Парасимпатический отдел нервной системы. Парасимпатический отдел

В сегментарном ап-парате парасимпатической нервной системы (рис. 1.5.2) различают три отде-ла: спинальный (крестцо-вый), бульбарный и мезенцефальный. Здесь распола-гаются преганглионарные парасимпатические нейроны. Постганглионарные нейроны находятся в вис-церальных узлах (верхний ц нижний брыжеечный, чревный), узлах органных вегетативных сплетений и вегетативных узлах лица (ресничный, ушной, кры-лонёбный, поднижнечелю-стной, подъязычный — см. рис.1.5.2).

Крестцовый отдел

Преганглионарный ней-рон крестцового отдела па-расимпатической нервной системы представлен в ру-диментах боковых рогов S III-V , аксоны выходят че-рез передние корешки и далее в составе тазового нерва.

Переключение на пост-ганглионарный нейрон происходит в узлах вегета-тивных сплетений иннер-вируемых органов — ни-сходящей и прямой киш-ки. мочевого пузыря, орга-нов гениталий.

Бульбарный отдел

Бульбарный отдел парасимпатической нервной систе-мы представлен несколькими ядрами (преганглионарные нейроны). Основное из них — дорсальное ядро блуждаю-щего нерва, откуда в составе нерва и его ветвей импуль-сы направляются к иннервируемым органам: трахее, бронхам, сердцу , органам брюшной полости.

Переключение на постганглионарные нейроны, как указывалось выше, происходит в висцеральных и орган-ных узлах. Раздражение блуждающего нерва вызывает замедление пульса, гиперемию лица, понижение АД, бронхоспазм, усиление перистальтики желудочно-кишечного тракта , увеличение диуреза. Выпадение влия-ний блуждающего нерва приводит к противоположным явлениям за счет преобладания симпатических влия-ний.

Продолговатый мозг

В продолговатом мозге располагается также парное нижнее слюноотделительное ядро, приписываемое язы-коглоточному нерву. И действительно, происходящие из него преганглионарные волокна проходят в составе язы-коглоточного нерва и его ветвей — барабанного и малого каменистого нервов, а затем ушно-височного нерва (ве-точка 1-й ветви тройничного нерва) к ушному узлу, где переключаются на постганглионарные волокна, иннер-вирующие околоушную железу.

Известен синдром околоушного гипергидроза (синдром Фрей), при котором вследствие повреждения ушно-ви-сочного нерва (паротит, травма) и последующей дефицитарной реиннервации секреторных волокон процесс еды сопровождается гипергидрозом околоушно-височной об-ласти, особенно при употреблении острой пищи.

От другого парасимпатического образования продолго-ватого мозга — верхнего слюноотделительного ядра на-чинаются преганглионарные волокна, которые идут в составе заднего корешка лицевого нерва (промежуточ-ный нерв), ствола лицевого нерва в его канале, в составе его ветви — барабанной струны и затем язычной ветви нижнечелюстного нерва к поднижнечелюстной и подъ-язычной слюнной железам, прерываясь в одноименных вегетативных узлах на постганглионарные волокна (см. рис. 1.2.19). Поражение этого пути вызывает сухость во рту (ксеростомию).

Очень важные парасимпатические волокна происходят еще от одного скопления клеток в продолговатом мозге, примыкающем к верхнему слюноотделительному яд-ру, — от слезного ядра. Волокна идут в составе заднего корешка лицевого нерва, продолжаются в составе его ветви — в большом каменистом нерве, переходящем в нерв крылонёбного канала. В итоге они достигают кры-лонёбного узла, где лежит постганглионарный нейрон, волокна которого в составе скуловисочного нерва (ветвь верхнечелюстного), затем слезного нерва (веточка глазного нерва — от первой ветви тройничного) достигают слезной железы.

Слезотечение может быть связано с заболеванием глаз (например, конъюнктивит) или быть рефлекторным (на стороне отита, ринита и т. п.). Приступы сильной лице-вой боли, как это бывает, например, при невралгии трой-ничного нерва, также сопровождаются рефлекторным слезотечением. Слезотечение в сочетании с заложенно-стью носа, ринореей характерно для приступа пучковой головной боли. Слезотечение на стороне пареза круговой мышцы глаза (невропатия лице-вого нерва) связано с нарушением присасывающей функ-ции слезного канальца. Старческое слезотечение тоже объясняется гипотонией этой мышцы.

В других случаях, наоборот, возникает односторонняя сухость глаза (ксерофтальмия). Обычно это наблюдается при невропатии лицевого нерва с поражением его сек-реторных волокон (задний корешок, ствол до отхожде-ния большого каменистого нерва), что может вести к инфицированию глаза. Двусторонняя сухость глаз в со-четании с ангидрозом, сухостью во рту характерна для «сухого синдрома» Шегрена либо для прогрессирующей периферической недостаточности. Также может быть проявлением синдрома Микулича: увеличе-ние слезных и слюнных желез , сочетающееся с наруше-нием их секреторной функции.

Мезенцефальный отдел

Мезенцефальный отдел парасимпатической нервной системы представлен мелкоклеточными ядрами III пары черепных нервов (преганглионарные нейроны) и средин-ным непарным их ядром.

