Каким путем происходит распространение возбуждения по мышечному волокну? Где располагаются клетки-сателлиты скелетной мышечной ткани Где располагаются клетки сателлиты скелетной мышечной ткани.

  • 27.1.Происхождение макрофагов
  • 27.2.Микроскопическое строение
  • 27.3.Субмикроскопическое строение
  • 27.4.Зависимость строения от функциональной активности
  • 27.5.Функции, специализированные типы макрофагов
  • 28.Тучные клетки (тканевые базофилы)
  • 28.2.Микроскопическое строение
  • 28.3.Субмикроскопическое строение
  • 28.4.Состав специфических гранул
  • 28.5.Функции. Взаимодействия с другими клетками крови и соединительной ткани
  • 29.Соединнительные ткани со специальными свойствами
  • 29.1.Классификация. Особенности строения
  • 29.2.Локализация в организме
  • 29.3.Типы, строение и функции жировой ткани
  • 29.4.Строение и функции ретикулярной ткани
  • 29.5.Строение и функции других тканей
  • 30.Межклеточное вещество рыхлой соединительной ткани
  • 30.1.Функциональное значение
  • 30.2.Состав матрикса
  • 30.3.Виды волокон. Их морфологическая характеристика
  • 30.4.Физические свойства волокон
  • 30.5.Значение клеток в образовании межклеточного вещества
  • 31.Хрящевая ткань
  • 31.1.Виды хряща (классификация)
  • 31.2.Строение хрящевой ткани
  • 31.3.Особенности межклеточного вещества
  • 31.4.Особенности клеток
  • 31.5.Функциональное значение
  • 32.Костная ткань
  • 32.1.Виды костной ткани
  • 32.2.Функционльное значение
  • 32.3.Структурные компоненты: клетки, особенности межклеточного вещества
  • 32.4.Строение ретикулофиброзной костной ткани
  • 32.5.Локализация ретикулофиброзной костной ткани в организме
  • 33.Клеточные элементы костной ткани
  • 33.1.Остеоцит, его строение
  • 33.2.Остеобласт, его строение
  • 33.3.Функции остеобласта
  • 33.4.Остеокласт, его строение
  • 33.5.Функции остеокласта
  • 34.Пластинчатая костная ткань
  • 34.1.Строение костной пластинки
  • 34.2.Структура остеона
  • 34.3.Виды костных пластинок
  • 34.4.Особенности строения компактной и губчатой костной ткани
  • 34.5.Строение и значение надкостницы
  • 35.Прямой остеогенез
  • 35.1.Стадии прямого остеогенеза
  • 35.2.Остеогенные клетки. Их строение
  • 35.3.Образование и минерализация межклеточного вещества
  • 35.4.Перестройка костной ткани
  • 35.5.Регуляция остеогенеза
  • 36.Непрямой остеогенез
  • 36.1.Стадии непрямого остеогенеза
  • 36.2.Образование первичного центра окостенения
  • 36.3.Образование вторичных центров окостенения
  • 36.4.Ремоделирование структуры кости
  • 36.5.Регуляция остеогенеза и перестройки костной ткани
  • 37.Мышченая ткань
  • 37.2.Классификация мышечных тканей
  • 37.3.Общая морфологическая характеристика: опорный, трофический и сократительный аппараты
  • 37.4.Мышечноподобные сократительные клетки, их локализация, строение и функции
  • 37.5.Регенерация различных типов мышечных тканей
  • 38.Поперечно-полосатая мышечная ткань
  • 38.2.Строение мышечного волокна
  • 38.3.Типы мышечных волокон
  • 38.4.Структура миофибриллы
  • 38.5.Механизм сокращения мышечного волокна
  • Механизм участия атф в сокращении
  • 39.Строение мышцы как органа
  • 39.1.Типы мышечных волокон, их морфологическая и гистохимическая характеристики
  • 39.2.Наружные оболочки мышцы, их значение
  • 39.3.Внутренние оболочки, их значение
  • 39.4.Связь мышцы с сухожилием
  • 39.5.Гистогенез мышц
  • 40.Сердечная мышечная ткань
  • 40.2.Особенности строения
  • 40.3. Виды кардиомиоцитов
  • 40.4.Строение и функции различных видов кардиомиоцитов
  • 40.5.Регенерация сердечной мышечной ткани
  • 42.Нервная ткань
  • 42.2.Структурные компоненты, их классификация
  • 42.3.Общее строение нейронов
  • 42.4.Субмикроскопическое строение нейронов
  • 42.5.Морфологическая и функциональная классификация нейронов (примеры)
  • 43.Нервные волокна
  • 43.1.Структурные компоненты нервных волокон
  • 43.2.Строение безмиелиновых нервных волокон. Примеры их локализации.
  • 43.3.Строение миелиновых нервных волокон. Примеры их локализации.
  • 43.4.Образование миелиновой оболочки
  • 43.5.Функциональные особенности нервных волокон
  • 44.Нервные окончания
  • 44.1.Классификация нервных окончаний
  • 44.2.Эффекторные нервные окончания. Их виды и строение
  • 44.3. Моторные бляшки, их строение. Основы механизма нервно-мышечной передачи
  • 44.4.Рецепторы. Их классификация и строение
  • 44.5.Строение и функции нервно-мышечных веретен. Локализация и компоненты.
  • Принцип работы веретена.
  • 45.Синапсы
  • 45.1.Общая характеристика синаптических контактов
  • 45.2.Строение химических синапсов
  • 45.3.Морфологическая классификация синапсов
  • 45.4.Понятие о нейромедиаторах (нейротрансмиттерах)
  • 45.5.Механизм синаптической передачи нервного импульса
  • 46.Рецепторные нервные окончания
  • 46.1.Рецепторы как периферические отделы органов чувств. Поняти о первично- и вторичночувствующих органах чувств (примеры)
  • 46.5.Функциональная характеристика рецепторов (примеры)
  • 46.2.Морфологическая характеристика рецепторов
  • 46.3.Строение свободных нервных окончаний (примеры)
  • 46.4.Строение инкапсулированных окончаний (примеры)
  • 47.Нейроглия
  • 47.1.Классификация
  • 47.3.Локализация различных видов глиальных клеток
  • 47.4.Строение различных видов глиальных клеток
  • 47.5.Функции нейроглии
  • 47.2.Источники развития

    Подразделение клеток на нейроны и глию.

