на зрительный сигнал. Ориентировочная реакция – это «реакция что такое?» Если разрушить передние бугры четверохолмия зрение сохранится, но будет отсутствовать быстрая реакция на зрительный сигнал.

Задние бугры четверохолмия – это первичная слуховая зона. С ее участием возникает ориентировочная реакция на звуковой сигнал. Если разрушить задние бугры четверохолмия- слух сохранится но не будет ориентировочной реакции.

Ядра шва – это источник другого медиатора серотонина . Эта структура и этот медиатор принимает участие в процессе засыпания. Если разрушить ядра шва, то животное находится в постоянном состоянии бодрствовании и быстро погибает. Кроме того, серотонин принимает участие в обучении с положительным подкреплением (это когда крысе дают сыр) Серотонин обеспечивает такие черты характера, как незлопамятность, доброжелательность, у агрессивных людей недостаток серотонина в мозге.



12) Таламус – коллектор афферентных импульсов. Специфические и неспецифические ядра таламуса. Таламус – центр болевой чувствительности.

Таламус – зрительный бугор. Первым обнаружили в нем отношение к зрительным импульсам. Является коллектором афферентных импульсов, тех, что идут от рецепторов. В таламус поступают сигналы от всех рецепторов, кроме обонятельных. В таламус поступает инфа от коры бп от мозжечка и от базальных ганглиев. На уровне таламуса идет обработка этих сигналов, происходит отбор только наиболее важной для человека в данный момент информации, которая далее поступает в кору. Таламус состоит из нескольких десятков ядер. Ядра таламуса делятся на две группы: специфические и неспецифические. Через специфические ядра таламуса сигналы поступают строго к определенным зонам коры, например зрительная в затылочную, слуховая в височную долю. А через неспецифические ядра информация поступает диффузно ко всей коре, чтобы повысить ее возбудимость, для того чтобы более четко воспринимать специфическую информацию. Они готовят кору бп к восприятию специфической инф-ии. Высший центр болевой чувствительности - это таламус. Таламус является высшим центром болевой чувствительности. Боль формируется обязательно с участием таламуса, и при разрушении одних ядер таламуса полностью теряется болевая чувствительность, при разрушении других ядер возникают едва переносимые боли (например, формируются фантомные боли – боли в отсутствующей конечности).

13) Гипоталамо-гипофизарная система. Гипоталамус – центр регуляции эндокринной системы и мотиваций.

Гипоталамус с гипофизом образуют единую гипоталамогипофизарную систему.

Гипоталамус. От гипоталамуса отходит гипофизарная ножка, на которой висит гипофиз – главная эндокринная железа. Гипофиз регулирует работу других эндокринных желез. Гипотпламус связан с гипофизом нервными путями и кровеносными сосудами. Гипоталамус регулирует работу гипофиза, а через него и работу других эндокринных желез. Гипофиз делится на аденогипофиз (железистый) и нейрогипофиз . В гипоталамусе (это не эндокринная железа, это отдел мозга) есть нейросекреторные клетки, в которых секретируются гормоны. Это нервная клетка она может возбуждаться, может тормозиться, и в то же время в ней секретируются гормоны. От нее отходит аксон. А если это гормоны они выделяются в кровь, и затем поступает к органам решения, т. е. к тому органу, работу которого он регулирует. Два гормона:

- вазопрессин – способствует сохранению воды в организме, он действует на почки, при его недостатке возникает обезвоживание;

- окситоцин – вырабатывается здесь же, но в других клетках, обеспечивает сокращение матки при родах.

Гормоны секретируются в гипоталамусе, а выделяются гипофизом. Таким образом, гипоталамус связан с гипофизом нервными путями. С другой стороны: в нейрогипофизе ничего не вырабатывается, сюда гормоны приходят, но в аденогипофизе есть свои железистые клетки, где вырабатывается целый ряд важных гормонов:

- ганадотропный гормон – регулирует работу половых желез;

- тиреотропный гормон – регулирует работу щитовидной железы;

- адренокортикотропный – регулирует работу коркового слоя надпочечника;

- соматотропный гормон, или гормон роста, – обеспечивает рост костной ткани и развитие мышечной ткани;

- меланотропный гормон – отвечает за пигментацию у рыб и амфибий, у человека влияет на сетчатку.