Периферический нейрон находится в передних рогах нижнепоясничных сегментов спинного мозга , волокна достигают сфинктера в составе тазового нерва. Пораже-ние парацентральных долек (парасагиттальная опухоль) характеризуется двусторонними параличами стоп и не-держанием мочи (см. рис. 1.2.9).

Типы тазовых расстройств

Можно выделить три основных типа нейрогенных та-зовых расстройств, наиболее демонстративных в отноше-нии дисфункции мочевого пузыря.

  1. При поражении пути произвольного контроля опо-рожнения мочевого пузыря (его ход предполагается в составе пирамидного пути) наблюдаются трудности произвольного контроля, возникают императивные позывы (невозможность произвольного полноценного контролирования позывов на мочеиспускание), что обычно сочетается с трудностями опорожнения моче-вого пузыря (больному приходится долго тужиться). Преобладать может как то, так и другое влияние. При полной утрате произвольного контроля мочеиспу-скания возникает феномен так называемого автоном-ного мочевого пузыря, когда периодически, по мере наполнения мочевого пузыря, происходит его рефлек-торное опорожнение (incontinentia intermittens). Чаще всего это наблюдается у больных с рассеянным скле-розом (цереброспинальная и спинальная формы).
  2. При неполном поражении (раздражении) крестцовых сегментов или их корешков, связанном с иннервацией мочевого пузыря, может развиться спазм сфинктеров мочевого пузыря. Мочевой пузырь переполнен, а моча выделяется каплями (ischuria paradoxa).

Парасимпатическая нервная система осуществляет сужение бронхов, замедление и ослабление сердечных сокращений; су­жение сосудов сердца; пополнение энергоресурсов (синтез гликогена в печени и усиление процессов пищеварения); усиление процессов мочеобразования в почках и обеспечение акта мочеиспускания (сокращение мышц мочевого пузыря и расслабление его сфинктера) и др. Пара­симпатическая нервная система преимущественно оказывает пусковые влияния: сужение зрачка, бронхов, включение деятельности пи­щеварительных желез и т. п.

Деятельность парасимпатического отдела вегетативной нервной системы направлена на текущую регуляцию функционального со­стояния, на поддержание постоянства внутренней среды - гомеостаза. Парасимпатический отдел обеспечивает восстановление различных физиологических показателей, резко измененных после напряженной мышечной работы, пополнение израсходованных энергоресурсов. Медиатор парасимпатической системы - ацетилхолин, снижая чувствительность адренорецепторов к действию адреналина и норадреналина, оказывает определенное антистрессорное влияние.

Рис. 6. Вегетативные рефлексы

Влияние положения тела на частоту сердечных сокращений

(уд./мин). (По.МогендовичМ.Р., 1972)

3.6.4. Вегетативные рефлексы

Через вегетативные симпати­ческие и парасимпатические пути ЦНС осуществляет некоторые вегетативные рефлексы, начинающиеся с различных ре­цепторов внешней и внутренней среды: висцеро-висцеральные (с внутренних органов на внутрен­ние органы - например, дыха­тельно-сердечный рефлекс); дермо-висцеральные (с кожных по­кровов - изменение деятельности внутренних органов при раздра­жении активных точек кожи, на­пример, иглоукалыванием, точеч­ным массажем); с рецепторов глаз­ного яблока - глазо-сердечный рефлекс Ашнера (урежение сердцебиений при надавлива­нии на глазные яблоки - пара­симпатический эффект); моторно-висцеральные- например, ортостэтическая проба (учащение сердцебиения при переходе из положения лежа в положение стоя - симпатический эф­фект) и др. (рис. 6). Они используются для оценки функционального состояния организма и особенно состояния вегетативной нервной си­стемы (оценки влияния симпатического или парасимпатического ее отдела).

11. ПОНЯТИЕ О НЕРВНО МЫШЕЧНОМ(ДВИГАТЕЛЬНОМ) АППАРАТЕ. ДВИГАТЕЛЬНЫЕ ЕДИНИЦЫ(ДЕ) И ИХ КЛАССИФИКАЦИЯ. ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ РАЗЛИЧНЫХ ТИПОВ ДЕ И ИХ КЛАССИФИКАЦИЯ. ФУНКЦИОНАЛЬНЫЕ ОСОБЕННОСТИ РАЗЛИЧНЫХ ТИПОВ ДЕ.(ПОРОГ АКТИВАЦИИ,СКОРОСТЬ И СИЛА СОКРАЩЕНИЯ, УТОМЛЯЕМОСТЬ И ДР) Значение типа ДЕ при различных видах мышечной деятельности.

12. Мышечная композиция. Функциональные возможности разных типов мышечных волокон (медленные и быстрые). Их роль в проявлении мышечной силы, скорости и выносливости. Одной из важнейших характеристик скелетных мышц, влияющих на силу сокращения, является состав (композиция) мы­шечных волокон. Различают 3 типа мышечных волокон - медленные неутомляемые (I типа), быстрые неутомляемые или про­межуточные (11-а типа) и быстрые утомляемые (11-б типа).