    Нервная ткань в эмбриогенезе возникла последней. Закладывается на 3 неделе эмбригенеза, когда образуется нервная пластинка, которая превращается в нервный желобок, затем в нервную трубку. В стенке нервной трубки пролиферируют стволовые вентрикулярные клетки, из них образуются нейробласты  из них формируются нервные клетки, Нейробласты дают начало огромному количеству нейронов (10 12), но вскоре после рождения теряют способность к делению.

    и глиобласты  из них формируются глиальные клетки  это астроциты, олигодендроциты и эпендимоциты. Таким образом, нервная ткань включает нервные и глиальные клетки.

    Глиобласты, долго сохраняя пролиферативную активность, дифференцируются в глиоциты (некоторые из которых тоже способны к делению).

    В это же время, т. е. в эмбриональном периоде, значительная часть (до 40-80 %) образующихся нервных клеток погибает путем апоптоза. Считают, что это, во-первых, клетки с серьезными повреждениями хромосом (в т. ч. хромосомной ДНК) и, во-вторых, клетки, отростки которых не смогли установить связь с соответствующими структурами (клетками-мишенями, органами чувств и т. д.)

    47.3.Локализация различных видов глиальных клеток

    макроглия - происходит из глиобластов; сюда относятся олигодендроглия, астроглия и эпендимная глия;

    микроглия - происходит из промоноцитов.

    Глия периферической нервной системы (часто её рассматривают как разновидность олигодендроглии): мантийные глиоциты (клетки-сателлиты, или глиоциты ганглиев),

    нейролеммоциты (шванновские клетки).

    47.4.Строение различных видов глиальных клеток

    Кратко:

    Подробно: Астроглия - представлена астроцитами самыми крупными из глиальных клеток, которые встречаются во всех отделах нервной системы. Астроциты характеризуются светлым овальным ядром, цитоплазмой с умеренно развитыми важнейшими органеллами, многочисленными гранулами гликогена и промежуточными филаментами. Последние из тела клетки проникают в отростки и содержат особый глиальный фибриллярный кислый белок (ГФКБ), который служит маркером астроцитов. На концах отростков имеются пластинчатые расширения ("ножки"), которые, соединяясь друг с другом, в виде мембран окружают сосуды или нейроны. Астроциты образуют щелевые соединения между собой, а также с клетками олигодендропгаи и эпендимной глии.

    Астроциты подразделяются на две группы:

      Протоплазматические (плазматические) астроциты встречаются преимущественно в сером веществе ЦНС\ для них характерно наличие многочисленных разветвленных коротких сравнительно толстых отростков, невысокое содежание ГФКБ.

      Волокнистые (фиброзные) астроциты располагаются, в основном, в белом веществе ЦНС. От их тел отходят длинные тонкие незначительно ветвящиеся отростки. Характеризуются высоким содержанием ГФКБ.

    Функции астроглии

      опорная формирование опорного каркаса ЦНС, внутри которого располагаются другие клетки и волокна; в ходе эмбрионального развития служат опорными и направляющими элементами, вдоль которых происходит миграция развивающихся нейронов. Направляющая функция связана также с секрецией ростовых факторов и продукцией определенных компонентов межклеточного вещества, распознаваемых эмбриональными нейронами и их отростками.

      разграничительная, транспортная и барьерная (направлена на обеспечение оптимального микроокружения нейронов):

      метаболическая и регуляторная считается одной из наиболее важных функций астроцитов, которая направлена на поддержание определенных концентраций ионов К + и медиаторов в микроокружении нейронов. Астроциты совместно с клетками олигодендроглии принимают участие в метаболизме медиаторов (катехоламинов, ГАМК, пептидов).

      защитная (фагоцитарная, иммунная и репаративная) участие в различных защитных реакциях при повреждении нервной ткани. Астроциты, как и клетки микроглии характеризуются выраженной фагоцитарной активностью. Подобно последним, они обладают и признаками АПК: экспрессируют на своей поверхности молекулы МНС II класса, способны захватывать, подвергать процессингу и представлять антигены, а также вырабатывать цитокины. На завершающих этапах воспалительных реакций в ЦНС астроциты, разрастаясь, формируют на месте поврежденной ткани глиальный рубец.

    Эпендимная глия , или эпендима образована клетками кубической или цилиндрической формы (эпендимоцитами), однослойные пласты которых выстилают полости желудочков головного мозга и центрального канала спинного мозга. К эпендимной глии ряд авторов относит и плоские клетки, образующие выстилки мозговых оболочек (менинготелий).

    Ядро эпендимоцитов содержит плотный хроматин, органеллы умеренно развиты. Апикальная поверхность части эпендимоцитов несет реснички, которые своими движениями перемещают спинномозговую жидкость (СМЖ), а от базального полюса некоторых клеток отходит длинный отросток, протягивающийся до поверхности мозга и входящий в состав поверхностной пограничной глиальной мембраны (краевой глии).

    Поскольку клетки эпендимной глии образуют пласты, в которых их латеральные поверхности связаны межклеточными соединениями, по морфофункциональным свойствам ее относят к эпителиям (эпендимоглиального типа по Н.Г.Хлопину). Базальная мембрана, по данным некоторых авторов, присутствует не везде. В отдельных участках эпендимоциты обладают характерными структурно-функциональные особенностями; к таким клеткам, в частности, относят хороидные эпендимоциты и танициты.