Все гормоны синтезируются из предшественника который называется проопиомелланокортин . Синтезируется большая молекула, которая ферментами расщепляется, и из нее выделяются более мелкие по количеству аминокислот другие гормоны. Нейроэндокринология.

В гипоталамусе имеются нейросекреторные клетки. В них вырабатываются гормоны:

1) АДГ (антидиуретичкеский гормон регулирует кол-во выводимой мочи)

2) окситоцин (обеспечивает сокращение матки при родах).

3) статины

4) либерины

5) тиреотропный гормон влияет на выробатку гормонов щитовидной железы (тироксин, трийодтиронин)

Тиролиберин -> тиреотропный гормон -> тироксин -> трийодтиронин.

Кровеносный сосуд входит в гипоталамус, где разветвляется на капилляры, затем капилляры собираются и этот сосуд проходит через гипофизарную ножку, снова разветвляется в железистых клетках, выходит из гипофиза и выносит с собой все эти гормоны, которые с кровью идут каждый к своей железе. Зачем нужна эта «чудесная сосудистая сеть»? Есть нервные клетки гипоталамуса, которые заканчивается на кровеносных сосудах этой чудесной сосудистой сети. В этих клетках вырабатываются статины и либерины – это нейрогормоны . Статины тормозят выработку гормонов в гипофизе, а либерины ее усиливают. Если избыток гормона роста, возникает гигантизм, это можно остановить с помощью саматостатина. Наоборот: карлику вводят саматолиберин. И видимо к любому гормону есть такие нейрогормоны, но они не все еще открыты. Например, щитовидная железа, в ней вырабатывается тироксин, а для того чтобы регулировать его выработку в гипофизе вырабатывается тиреотропный гормон, а для того чтобы управлять тиреотропным гормоном, тиреостатина не обнаружено, а вот тиролиберин используется прекрасно. Хоть это и гормоны они вырабатываются в нервных клетках, поэтому у них кроме эндокринного воздействия есть широкий спектр внеэндокринных функций. Тиреолиберин называется панактивин , потому, что он повышает настроение, повышает работоспособность, нормализует давление, при травмах спинного мозга ускоряет заживление, единственно его нельзя применять при нарушениях в щитовидной железе.

Ранее рассмотрены функции, связанные с нейросекреторными клетками и клетками, которые вырабатывают нейрофебтиды.

В гипоталамусе вырабатываются статины и либерины, которые включаются в ответную стрэссорную реакцию организма. Если на организм воздействует какой-то вредящий фактор, то организм должен как-то отвечать – это и есть стрессорная реакция организма. Она не может протекать без участия статинов и либеринов, которые вырабатываются в гипоталамусе. Гипоталамус обязательно принимает участие во ответе на стрессорное воздействие.

Следующей функцией гипоталамуса является:

В нем находятся нервные клетки, чувствительные к стероидным гормонам, т. е. половым гормонам и к женским, и к мужским половым гормонам. Эта чувствительность и обеспечивает формирования по женскому или по мужскому типу. Гипоталамус создает условия для мотивации поведения по мужскому или по женскому типу.

Очень важная функция – это терморегуляция, в гипоталамусе находятся клетки, которые чувствительны к температуре крови. Температура тела может меняться в зависимости от окружающей среды. Кровь протекает по всем структурам мозга, но терморецептивные клетки, которые улавливают малейшие изменения температуры, находятся только в гипоталамусе. Гипоталамус включается и организует две ответные реакции организма или теплопродукцию, или теплоотдачу.

Пищевая мотивация. Почему у человека возникает чувство голода?

Сигнальная система – это уровень глюкозы в крови, он должен быть постоянным ~120 миллиграмм % - ов.

Есть механизм саморегуляции: если у нас снижается уровень глюкозы в крови, начинает расщипляться гликоген печени. С другой стороны запасов гликогена бывает недостаточно. В гипоталамусе есть глюкорецептивные клетки, т. е. клетки которые регистрируют уровень глюкозы в крови. Глюкорецептивные клетки образуют центры голода в гипоталамусе. При понижении уровня глюкозы в крови эти клетки, чувствительные к уровню глюкозы в крови, возбуждаются, и возникает ощущение голода. На уровне гипоталамуса возникает только пищевая мотивация – ощущение голода, для поиска пищи должна подключиться кора головного мозга, с ее участием возникает истинная пищевая реакция.