Медленные волокна (1 типа), их обозначают также SO - Slow Oxydative (англ. - медленные окислительные) - это выносливые (неутомляемые) и легко возбудимые волокна, с богатым кровоснаб­жением, большим количеством митохондрий, запасов миоглобина и

с использованием окислительных процессов энергообразования (аэробные). Их, в среднем, у человека 50%. Они легко включаются в работу при малейших напряжениях мышц, очень выносливы, но не обладают достаточной силой. Чаще всего они используются при под­держании ненагрузочной статической работы, например, при сохра­нении позы.

Быстрые утомляемые волокна (11-б типа) или FG - Fast Glicolitic (быстрые гликолитические) используют анаэробные процессы энер­гообразования (гликолиз). Они менее возбудимы, включаются при больших нагрузках и обеспечивают быстрые и мощные сокращения мышц. Зато эти волокна быстро утомляются. Их примерно 30%. Во­локна промежуточного типа (П-а) - быстрые неутомляемые, окис­лительные, их около 20%. В среднем, для разных мышц характерно различное соотношение медленных неутомляемых и быстрых утом­ляемых волокон. Так, в трехглавой мышце плеча преобладают быст­рые волокна (67%) над медленными (33%), что обеспечивает скоростно-силовые возможности этой мышцы (рис. 14), а для более медлен­ной и выносливой камбаловидной мышцы характерно наличие 84% медленных и всего 16% быстрых волокон (Салтан Б., 1979).

Однако, состав мышечных волокон в одной и той же мышце имеет огромные индивидуальные различия, зависящие от врожденных типо­логических особенностей человека. К моменту рождения человека его мышцы содержат лишь медленные волокна, но под влиянием не­рвной регуляции устанавливается в ходе онтогенеза генетически за­данное индивидуальное соотношение мышечных волокон разного типа. По мере перехода от зрелого возраста к пожилому число быст­рых волокон у человека заметно снижается и, соответственно, умень­шается мышечная сила. Например, наибольшее количество быстрых волокон в наружной головке 4-х главой мышцы бедра мужчины (около 59-63%) отмечается в возрасте 20-40 лет, а в возрасте 60-65 лет их число почти на 1/3 меньше (45%).

Рис. 14. Состав мышечных волокон в разных мышцах

Медленные - черным цветом; быстрые - серым

Количество тех или других мышечных волокон не изменяется в процессе тренировки. Возможно только нарастание толщины (гипер­трофия) отдельных волокон, а также некоторое изменение свойств промежуточных волокон. При направленности тренировочного про­цесса на развитие силы происходит нарастание объема быстрых воло­кон, что и обеспечивает повышение силы тренируемых мышц.

Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

Существенное значение имеют механические условия работы мышцы -точка приложения ее силы и точка прило­жения сопротивления (поднимаемого груза). Например, при сгиба­нии в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга су­хожилий - 500 кг.

Между силой и скоростью сокращения мышцы существует опре­деленное соотношение, имеющее вид гиперболы (соотношение сила - скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, тем меньше скорость ее сокращения, и наоборот, с нараста­нием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мы­шечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. от частоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и, соответствен­но, потребляется больше энергии АТФ. Во время сокращения мы­шечных волокон в 1 с происходит примерно от 5 до 50 циклов при­крепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Лишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (тремор утомления).

13. ОДИНОЧНОЕ И ТЕТАНИЧЕСКОЕ СОКРАЩЕНИЕ МЫШЕЧНОГО ВОЛОКНА. ЭЛЕКТРОМИОГРАММА. При единичном надпороговом раздражении двигательного нерва или самой мышцы возбуждение мышечного волокна сопровождается

одиночным сокращением. Эта форма механической реакции состоит из 3 фаз: латентного или скрытого периода, фазы сокраще­ния и фазы расслабления. Самой короткой фазой является скрытый период, когда в мышце происходит электромеханическая передача. Фаза расслабления обычно в 1.5-2 раза более продолжительна, чем фаза сокращения, а при утомлении затягивается на значительное время.

Если интервалы между нервными импульсами короче, чем дли­тельность одиночного сокращения, то возникает явление супер­позиции - наложение механических эффектов мышечного во­локна друг на друга и наблюдается сложная форма сокращения - тетанус. Различают 2 формы тетануса - зубчатый тетанус, возникающий при более редком раздражений, когда происходит по­падание каждого следующего нервного импульса в фазу расслабле­ния отдельных оди ночных сокращений, и сплошной или гладкий те­танус, возникающий при более частом раздражении, когда каждый следующий импульс попадает в фазу сокращения (рис. 11). Таким образом, (в некоторых границах) между частотой импульсов возбуж­дения и амплитудой сокращения волокон ДЕ существует определенное соотношение: при небольшой частоте (например, 5-8 имп. в 1с)

Рис. П. Одиночное сокращение, зубчатый и сплошной тетанус камбаловидпой мышцы человека (по: Зимкин Н.В. и др., 1984). Верхняя кривая - сокращение мышцы, нижняя - отметка раздражения мышцы, справа указана частота раздражени я

возникают одиночные сокращения, при увеличении частоты (15-20 имп. в 1с) - зубчатый тетанус, при дальнейшем нарастании частоты (25-60 имп. в 1 с) - гладкий тетанус. Одиночное сокращение - более слабое и менее утомительное, чем тетаническое. Зато тетанус обеспе­чивает в несколько раз более мощное, хотя и кратковременное сокра­щение мышечного волокна.