    Хороидные эпендимоциты - эпендимоциты в области сосудистых сплетений участков образования СМЖ. Они имеют кубическую форму и покрывают выпячивания мягкой мозговой оболочки, вдающиеся в просвет желудочков головного мозга (крыша III и IV желудочков, участки стенки боковых желудочков). На их выпуклой апикалыюй поверхности имеются с многочисленные микроворсинки, латеральные поверхности связаны комплексами соединений, а базальные образуют выпячивания (ножки), которые переплетаются друг с другом, формируя базальный лабиринт. Слой эпендимоцитов располагается на базальной мембране, отделяющей его от подлежащей рыхлой соединительной ткани мягкой мозговой оболочки, в которой находится сеть фенестрированных капилляров, обладающих высокой проницаемостью благодаря многочисленным порам в цитоплазме эндотелиальных клегок. Эпендимопиты сосудистых сплетений входят в состав гематоликворного барьера (барьера между кровью и СМЖ), через который происходит ультрафильтрация крови с образованием СМЖ (около 500 мл/сут).

    Танициты - специализированные клетки эпендимы в латеральных участках стенки III желудочка, инфундибулярного кармана, срединного возвышения. Имеют кубическую или призматическую форму, их апикальная поверхность покрыта микроворсинками и отдельными ресничками, а от базальной отходит длинный отросток, оканчивающийся пластинчатым расширением на кровеносном капилляре. Танициты поглощают вещества из СМЖ и транспортируют их по своему отростку в просвет сосудов, обеспечивая тем самым связь между СМЖ в просвете желудочков мозга и кровью.

    Функции эпендимной глии:

      опорная (за счет базальных отростков);

      образование барьеров:

      • нейроликворного (с высокой проницаемостью),

        гематоликворного

      ультрафильтрация компонентов СМЖ

    Олигодендроглия (от греч. oligo мало, dendron дерево и glia клей, т.е. глия с малым количеством отростков) обширная группа разнообразных мелких клеток (олигодендроцитов) с короткими немногочисленными отростками, которые окружают тела нейронов, входят в состав нервных волокон и нервных окончаний. Встречаются в ЦНС (сером и белом веществе) и ПНС; характеризуются темным ядром, плотной цитоплазмой с хорошо развитым синтетическим аппаратом, высоким содержанием митохондрий, лизосом и гранул гликогена.

    Клетки-сателлиты (мантийные клетки) охватывают тела нейронов в спинальных, черепномозговых и вегетативных ганлиях. Они имеют уплощенную форму, мелкое круглое или овальное ядро. Обеспечивают барьерную функцию, регулируют метаболизм нейронов, захватывают нейромедиаторы.

    Леммоциты (шванновские клетки) в ПНС и олигодендроциты в ЦНС участвуют в образовании нервных волокон, изолируя отростки нейронов. Обладают способностью к выработке миелиновой оболочки.

    Микроглия - совокупность мелких удлиненных звездчатых клеток (микроглиоцитов) с плотной цитоплазмой и сравнительно короткими ветвящимися отростками, располагающихся преимущественно вдоль капилляров в ЦНС. В отличие от клеток макроглии, они имеют мезенхимное происхождение, развиваясь непосредственно из моноцитов (или периваскулярных макрофагов мозга) и относятся к макрофагально-монопитарной системе. Для них характерны ядра с преобладанием гетерохрома! ина и высокое содержание лизосом в цитоплазме.

    Функция микроглии - защитная (в том числе иммунная). Клетки микроглии традиционно рассматривают как специализированные макрофаги ЦНС - они обладают значительной подвижностью, активируясь и увеличиваясь в числе при воспалительных и дегенеративных заболеваниях нервной системы, когда они утрачивают отростки, округляются и фагоцитируют остатки погибших клеток. Активированные клетки микроглии экспрессируют молекулы МНС I и II классов и рецептор CD4, выполняют в ЦНС функцию дендритных АПК, секретируют ряд цитокинов. Эти клетки играют очень важную роль в развитии поражений нервной системы при СПИДе. Им приписывают роль "троянского коня", разносящего (совместно с гематогенными моноцитами и макрофагами) ВИЧ по ЦНС. С повышенной активностью клеток микроглии, выделяющих значительные количества цитокинов и токсических радикалов, связывают и усиленную гибель нейронов при СПИДе механизмом апоптоза, который индуцируется в них вследствие нарушения нормального баланса цитокинов.

    КЛЕТКИ-САТЕЛЛИТЫ

    см. Глиоциты мантийные.

    Медицинские термины. 2012

    Смотрите еще толкования, синонимы, значения слова и что такое КЛЕТКИ-САТЕЛЛИТЫ в русском языке в словарях, энциклопедиях и справочниках:

    • САТЕЛЛИТЫ
      зубчатые колёса планетарных передач, совершающие сложное движение, - вращающиеся вокруг своих осей и вокруг оси центрального колеса, с которым …
    • ТРАВМЫ ГРУДНОЙ КЛЕТКИ в Медицинском словаре:
    • ТРАВМЫ ГРУДНОЙ КЛЕТКИ в Медицинском большом словаре:
      Травмы грудной клетки составляют 10-12% травматических повреждений. Четверть травм грудной клетки - тяжёлые повреждения, требующие неотложного хирургического вмешательства. Закрытые повреждения …
    • SUPREME RULER 2010 в Списке пасхалок и кодов к играм:
      Коды набираются прямо во время игры: cheat georgew - получить $10000; cheat instantwin - выиграть сценарий; cheat allunit - производство …
    • КЛЕТКА в Энциклопедии Биология:
      , основная структурная и функциональная единица всех живых организмов. Клетки существуют в природе как самостоятельные одноклеточные организмы (бактерии, простейшие и …
    • БУЦЦЦЕЛЛАРИИ в Словаре военно-исторических терминов:
      часто употреблявшееся в V в. н.э. обозначение для военной свиты полководца (комиты, сателлиты и …
    • НЕЙРОГЛИЯ ПЕРИФЕРИЧЕСКАЯ в Медицинских терминах:
      (n. peripherica) Н., входящая в состав периферической нервной системы; включает леммоциты, клетки-сателлиты вегетативных ганглиев и …
    • ГЛИОЦИТ МАНТИЙНЫЕ в Медицинских терминах:
      (g. mantelli, lnh; син. клетки-сателлиты) Г., расположенные на поверхности тел …
    • ПЛАНЕТАРНАЯ ПЕРЕДАЧА в Большом энциклопедическом словаре:
      зубчатая передача, имеющая колеса с перемещающимися геометрическими осями (сателлиты), которые обкатываются вокруг центрального колеса. Имеет малые габариты и массу. Используется …
    • ЦИТОЛОГИЯ в Большой советской энциклопедии, БСЭ:
      (от цито... и...логия) , наука о клетке. Ц. изучает клетки многоклеточных животных, растений, ядерно-цитоплазматические комплексы, не расчленённые …
    • ПЛАНЕТАРНАЯ ПЕРЕДАЧА в Большой советской энциклопедии, БСЭ:
      передача, механизм для передачи вращательного движения цилиндрическими или коническими зубчатыми (реже фрикционными) колёсами, в состав которого входят т. н. сателлиты …
    • НЕЙРОГЛИЯ в Большой советской энциклопедии, БСЭ:
      (от нейро... и греч. glia - клей), глия, клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками
    • ВЕЛИКАЯ ОТЕЧЕСТВЕННАЯ ВОЙНА СОВЕТСКОГО СОЮЗА 1941-45 в Большой советской энциклопедии, БСЭ:
      Отечественная война Советского Союза 1941-45, справедливая, освободительная война советского народа за свободу и независимость социалистической Родины против фашистской Германии и …
    • ЭКСПЕРИМЕНТАЛЬНАЯ ЭМБРИОЛОГИЯ в Энциклопедическом словаре Брокгауза и Евфрона.
    • ЦИТОЛОГИЯ в Энциклопедическом словаре Брокгауза и Евфрона.
    • ЦЕНТРОЗОМА в Энциклопедическом словаре Брокгауза и Евфрона.
    • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Энциклопедическом словаре Брокгауза и Евфрона.
    • ХАРОВЫЕ в Энциклопедическом словаре Брокгауза и Евфрона.
    • ФАГОЦИТЫ
      клетки, обладающие способностью захватывать и переваривать твердые вещества. Впрочем, между захватыванием твердых веществ и жидких, по-видимому, нет резкой разницы. Сначала …
    • ТКАНИ РАСТЕНИЙ в Энциклопедическом словаре Брокгауза и Евфрона.
    • ТКАНИ ЖИВОТНЫЕ в Энциклопедическом словаре Брокгауза и Евфрона.
    • СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА в Энциклопедическом словаре Брокгауза и Евфрона.
    • ПРОТОПЛАЗМА ИЛИ САРКОДА в Энциклопедическом словаре Брокгауза и Евфрона.
    • НАСЛЕДСТВЕННОСТЬ в Энциклопедическом словаре Брокгауза и Евфрона:
      (физиол.) — Под Н. разумеется способность организмов передавать свои свойства и особенности от одного поколения в другое, покуда длится самый …
    • ПЛАНЕТАРНАЯ ПЕРЕДАЧА в Современном энциклопедическом словаре:
    • ПЛАНЕТАРНАЯ ПЕРЕДАЧА
      зубчатая передача, имеющая колеса (сателлиты) с осями, перемещающимися вокруг центрального колеса, вращающегося вокруг неподвижной оси. Механизмы с планетарной передачей имеют …
    • САТЕЛЛИТ в Энциклопедическом словарике:
      а, м. 1. астр. Спутник планеты. Луна - с. Земли. 2. одуш. Приспешник, исполнитель чужой воли. Сателлиты шовинизма.||Ср. АДЕПТ, …
    • ПЛАНЕТАРНАЯ в Большом российском энциклопедическом словаре:
      ПЛАНЕТ́АРНАЯ ПЕРЕДАЧА, зубчатая передача, имеющая колёса с перемещающимися геом. осями (сателлиты), к-рые обкатываются вокруг центр. колеса. Имеет малые габариты и …
    • ЭМБРИОНАЛЬНЫЕ ЛИСТЫ ИЛИ ПЛАСТЫ
    • ЭКСПЕРИМЕНТАЛЬНАЯ ЭМБРИОЛОГИЯ* в Энциклопедии Брокгауза и Ефрона.
    • ЦИТОЛОГИЯ в Энциклопедии Брокгауза и Ефрона.
    • ЦЕНТРОЗОМА в Энциклопедии Брокгауза и Ефрона.
    • ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА в Энциклопедии Брокгауза и Ефрона.
    • ХАРОВЫЕ в Энциклопедии Брокгауза и Ефрона.
    • ФИЗИОЛОГИЯ РАСТЕНИЙ
      Содержание: Предмет Ф. ? Ф. питания. ? Ф. роста. ? Ф. формы растений. ? Ф. размножения. ? Литература. Ф. растений …
    • ФАГОЦИТЫ в Энциклопедии Брокгауза и Ефрона:
      ? клетки, обладающие способностью захватывать и переваривать твердые вещества. Впрочем, между захватыванием твердых веществ и жидких, по-видимому, нет резкой разницы. …
    • ТКАНИ РАСТЕНИЙ* в Энциклопедии Брокгауза и Ефрона.
    • ТКАНИ ЖИВОТНЫЕ* в Энциклопедии Брокгауза и Ефрона.