Центр насыщения, тоже находится в гипоталамусе, он тормозит чувство голода, что предохраняет нас от переедания. При разрушении центра насыщения возникает переедание и как следствие - булимия.

В гипоталамусе также находится центр жажды – осморецептивные клетки (осматическое давление зависит от концентрации солей в крови) Осморецептивные клетки регистрируют уровень солей в крови. При повышении солей в крови осморецептивные клетки возбуждаются, и возникает питьевая мотивация (реакция).

Гипоталамус является высшим центром регуляции вегетативной нервной системы.

Передние отделы гипоталамуса в основном регулируют парасимпатическую нервную систему, задние – симпатическую нервную систему.

Гипоталамус обеспечивает только мотивацию а целенаправленное поведение кора больших полушарий.

14) Нейрон – особенности строения и функций. Отличия нейронов от других клеток. Глия, гематоэнцефалический барьер, цереброспинальная жидкость.

I Во-первых, как мы уже отмечали – в их многообразии . Любая нервная клетка состоит из тела – сомы и отростков . Нейроны отличаются:

1. по размерам (от 20 нм до 100 нм) и форме сомы

2. по количеству и степени ветвления коротких отростков.

3. по строению, длине и разветвленности аксонных окончаний (латералей)

4. по числу шипиков

II Отличаются нейроны также по функциям :

а)воспринимающие информацию из внешней среды,

б) передающие информацию на периферию,

в) обрабатывающие и передающие информацию в пределах ЦНС,

г) возбуждающие,

д) тормозные .

III Отличаются по химическому составу : синтезируются разнообразные белки, липиды, ферменты и, главное, - медиаторы .

ПОЧЕМУ, С КАКИМИ ОСОБЕННОСТЯМИ ЭТО СВЯЗАНО?

Такое многообразие определяется высокой активностью генетического аппарата нейронов. Во время нейрональной индукции под влиянием фактора роста нейронов включаются НОВЫЕ ГЕНЫ в клетках эктодермы зародыша, которые характерны только для нейронов. Эти гены обеспечивают следующие особенности нейронов (важнейшие свойства) :

А) Способность воспринимать, обрабатывать, хранить и воспроизводить информацию

Б) ГЛУБОКУЮ СПЕЦИАЛИЗАЦИЮ:

0. Синтез специфических РНК ;

1. Отсутствие редупликации ДНК .

2. Доля генов, способных к транскрипции , составляют в нейронах 18-20%, а в некоторых клетках – до 40% (в других клетках - 2-6%)

3. Способность синтезировать специфические белки (до 100 в одной клетке)

4. Уникальность липидного состава

В) Привилегированность питания => Зависимость от уровня кислорода и глюкозы в крови.

Ни одна ткань в организме не находится в такой драматической зависимости от уровня кислорода в крови: 5-6 мин остановки дыхания и важнейшие структуры мозга погибают и в первую очередь - кора больших полушарий. Снижение уровня глюкозы ниже 0,11% или 80мг% - может наступить гипогликемия и далее - кома.

А с другой стороны, мозг отгорожен от кровотока ГЭБ. Он не пропускает к клеткам то, что могло бы им повредить. Но, к сожалению, далеко не все – многие низкомолекулярные токсичные вещества проходят через ГЭБ. И у фармакологов всегда есть задача: а проходит ли этот препарат через ГЭБ? В одних случаях это необходимо, если речь идет о заболеваниях мозга, в других – безразлично для больного, если препарат не повреждает нервные клетки, а в третьих этого надо избегать. (НАНОЧАСТИЦЫ, ОНКОЛОГИЯ).

Симпатическая НС возбуждается и стимулирует работу мозгового слоя надпочечников – выработка адреналина; в поджелудочной железе – глюкагон – расщепляет гликоген в почках до глюкозы; глюкокартикойды выраб. в корковом слое надпочечников – обеспечивает глюконеогенез – образование глюкозы из …)

И все-таки, при всем разнообразии нейронов их можно разделить на три группы: афферентные, эфферентные и вставочные (промежуточные).

15) Афферентные нейроны, их функции и строение. Рецепторы: строение, функции, формирование афферентного залпа.

Поделиться