Сокращение целой мышцы зависит от формы сокращения отдельных ДЕ и их координации во времени. При обеспе­чении длительной, но не очень интенсивной работы, отдельные ДЕ сокращаются попеременно (рис. 12), поддерживая общее напряжение мышцы на заданном уровне (например, при беге на длинные и сверх­длинные дистанции). При этом отдельные ДЕ могут развивать как одиночные, так и тетанические сокращения, что зависит от частоты нервных импульсов. Утомление в этом случае развивается медленно, так как, работая по очереди, ДЕ в промежутках между активацией успевают восстанавливаться. Однако для мощного кратковременного усилия (например, поднятия штанги) требуется синхронизация ак­тивности отдельных ДЕ, т. е. одновременное возбуждение практи­чески всех ДЕ. Это, в свою очередь, требует одновременной активации

Рис. 12. Различные режимы работы двигательных единиц (ДЕ)

соответствующих нервных центров и достигается в результате длительной тренировки. При этом осуществляется мощное и весьма утомительное тетаническое сокращение.

Амплитуда сокращения одиночного волокна не зависит от силы надпорогового раздражения (закон «Все или ничего»). В отличие от этого, при нарастании силы надпорогового раздражения сокращение целой мышцы постепенно растет до максимальной амплитуды.

Работа мышцы с небольшой нагрузкой сопровождается редкой частотой нервных импульсов и вовлечением небольшого числа ДЕ. В этих условиях, накладывая отводящие электроды на кожу над мышцей и используя усилительную аппаратуру, можно на экране осциллографа или с применением чернильной записи на бумаге за­регистрировать одиночные потенциалы действия отде­льных Д Е. В случае же значительных напряжений потенциалы действия многих ДЕ алгебраически суммируются и возникает сложная интегрированная кривая записи электрической активнос­ти целой мышцы - электромиограмма (ЭМГ).

Форма ЭМГ отражает характер работы мышцы: при статичес­ких усилиях она имеет непрерывный вид, а при динамической ра­боте - вид отдельных пачек импульсов, приуроченных, в основ­ном, к начальному моменту сокращения мышцы и разделенных пе­риодами «электрического молчания». Особенно хорошо ритмичность появления подобных пачек наблюдается у спортсменов при цикличес­кой работе (рис. 13). У маленьких детей и неадаптированных к такой работе лиц четких периодов отдыха не наблюдается, что отражает не­достаточное расслабление мышечных волокон работающей мышцы.

Чем больше внешняя нагрузка и cилa сокращения мышцы, тем выше амплитуда ее ЭМГ. Это связано с увеличением частоты нервных им­пульсов, вовлечением большего числа ДЕ в мышце и синхронизацией

Рис. 13. Электромиограмма мышц-антагонистов при циклической работе

их активности. Современная многоканальная аппаратура позволяет производить одновременную регистрацию ЭМГ многих мышц на раз­ных каналах. При выполнении спортсменом сложных движений мож­но видеть на полученных ЭМГ кривых не только характер активно­сти отдельных мышц, но и оценить моменты и порядок их включения или выключения в различные фазы двигательных актов. Записи ЭМГ, полученные в естественных условиях двигательной деятельности, можно передавать к регистрирующей аппаратуре по телефону или радиотелеметрически. Анализ частоты, амплитуды и формы ЭМГ (на­пример, с помощью специальных компьютерных программ) позволяет получить важную информацию об особенностях техники выполня­емого спортивного упражнения и степени ее освоения обследуемым спортсменом.

По мере развития утомления при той же величине мышечного уси­лия амплитуда ЭМГ нарастает. Это связано с тем, что снижение сократительной способности утомленных ДЕ компенсируется не­рвными центрами вовлечением в работу дополнительных ДЕ, т. е. путем увеличения количества активных мышечных волокон. Кроме того, усиливается синхронизация активности ДЕ, что также повы­шает амплитуду суммарной ЭМГ.

14. Механизм сокращения и расслабления мышечного волокна. Теория скольжения. Роль саркоплазматического ретикулума и ионов кальция в сокращении. При произвольной внутренней команде сокращение мышцы че­ловека начинается примерно через 0.05 с (50 мс). За это время мотор­ная команда передается от коры больших полушарий к мотонейро­нам спинного мозга и по двигательным волокнам к мышце. Подойдя к мышце, процесс возбуждения должен с помощью медиатора пре­одолеть нервно-мышечный синапс, что занимает примерно 0.5 мс. Медиатором здесь является ацетилхолин, который содержится в синаптических пузырьках в пресинаптической части синапса. Нервный им пульс вызывает перемещение синаптических пузырьков к преси­наптической мембране, их опорожнение и выход медиатора в синаптическую щель. Действие ацетилхолина на постсинаптическую мем­брану чрезвычайно кратковременно, после чего он разрушается ацетилхолинэстеразой на уксусную кислоту и холин. По мере расходо­вания запасы ацетилхолина постоянно пополняются путем его синтезирования в пресинаптической мембране. Однако, при очень частой и длительной импульсации мотонейрона расход ацетилхоли­на превышает его пополнение, а также снижается чувствительность постсинаптической мембраны к его действию, в результате чего на­рушается проведение возбуждения через нервно-мышечный синапс. Эти процессы лежат в основе периферических механизмов утомления при длительной и тяжелой мышечной работе.