    - (лат. satellites телохранители, спутники). 1. Клетки С. (син. амфици ты, периневрональные клетки, Trabantenzel len), название, данное Рамон и Кахалом (Ramon у Cajal) особым клеткам, находящимся в нервных узлах церебро спинальной системы между… …

    Схема строения хромосомы в поздней профазе метафазе митоза. 1 хроматида; 2 центромера; 3 короткое плечо; 4 длинное плечо. Хромосомный набор (Кариотип) человека (женский). Хромосомы (греч. χρώμα цвет и … Википедия

    НЕРВНЫЕ КЛЕТКИ - НЕРВНЫЕ КЛЕТКИ, основные элементы нервной ткани. Открыты Н. к. Эренбер гом (Ehrenberg) и впервые им описаны в 1833 году. Более подробные данные о Н. к. с указанием на их форму и на существование осевоцилиндрического отростка, а также на… … Большая медицинская энциклопедия

    Вирусные частицы, неспособные строить капсиды самостоятельно. Они инфицируют клетки, для которых несвойственна естественная смерть от старости (например, амёбы, бактерии). Когда клетку, заражённую вирусом сателлитом, заражает обычный вирус, то… … Википедия

    - (textus nervosus) совокупность клеточных элементов, формирующих органы центральной и периферической нервной системы. Обладая свойством раздражимости, Н.т. обеспечивает получение, переработку и хранение информации из внешней и внутренней среды,… … Медицинская энциклопедия

    Нейроглия, или просто глия (от др. греч. νεῦρον «волокно, нерв» и γλία «клей») совокупность вспомогательных клеток нервной ткани. Составляет около 40 % объёма ЦНС. Термин ввёл в 1846 году Рудольф Вирхов. Глиальные клетки … Википедия

    - (от Нейро... и греч. glía клей) глия, клетки в мозге, своими телами и отростками заполняющие пространства между нервными клетками Нейронами и мозговыми капиллярами. Каждый нейрон окружен несколькими клетками Н., которая равномерно… … Большая советская энциклопедия

    Приспособление (адаптация) к меняющимся условиям существования является наиболее общим свойством живых организмов. Все патологические процессы, по существу, можно разделить на две группы: (1) процессы повреждения (альтеративные процессы) и (2)… … Википедия

    - (ы) (gliocytus, i, LNH; Глио + гист. cytus клетка; син.: клетка глиальная, клетка нейроглиальная) общее название клеточных элементов нейроглии. Глиоциты мантийные (g. mantelli, LNH; син. клетки сателлиты) Г., расположенные на поверхности тел… … Медицинская энциклопедия

    - (g. mantelli, LNH; син. клетки сателлиты) Г., расположенные на поверхности тел нейронов … Большой медицинский словарь

    Aagaard P. Hyperactivation of myogenic satellite cells with blood flow restricted exercise // 8th International Conference on Strength Training, 2012 Oslo, Norway, Norwegian School of Sport Sciences. – P.29-32.

    П. Аагаард

    ГИПЕРАКТИВАЦИЯ МИОГЕННЫХ КЛЕТОК-САТЕЛЛИТОВ С ПОМОЩЬЮ СИЛОВЫХ УПРАЖНЕНИЙ С ОГРАНИЧЕНИЕМ КРОВОТОКА КРОВИ

    Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark

    Введение

    Упражнения с ограничением потока крови (BFRE )

    Силовые упражнения с ограничением потока крови при низкой и средней интенсивной нагрузке (20–50% от максимума) с использованием параллельного ограничения потока крови (гипоксическая силовая тренировка) вызывает нарастающий интерес как в научных, так и прикладных областях (Manini & Clarck 2009, Wernbom et al. 2008). Растущая популярность обусловлена тем, что масса скелетных мышц и максимальная мышечная сила могут быть увеличены в такой же или большей степени с помощью гипоксической силовой тренировки (Wernbom et al., 2008) по сравнению с обычными силовыми тренировками с большими отягощениями (Aagaard et al., 2001). Кроме того, гипоксическая силовая тренировка, по-видимому, приводит к усиленным гипертрофическим ответам и приросту силы, по сравнению с упражнениями, применяющими идентичную нагрузку и объем без перекрытия кровотока (Abe et al. 2006, Holm et al. 2008), хотя потенциальная гипертрофическая роль низко интенсивных силовых тренировок может также существовать сама по себе (Mitchell et al. 2012). Тем не менее, конкретные механизмы, отвечающие за адаптивные изменения в сморфологии скелетных мышц при гипоксической силовой тренировке остаются практически неизвестными. Синтез белков миофибрилл увеличивается при интенсивных сессиях гипоксической силовой тренировки вместе с нерегулируемой деятельностью в AKT/mTOR путях (Fujita et al. 2007, Fry et al. 2010). Кроме того, уменьшение экспрессии генов, вызывающих протеолиз (FOXO3a, Atrogin, MuRF-1) и миостатина, отрицательного регулятора мышечной массы наблюдались после интенсивной гипоксической силовой тренировки (Manini et al. 2011, Laurentino et al. 2012).

    Более подробно строение и функции мышц описаны в моих книгах "Гипертрофия скелетных мышц человека " и "Биомеханика мышц "

    Миогенные клетки-сателлиты

    Влияние гипоксической силовой тренировки на сократительные функции мышц

    При гипоксической силовой тренировке с низкой и умеренной тренировочной нагрузкой отмечался значительный рост максимальной мышечной силы (МVC), несмотря на относительно короткие периоды тренировок (4-6 недель) (например, Takarada et al. 2002, Kubo et al. 2006; обзор Wernbom et al. 2008). В частности, адаптивный эффект гипоксической силовой тренировки на сократительную функцию мышц (МVC и мощность) сопоставим с достигаемой с помощью силовых тренировок с большими отягощениями в течение 12-16 недель (Wernbom et al. 2008). Однако, влияние гипоксической силовой тренировки на способность скелетной мышцы быстро сокращаться (RFD) остается в значительной степени неизученным, к этому явлению интерес стал проявляться интерес совсем недавно (Nielsen et al., 2012).

    Влияние гипоксической силовой тренировки на размер мышечного волокна

    При гипоксической силовой тренировке с использованием интенсивной нагрузки с небольшими отягощениями был выявлен значительный прирост объема мышечного волокна и поперечного сечения (CSA) всей мышцы (Abe et al. 2006, Ohta et al. 2003, Kubo et al. 2006, Takadara et al. 2002). Наоборот, тренировки с небольшими отягощениями без ишемии обычно приводят к отсутствию результата (Abe et al. 2006, Mackey et al. 2010) или небольшому увеличению (<5%) (Holm et al. 2008) роста мышечного волокна , хотя это недавно было оспорено (Mitchell et al. 2012). При гипоксической силовой тренировке большой прирост в объеме мышечного волокна частично объясняется распространением миогенных клеток-сателлитов и формированием новых миоядер .

    Влияние гипоксической силовой тренировки на миогенные клетки-сателлиты и количество миоядер

    Мы недавно исследовали вовлечение миогенных клеток-сателлитов в увеличение миоядер в ответ на гипоксическую силовую тренировку (Nielsen et al. 2012). Были обнаружены доказательства распространения клеток-сателлитов и увеличение количества миоядер при через 3 недели после гипоксической силовой тренировки, что сопровождалось значительным увеличением объема мышечного волокна (Nielsen et al. 2012). (Рис.1).

    Рис. 1. Площадь поперечного сечения мышечного волокна (CSA), измеренная до и после 19 дней тренировок с небольшими отягощениями (20% от максимума) с ограничением потока крови (BFRE) и силовой тренировки без ограничения кровотока в мышечных волокнах I типа (слева) и мышечных волокнах II типа <0.001, ** p<0.01, межгрупповая разница: p<0.05. Адаптировано из Nielsen et al., 2012.

    Плотность и количество Рах-7+ клеток-сателлитов увеличилось в 1-2 раза (то есть на 100-200%) после 19 дней гипоксической силовой тренировки (рис. 2). Это значительно превышает 20-40% увеличение количества клеток-сателлитов , наблюдаемое после нескольких месяцев традиционных силовых тренировок (Kadi et al. 2005, Olsen et al. 2006, Mackey et al. 2007). Количество и плотность клеток-сателлитов увеличились одинаково в мышечных волокнах типа I и II (Nielsen et al. 2012) (Рис.2). В то время как при обычных силовых тренировках с большими отягощениями больший ответ наблюдается в клетках-сателлитах мышечных волокон II типа по сравнению с типом I, (Verdijk et al. 2009). Кроме того, при гипоксической силовой тренировке значительно увеличилось количество миоядер (+ 22-33%), в то время как миоядерный домен (объем мышечного волокна /количество миоядер) остался без изменений (~1800-2100 мкм 2), хотя наблюдалось легкое, пусть даже и временное, уменьшение на восьмой день тренировки (Nielsen et al. 2012).

    Последствия роста мышечного волокна

    Рост активности клеток-сателлитов , вызванный гипоксической силовой тренировкой (Рис. 2), сопровождался значительной гипертрофией мышечного волокна (+30-40%) в мышечных волокнах I и II из биопсий, взятых 3-10 дней спустя после тренировки (Рис. 1). В дополнение гипоксическая силовая тренировка вызвала значительное увеличение максимального произвольного сокращения мышц (MVC ~10%) и RFD (16-21%) (Nielsen и др., ICST 2012).

    Рис. 2 Количество миогенных клеток-сателлитов , измеренное до и после 19 дней тренировок с небольшими отягощениями (20% от максимума) с ограничением потока крови (BFRE) и силовой тренировки без ограничения кровотока (CON) в мышечных волокнах I типа (слева) и мышечных волокнах II типа (справа). Изменения значимы: *p<0.001, † p<0.01, межгрупповая разница: p<0.05. Адаптировано из Nielsen et al., 2012.

    После гипоксической силовой тренировки увеличение количества клеток-сателлитов положительно влияет на рост мышечного волокна . Наблюдались положительная корреляция между изменениями до и после тренировок среднего значения площади поперечного сечения мышечного волокна и прироста количества клеток-сателлитов и числа миоядер соответственно (r=0.51-0.58, p<0.01).

    Никаких изменений в перечисленных выше параметрах не было обнаружено в контрольной группе, выполнявшей схожий тип тренировки без ограничения потока крови , за исключением временного увеличения размера мышечных волокон типов I+II через восемь дней тренировок.

    Потенциальные адаптивные механизмы

    Было обнаружено, что CSA мышечных волокон увеличивается у обоих типов волокон только через восемь дней гипоксической силовой тренировки (10 тренировочных сессий) и сохраняется повышенным на третий и десятый дней после тренировки (Nielsen et al., 2012). Неожиданно, CSA мышц также временно увеличились у исследуемых контрольной группы, выполняющих неокклюзионные тренировки на восьмой день, но вернулись к базовому уровню после 19 дней тренировки. Эти наблюдения предполагают, что быстрое начальное изменения в CSA мышечных волокон зависит от факторов, отличных от накопления миофибриллярных белков, таких как отек мышечных волокон.

    Краткосрочный отек мышечных волокон может быть вызван изменением каналов сарколеммы, вызванной гипоксией (Korthuis и др. 1985), открытием мембранных каналов, которое обусловлено растяжением (Singh & Dhalla 2010) или микрофокальным повреждением самой сарколеммы (Grembowicz и др. 1999). Напротив, более поздний прирост CSA мышечного волокна наблюдавшийся после 19 дней гипоксической силовой тренировки (Рис. 1), вероятно, обусловлен аккумуляцией миофибриллярных белков, так как CSA мышечного волокна сохранялось повышенным 3-10 дней после тренировки наряду с 7-11% сохраняемым подъемом максимального произвольного сокращения мышц (MVC) и RFD.

    Специфичные пути стимулированного действия гипоксической силовой тренировки на миогенные клетки-сателлиты остаются неисследованными. Гипотетически, снижение количества выделения миостатина после гипоксической силовой тренировки (Manini и др. 2011, Laurentino et al., 2012) может играть важную роль, так как миостатин – сильный ингибитор активации миогенных клеток-сателлитов (McCroskery и др. 2003, McKayи др. 2012) путем подавления сигналов Pax-7 (McFarlane et al. 2008). Введение вариантов соединений инсулиноподобного фактора роста (IFR): IFR-1Еа и IFR-1Еb (механозависимый фактор роста) после гипоксической силовой тренировки может потенциально также играть важную роль, так как известно, что они являются сильными стимулами распространения и дифференциации клеток-сателлитов (Hawke & Garry 2001, Boldrin и др. 2010). Механический стресс, воздействующий на мышечные волокна может запустить активацию клеток-сателлитов через выпуск окиси азота (NO) и фактора роста гепатоцитов (HGR) (Tatsumi и др. 2006, Punch и др. 2009). Следовательно, NO также может быть важным фактором для гиперактивации миогенных клеток-сателлитов , наблюдаемой при гипоксической силовой тренировке, так как временные подъемы значений NO могут, вероятно, случаться в результате ишемических условий при гипоксической силовой тренировке.