Выделившийся всинаптическую щель медиатор прикрепляется к рецепторам постсинаптической мембраны и вызывает в ней явления деполяризации. Небольшое подпороговое раздражение вызывает лишь местное возбуждение небольшой амплитуды - потенциал концевой пластинки (ПКП).

При достаточной частоте нервных импульсов ПКП достигает по­рогового значения и на мышечной мембране развивается мышечный потенциал действия. Он (со скоростью 5 ) распростра­няется вдоль по поверхности мышечного волокна и заходите поперечные

трубочки внутрь волокна. Повышая проницаемость клеточ­ных мембран, потенциал действия вызывает выход из цистерн и тру­бочек саркоплазматического ретикулума ионов Са, которые прони­кают в миофибриллы, к центрам связывания этих ионов на молеку­лах актина.

Под влиянием Садлинные молекулы тропомиозина проворачи­ваются вдоль оси и скрываются в желобки между сферическими мо­лекулами актина, открывая участки прикрепления головок миозина к актину. Тем самым между актином и миозином образуются так называемые поперечные мостики. При этом головки миозина совершают гребковые движения, обеспечивая скольжение нитей ак­тина вдоль нитей миозина с обоих концов саркомера к его центру, т. е. механическую реакцию мышечного волокна (рис. 10).

Энергия гребкового движения одного мостика производит пере­мещение на 1 % длины актиновой нити. Для дальнейшего скольжения сократительных белков друг относительно друга мостики между актином и миозином должны распадаться и вновь образовываться на следующем центре связывания Са. Такой процесс происходит в ре­зультате активации в этот момент молекул миозина. Миозин приоб­ретает свойства фермента АТФ-азы, который вызывает распад АТФ. Выделившаяся при распаде АТФ энергия приводит к разрушению

Рис. 10. Схема электромеханической связи в мышечном волокне

На А: состояние покоя, на Б - возбуждение и сокращение

да - потенциал действия, мм - мембрана мышечного волокна,

п _ поперечные трубочки, т - продольные трубочки и цистерны с ионами

Са , а - тонкие нити актина, м - толстые нити миозина

с утолщениями (головками) на концах. Зет-мембранами ограничены

саркомеры миофибрилл. Толстые стрелки - распространение потенциала

действия при возбуждении волокна и перемещение ионов Саиз цистерн

и продольных трубочек в миофибриллы, где они содействуют образованию

мостиков между нитями актином и миозином и скольжение этих нитей

(сокращение волокна) за счет гребковых движений головок миозина.

имеющихся мостиков и образованию в присутствии Сановых мос­тиков на следующем участке актиновой нити. В результате повторе­ния подобных процессов многократного образования и распада мос­тиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом. Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала дей­ствия в поперечных трубочках, а максимальное напряжение мышеч­ного волокна - через 20 мс.

Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромехани­ческой связью (или электромеханическим сопряжением). В результате сокращения мышечного волокна актин и миозин более равномерно распределяются внутри саркомера, и исчезает видимая под микроскопом поперечная исчерченность мышцы.

Расслабление мышечного волокна связано с работой особого механизма - «кальциевого насоса», который обеспечивает откачку ионов Саиз миофибрилл обратно в трубочки саркоплазматического ретикулума. На это также тратится энергия АТФ.

15. Механизм регуляции силы сокращения мышц (число активных ДЕ, частота импульсации мотонейронов, синхронизация сокращения мышечных волокон разных ДЕ во времени). Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

1) увеличением числа активных ДЕ - это механизм вовлечения или рекрутирования ДЕ (сначала происходит вовлечение медленных и более возбудимых ДЕ, затем - высокопо­роговых быстрых Д Е);

2) увеличением частоты нервных импульсов, в результате чего происходит переход от слабых одиночных сокраще­ний к сильным тетаническим сокращениям мышечных волокон;

3) увеличением синхронизации ДЕ, при этом происходит увеличение силы сокращения целой мышцы за счет одновременной тяги всех ак­тивных мышечных волокон.

Оглавление темы "Вегетативная (автономная) нервная система.":
1. Вегетативная (автономная) нервная система. Функции вегетативной нервной системы.
2. Вегетативные нервы. Точки выхода вегетативных нервов.
3. Рефлекторная дуга вегетативной нервной системы.
4. Развитие вегетативной нервной системы.
5. Cимпатическая нервная система. Центральный и переферический отдел симпатической нервной системы.
6. Симпатический ствол. Шейный и грудной отделы симпатического ствола.
7. Поясничный и крестцовый (тазовый) отделы симпатического ствола.

9. Периферический отдел парасимпатической нервной системы.
10. Иннервация глаза. Иннервация глазного яблока.
11. Иннервация желез. Иннервация слезной и слюных желез.
12. Иннервация сердца. Иннервация сердечной мышцы. Иннервация миокарда.
13. Иннервация легких. Иннервация бронхов.
14. Иннервация желудочно-кишечного тракта (кишечника до сигмовидной кишки). Иннервация поджелудочной железы. Иннервация печени.
15. Иннервация сигмовидной кишки. Иннервация прямой кишки. Иннервация мочевого пузыря.
16. Иннервация кровеносных сосудов. Иннервация сосудов.
17. Единство вегетативной и центральной нервной системы. Зоны Захарьина - Геда.