    Дальнейшую дискуссию потенциальных сигнальных путей, которые могут активировать миогенные клетки-сателлиты при гипоксической силовой тренировке, см. в презентации конференции Wernborn (ICST 2012).

    Заключение

    Краткосрочные силовые упражнения, выполняемые с небольшими отягощениями и частичным ограничением потока крови , по-видимому, вызывают значительную пролиферацию миогенных стволовых клеток-сателлитов и приводит к увеличению миоядер в скелетных мышцах человека, которое вносит вклад в ускорение и значительную степень гипертрофии мышечных волокон , наблюдаемую при тренировке этого типа. Молекулярными сигналами, вызывающими повышенную активность клеток-сателлитов при гипертрофической силовой тренировке могут быть: увеличение внутримышечного производства инсулиноподобного фактора роста, а также локальных значений NO; а также уменьшение активности миостатина и других регулирующих факторов.

    Литература

    1) Aagaard P Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB. J. Physiol. 534.2, 613-623, 2001

    2) Abe T, Kearns CF, Sato Y. J. Appl. Physiol. 100, 1460-1466, 2006 Boldrin L, Muntoni F, Morgan JE., J. Histochem. Cytochem. 58, 941–955, 2010

    3) Fry CS, Glynn EL, Drummond MJ, Timmerman KL, Fujita S, Abe T, Dhanani S, Volpi E, Rasmussen BB. J. Appl. Physiol. 108, 1199–1209, 2010

    4) Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB. J. Appl. Physiol. 103, 903–910, 2007

    5) Grembowicz KP, Sprague D, McNeil PL. Mol. Biol. Cell 10, 1247–1257, 1999

    6) Hanssen KE, Kvamme NH, Nilsen TS, Rønnestad B, Ambjørnsen IK, Norheim F, Kadi F, Hallèn J, Drevon CA, Raastad T. Scand. J. Med. Sci. Sports, in press 2012

    7) Hawke TJ, Garry DJ. J. Appl. Physiol. 91, 534–551, 2001

    8) Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, Andersen JL, Aagaard P, Kjaer M. J. Appl. Physiol. 105, 1454–1461, 2008

    9) Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, Olsen S, Kjaer M. Pflugers Arch. — Eur. J. Physiol. 451, 319–327, 2005

    10) Kadi F, Ponsot E. Scand. J. Med. Sci.Sports 20, 39–48, 2010

    11) Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL. J. Physiol. 558, 1005–1012, 2004

    12) Kadi F, Thornell LE. Histochem. Cell Biol. 113, 99–103, 2000 Korthuis RJ, Granger DN, Townsley MI, Taylor AE. Circ. Res. 57, 599–609, 1985

    13) Kubo K, Komuro T, Ishiguro N, Tsunoda N, Sato Y, Ishii N, Kanehisa H, Fukunaga T, J. Appl. Biomech. 22,112–119, 2006

    14) Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, Fernandes Ada R,Tricoli V. Med. Sci. Sports Exerc. 44, 406–412, 2012

    15) Mackey AL, Esmarck B, Kadi F, Koskinen SO, Kongsgaard M, Sylvestersen A, Hansen JJ, Larsen G, Kjaer M. Scand. J. Med. Sci. Sports 17, 34–42, 2007

    16) Mackey AL, Holm L, Reitelseder S, Pedersen TG, Doessing S, Kadi F, Kjaer M. Scand. J. Med. Sci. Sports 21, 773–782б 2010

    17) Manini TM, Clarck BC. Exerc. Sport Sci. Rev. 37, 78-85, 2009

    18) Manini TM, Vincent KR, Leeuwenburgh CL, Lees HA, Kavazis AN, Borst SE, Clark BC. Acta Physiol. (Oxf.) 201, 255– 263, 2011

    19) McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. J. Cell Biol. 162, 1135–1147, 2003

    20) McFarlane C, Hennebry A, Thomas M, Plummer E, Ling N, Sharma M, Kambadur R. Exp. Cell Res. 314, 317–329, 2008

    А- В перимизии.

    Б- В эндомизии.

    В- Между базальной мембраной и плазмолеммой симпласта.

    Г- Под сарколеммой

    48. Что характерно для сердечной мышечной ткани?

    А- Мышечные волокна состоят из клеток.

    Б- Хорошая клеточная регенерация.

    В- Мышечные волокна анастомозируют между собой.

    Г- Регулируются соматической нервной системой.

    49. В каком участке саркомера нет тонких актиновых миофиламентов?

    А- В диске I.

    Б- В диске А.

    В- В зоне перекрытия.

    Г- В зоне Н-полосы.

    50. Чем отличается гладкая мышечная ткань от поперечно-полосатой скелетной?

    А- Состоит из клеток.

    Б- Входит в состав стенок кровеносных сосудов и внутренних органов.

    В- Состоит из мышечных волокон.

    Г- Развивается из миотомов сомитов.

    Д- Не имеет исчерченных миофибрилл.

    1.Какие межклеточные контакты присутствуют во вставочных дисках:

    А- десмосомы

    Б- промежуточные

    В- щелевые

    Г- полудесмосомы

    2.Виды кардиомиоцитов:

    А- секреторные

    Б- сократительные

    В- переходные

    Г- сенсорные

    Д- проводящие

    3.Секреторные кардиомиоциты:

    А- локализуются в стенке правого предсердия

    Б- секретируют кортикостероиды

    В- секретируют натрийуретический гормон

    Г- влияют на диурез

    Д- способствуют сокращению миокарда

    4.Определите верную последовательность и отразите динамику процесса гистогенеза поперечнополосатой скелетной мышечной ткани:1- образование мышечной трубки,2- дифференцировка миобластов на предшественников симпласта и клеток – сателлитов,3- миграция предшественников миобластов из миотома,4- формирование симпласта и клеток – сателлитов,5- объединение симпласта и клеток – сателлитов с образованием скелетного мышечного волокна

    5.Какие виды мышечной ткани имеют клеточную структуру:

    А- гладкая

    Б- сердечная

    В- скелетная

    6.Строение саркомера:

    А- участок миофибриллы, расположенный между двумя Н-полосами

    Б- состоит из А-диска и двух половинок I-дисков

    В- при сокращении мышцы не укорачивается

    Г- состоит из актиновых и миозиновых филаментов

    8.Гладкомышечные клетки:

    А- синтезирует компоненты базальной мембраны

    Б- кавеолы - аналог саркоплазматической сети

    В- миофибриллы ориентированы вдоль продольной оси клетки

    Г- плотные тельца – аналог Т-трубочек

    Д- актиновые филаменты состоят только из актиновых филаментов

    9.Белые мышечные волокна:

    А- большого диаметра с сильным развитием миофибрилл

    Б- активность лактатдегидрогеназы высокая

    В- много миоглобина

    Г- длительные сокращения, небольшой силы

    10. Красные мышечные волокна:

    А- быстрые, большой силы сокращения

    Б- много миоглобина

    В- мало миофибрилл, тонкие

    Г- высокая активность окислительных ферментов

    Д- митохондрий мало

    11.В ходе репаративного гистогенеза скелетной мышечной ткани происходят:

    А- деление ядер зрелых мышечных волокон

    Б- деление миобластов

    В- саркомерогенез внутри миобластов

    Г- образование симпласта

    12. Что общего имеют мышечные волокна скелетной и сердечной мышечной ткани:

    А- триады

    Б- исчерченные поперечно миофибриллы

    В- вставочные диски

    Г- клетки-сателлиты

    Д- саркомер

    Е- произвольный тип сокращения

    13. Укажите клетки между которыми присутствуют щелевые контакты:

    А- кардиомиоциты

    Б- миоэпителиальные клетки

    В- гладкие миоциты

    Г- миофибробласты

    14. Гладкомышечная клетка:

    А- синтезирует коллаген и эластин

    Б- содержит кальмодулин – аналог тропонина С

    В- содержит миофибриллы

    Г- саркоплазматическая сеть хорошо развита

    15. Роль базальной мембраны в регенерации мышечного волокна:

    А- препятствует разрастанию окружающей соединительной ткани и образованию рубца

    Б- поддерживает необходимый кислотно-щелочной баланс

    В- компоненты базальной мембраны используются для восстановление миофибрилл

    Г- обеспечивает правильную ориентацию мышечных трубочек

    16. Назовите признаки скелетной мышечной ткани:

    А- Образована клетками

    Б- Ядра расположены по периферии.

    В- Состоят из мышечных волокон.

    Г- Обладает только внутриклеточной регенерацией.

    Д- Развивается из миотомов

    1.Эмбриональный миогенез скелетной мышцы (верно все, кроме):

    А- миобласт мышц конечностей происходят из миотома

    Б- часть пролиферирующих миобластов образуют клетки-сателлиты

    В- в ходе митозов дочерние миобласты связаны цитоплазматическими мостиками

    Г- в мышечных трубочках начинается сборка миофибрилл

    Д- ядра перемещаются на периферию миосимпласта

    2.Триада скелетного мышечного волокна (верно все, кроме):

    А- Т-трубочки образованы инвагинациями плазмолеммы

    Б- в мембранах терминальные цистерны содержат кальциевые каналы

    В- возбуждение передается с Т-трубочек на терминальные цистерны

    Г- активация кальциевых каналов приводит к снижению Са2+ в крови

    3.Типичный кардиомиоцит (верно все, кроме):

    Б- содержит одно или два центрально расположенных ядра

    В- Т-трубочка и терминальная цистерна формируют диаду

    Д- вместе с аксоном двигательного нейрона образует нервно-мышечный синапс

    4. Саркомер (верно все, кроме):

    А- толстые нити состоят из миозина и С-белка

    Б- тонкие нити состоят из актина, тропомиозина, тропонина

    В- в состав саркомера входят один А-диск и две половины I-диска

    Г- в середине I -диска проходит Z-линия

    Д- при сокращении уменьшается ширина А-диска

    5. Структура сократительного кардиомиоцита (верно все, кроме):

    А- упорядоченное расположение пучков миофибрилл, прослоенных цепочками митохондрий

    Б- эксцентричное расположение ядра

    В- наличие анастамозирущих мостиков между клетками

    Г- межклеточные контакты – вставочные диски

    Д- центрально расположенные ядра

    6. При мышечном сокращении происходит (верно все, кроме):

    А- укорочение саркомера

    Б- укорочение мышечного волокна

    В- укорочение актиновых и миозиновых миофиламентов

    Г- укорочение миофибрилл

    7. Гладкий миоцит (верно все, кроме):

    А- клетка веретеновидной формы

    Б- содержит большое количество лизосом

    В- ядро расположено в центре

    Г- наличие актиновых и миозиновых филаментов

    Д- содержит десминовые и виментиновые промежуточные филаменты

    8. Сердечная мышечная ткань(верно все, кроме):

    А- не способна к регенерации

    Б- мышечные волокна образуют функциональные волокна

    В- пейсмекеры запускают сокращение кардиомиоцитов

    Г- вегетативная нервная система регулирует частоту сокращений

    Д- кардиомиоцит покрыт сарколеммой, базальная мембрана отсутствует

    9. Кардиомиоцит (верно все, кроме):

    А- клетка цилиндрической формы с разветвленными концами

    Б- содержит одно или два ядра в центре

    В- миофибриллы состоят из тонких и толстых нитей

    Г- вставочные диски содержат десмосомы и щелевые контакты

    Д- вместе с аксоном двигательного нейрона передних рогов спинного мозга образует нервно-мышечный синапс

    10. Гладкомышечная ткань (верно все, кроме):

    А- непроизвольная мышечная ткань

    Б- находится под контролем вегетативной нервной системы

    В- сократительная активность не зависит от гормональных влияний

    Поделиться