Парасимпатическая часть исторически развивается как надсегментарный отдел, и поэтому центры ее располагаются не только в спинном мозге, но и в головном.

Центры парасимпатической части

Центральная часть парасимпатического отдела состоит из головного, или краниального, отдела и спинномозгового, или сакрального, отдела.

Некоторые авторы считают, что парасимпатические центры располагаются в спинном мозге не только в области крестцовых сегментов, но и в других отделах его, в частности в пояснично-грудном отделе между передним и задним рогом, в так называемой интермедиарной зоне. Центры дают начало эфферентным волокнам передних корешков, вызывающих расширение сосудов, задержку потоотделения и торможение сокращения непроизвольных мышц волос в области -туловища и конечностей.

Краниальный отдел в свою очередь состоит из центров, заложенных в среднем мозге (мезэнцефалическая часть), и в ромбовидном мозге - в мосту и продолговатом мозге (бульбарная часть).

1. Мезэнцефалическая часть представлена nucleus accessorius n. oculomotorii и срединным непарным ядром, за счет которых иннервируется мускулатура глаза - m. sphincter pupillae и m. ciliaris.

2. Бульварная часть представлена nucleus saliva tonus superior n. facialis (точнее, n. intermedius ), nucleus salivatorius inferior n. glossopharyngei и nucleus dorsalis n. vagi (см. соответствующие нервы).

Анатомия иннервации вегетативной нервной системы. Системы: симпатическая (красным) и парасимпатическая (синим)

Часть автономной нервной системы , связанная с симпатической нервной системой и функционально ей противопоставляемая. В парасимпатической нервной системе ганглии (нервные узлы) расположены непосредственно в органах или на подходах к ним, поэтому преганглионарные волокна длинные, а постганглионарные - короткие. Термин парасимпатическая - т. е. околосимпатическая был предложен Д. Н. Ленгли в конце XIX - начале XX века.

Эмбриология

Эмбриональным источником для парасимпатической системы является ганглиозная пластинка. Парасимпатические узлы головы образуются путем миграции клеток из среднего и продолговатого мозга. Периферические парасимпатические ганглии пищеварительного канала происходят из двух участков ганглиозной пластинки - «вагусного» и пояснично-крестцового.

Анатомия и морфология

У млекопитающих в парасимпатической нервной системе выделяют центральный и периферический отдел. Центральный включает ядра головного мозга и крестцового отдела спинного мозга .

Основную массу парасимпатических узлов составляют мелкие ганглии, диффузно разбросанные в толще или на поверхности внутренних органов. Для парасимпатической системы характерно наличие длинных отростков у преганглионарных нейронов и чрезвычайно коротких - у постганглионарных.

Головной отдел подразделяют на среднемозговую и продолговатомозговую части. Среднемозговая часть представлена ядром Эдингера-Вестфаля, расположенным вблизи передних бугров четверохолмия на дне Сильвиева водопровода. В продолговатомозговую часть входят ядра VII, IX, X черепно-мозговых нервов.

Преганглионарные волокна от ядра Эдингера-Вестфаля выходят в составе глазодвигательного нерва, и заканчиваются на эффекторных клетках ресничного ганглия (gangl. ciliare ). Постганлионарные волокна вступают в глазное яблоко и идут к аккомодационной мышце и сфинктеру зрачка .

VII (лицевой) нерв тоже несет парасимпатическую компоненту. Через поднижнечелюстной ганглий он иннервирует подчелюстную и подъязычную слюнные железы, а переключаясь в крылонебном ганглии - слезные железы и слизистую носа.

Волокна парасимпатической системы также входят в состав IX (языкоглоточного) нерва. Через околоушной ганглий он иннервирует околоушные слюнные железы.

Основным парасимпатическим нервом является блуждающий нерв (N. vagus ), который наряду с афферентными и эфферентными парасимпатическими волокнами включает чувствительные и двигательные соматические, и эфферентные симпатические волокна. Он иннервирует практически все внутренние органы до ободочной кишки.

Ядра спинномозгового центра располагаются в области II-IV крестцовых сегментов, в боковых рогах серого вещества спинного мозга. Они отвечают за иннервацию ободочной кишки и органов малого таза.

Физиология

Преимущественно нейроны парасимпатической нервной системы являются холинергическими . Хотя известно, что наряду с основным медиатором постганглионарные аксоны одновременно выделяют пептиды (например, вазоактивный интестинальный пептид (VIP)). Кроме того, у птиц в ресничном ганглии наряду с химической передачей присутствует и электрическая. Известно, что парасимпатическая стимуляция в одних органах вызывает тормозное действие, в других - возбуждающий ответ. В любом случае действие парасимпатической системы противоположно симпатической (исключение - действие на слюнные железы, где и симпатическая, и парасимпатическая нервная система вызывают активацию желез).

Парасимпатическая нервная система иннервирует радужную оболочку , слезную железу, подчелюстную и подъязычную железу, околоушную железу, легкие и бронхи , сердце (уменьшение частоты и силы сердечных сокращений), пищевод , желудок , толстую и тонкую кишку (усиление секреции железистых клеток). Сужает зрачок , усиливает секрецию сальных и других желез, сужает коронарные сосуды, улучшает перистальтику . Парасимпатическая нервная система не иннервирует потовые железы и сосуды конечностей.

См. также

Литература


Wikimedia Foundation . 2010 .

Смотреть что такое "Парасимпатическая нервная система" в других словарях:

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА - см. Вегетативная н. с. Большой психологический словарь. М.: Прайм ЕВРОЗНАК. Под ред. Б.Г. Мещерякова, акад. В.П. Зинченко. 2003. Парасимпатическая нервная система … Большая психологическая энциклопедия

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА, одна из двух частей АВТОНОМНОЙ НЕРВНОЙ СИСТЕМЫ, вторая часть СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. Они обе задействованы в работе ГЛАДКИХ МЫШЦ. Парасимпатическая нервная система контролирует мышцы, которые… … Научно-технический энциклопедический словарь

    Большой Энциклопедический словарь

    - (от пара... и греч. sympathes чувствительный, восприимчивый к влиянию), часть вегетативной нервной системы, ганглии к рой расположены в непосредств. близости от иннервируемых органов или в их стенке. У млекопитающих П. н. с. состоит из… … Биологический энциклопедический словарь

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА - ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА, см. Вегетативная нервная система … Большая медицинская энциклопедия

    Часть вегетативной нервной системы, включающая: нервные клетки продолговатого мозга, среднего мозга и крестцового отдела спинного мозга, отростки которых направляются к внутренним органам; нервные ганглии (узлы) во внутренних органах и на их… … Энциклопедический словарь

    Парасимпатическая нервная система - (рarasympathetic nervous system) – группа нервных центров и волокон вегетативной нервной системы, обеспечивающая, наряду с симпатической нервной системой, нормальное функционирование внутренних органов. Парасимпатическая нервная система замедляет … Энциклопедический словарь по психологии и педагогике

    Часть вегетативной нервной системы (См. Вегетативная нервная система), ганглии которой расположены в непосредственной близости от иннервируемых органов или в них самих. Центры П. н. с. находятся в среднем и продолговатом мозге… … Большая советская энциклопедия

    - (см. пара...) часть вегетативной нервной системы, участвующая в регуляции деятельности внутренних органов (замедляет сердцебиение, стимулирует отделение пищеварительных соков и т. п.), активизирует процессы накопления энергия и веществ ср.… … Словарь иностранных слов русского языка

    ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА - см. Вегетативная нервная система … Ветеринарный энциклопедический словарь

Сложное строение организма людей предусматривает несколько подуровней нервной регуляции каждого органа. Так, для симпатической нервной системы присуща мобилизация энергетических ресурсов для выполнения определенной задачи. Вегетативный же отдел контролирует работу структур в их функциональном покое, к примеру, в момент сна. Правильное взаимодействие и деятельность вегетативной нервной системы в целом – залог крепкого здоровья людей.

Природа мудро распределила функциональные обязанности симпатического и парасимпатического отделов вегетативной нервной системы – согласно расположению их ядер и волокон, а также предназначению и ответственности. К примеру, центральные нейроны симпатического сегмента размещены исключительно в боковых рогах спинного мозга. У парасимпатического же они локализуются в стволе полушарий.

Отдаленные, эффекторные нейроны в первом случае всегда расположены на периферии – присутствуют в околопозвонковых ганглиях. Они формируют различные сплетения, самым важным из которых признано солнечное. Оно несет ответственность за иннервацию внутрибрюшных органов. Тогда как парасимпатические эффекторные нейроны располагаются непосредственно в иннервируемых ими органах. Поэтому и ответные реакции на посылаемые к ним из мозга импульсы наступают быстрее.

Различия можно наблюдать и в функциональных характеристиках. Энергичная деятельность человека требует активации сердца, сосудов, легких – усиливается деятельность симпатических волокон. Однако, в этом случае происходит торможение процессов пищеварения.

В покое же за иннервацию внутриполостных органов отвечает парасимпатика – восстанавливается пищеварение, гомеостаз, мочевыделение. Недаром, после плотного обеда хочется полежать и поспать. В тесном сотрудничестве обоих отделов и заключается единство и неделимость нервной системы.

Структурные единицы

Главные центры вегетативной системы локализуются:

  • мезэенцефальный отдел – в структурах среднего мозга, от которого они отходят волокном глазодвигательного нерва;
  • бульбарный сегмент – в тканях продолговатого мозга, который далее представлен, как лицевой, так и блуждающий, языкоглоточный нерв;
  • торако-люмбальный отдел – поясничные и грудные ганглии в спинномозговых сегментах;
  • сакральный сегмент – в крестцовом отделе, парасимпатическая нервная система иннервирует тазовые органы.

Симпатический отдел выводит нервные волокна из головного мозга до пограничного сегмента – паравертебральными ганглиями в районе спинного мозга. Его называют симптоматический ствол, поскольку в нем имеется несколько узлов, каждый из которых взаимосвязан с отдельными органами через нервные сплетения. Передача импульса с нервных волокон на иннервируемую ткань происходит через синапсы – с помощью особых биохимических соединений, симпатинов.

Парасимпатический отдел, помимо внутричерепных центральных ядер представлен:

  • преганглионарные нейроны и волокна – пролегают в составе черепно-мозговых нервов;
  • постагнглионарные нейроны и волокна – проходят до иннервируемых структур;
  • терминальные узлы – расположены вблизи внутриполостных органов или непосредственно в их тканях.

Периферическая нервная система, представленная двумя отделами, практически не поддается сознательному контролю и функционирует самостоятельно, поддерживая постоянство гомеостаза.

Суть взаимодействия

Для того чтобы человек мог приспособиться и адаптироваться к любой ситуации – внешней либо внутренней угрозе, симпатическая, а также парасимпатическая части вегетативной нервной системы должны тесно взаимодействовать. Однако, при этом они оказывают на организм человека прямо противоположное воздействие.

Для парасимпатики характерно:

  • понижать артериальное давление;
  • уряжать частоту дыхания;
  • расширять просвет сосудов;
  • сужать зрачки;
  • корректировать концентрацию глюкозы в кровяном русле;
  • улучшать пищеварительный процесс;
  • тонизировать гладкую мускулатуру.

Защитные рефлексы также во введении парасимпатической деятельности – чихание, кашель, позывы на рвоту. Для симпатического отдела вегетативной нервной системы присуще повышать параметры сердечнососудистой системы – частоту пульса и цифры артериального давления, усиливать обмен веществ.

О том, что преобладает симпатикоотдел, человек узнает по ощущению жара, тахикардии, беспокойному сну и страху смерти, потоотделению. Если активна больше парасимпатика, изменения будут иными – холодная, влажная кожа, брадикардия, обморочность, чрезмерное слюноотделение и одышка. При уравновешенном функционировании обоих отделов деятельность сердца, легких, почек, кишечника соответствует возрастной норме и человек ощущает себя здоровым.

Функции

Природой определено так, что симпатический отдел принимает активное участие во многих важных процессах организма людей – особенно двигательного состояния. За ним преимущественно закреплена роль мобилизовать внутренние ресурсы, чтобы преодолеть различные препятствия. К примеру, активирует сфинктер радужной оболочки, зрачок расширяется, и поток поступающей информации усиливается.

При возбуждении симпатической нервной системы расширяются бронхи для усиления поступления кислорода к тканям, к сердцу поступает больше крови, тогда как на периферии артерии и вены становятся узкими – перераспределение питательных веществ. Одновременно происходит выброс депонированной крови из селезенки, а также расщепление гликогена – мобилизация дополнительных источников энергии. Угнетению же будут подвержены пищеварительные и мочевыделительные структуры – усвоение питательных веществ в кишечнике замедляется, ткани мочевого пузыря расслабляется. Все усилия организма направлены на поддержания высокой активности мускулатуры.

Парасимпатическое влияние на сердечную деятельность будет выражаться в восстановлении ритма и сокращений, нормализации кровяной регуляции – артериальное давление соответствует привычным для человека параметрам. Коррекции будет подвержена дыхательная система – бронхи сужаются, гипервентиляция прекращается, а концентрация глюкозы в кровяном русле снижается. Одновременно усиливается моторика в петлях кишечника – продукты усваиваются быстрее, а полые органы освобождаются от содержимого – дефекация, мочеиспускание. Дополнительно парасимпатика повышает секрецию слюны, но уменьшает потоотделение.

Нарушения и патологии

Строение вегетативной системы в целом – это сложные сплетение нервных волокон, которые действуют сообща для сохранения стабильности внутри организма. Поэтому даже незначительное повреждение одного из центров будет негативно отражаться на иннервации внутренних органов в целом. К примеру, при высоком тонусе симпатической нервной системы в кровь людей постоянно поступает огромное количество гормонов надпочечников, что провоцирует скачки артериального давления, тахикардию, потливость, гипервозбуждение, быстрое истощение сил. Тогда как вялость и сонливость, повышенный аппетит и гипотония будут признаками сбоев в вегетативном отделе.

Клинические признаки заболеваний периферической нервной системы напрямую связаны с уровнем, на котором произошло поражение нервного волокна и причины – воспаления, инфекции, либо травмы, опухолевого процесса. Характерные симптомы воспаления – отек тканей, болевой синдром, повышение температуры, нарушения движений в той части тела, которую иннервирует сегмент. Специалист обязательно учитывает возможность иррадиции признаков – их удаленность от первичного очага болезни. К примеру, изменения в глазодвигательном нерве могут выражаться в опущении век, усиления слезовыделения, затрудненности движений глазного яблока.

Если страдает симпатическая НС в районе малого таза, что присуще детям – то формируется энурез, кишечная непроходимость. Или же проблемы с репродуктивной системой у взрослых. При травмах в клинической картине будут преобладать повреждения тканей, кровотечения, а в последующем парезы и параличи.

Принципы лечения

Подозрения на расстройства симпатической системы либо парасимпатического отдела должны быть обязательно подтверждены осмотром невропатолога, результатами лабораторных и инструментальных исследований.

Только после оценки общего состояния здоровья человека, выявления причин заболевания, специалист подберет оптимальную схему терапии. При диагностированной опухоли, ее удалят оперативным образом или же подвергнут лучевой, химиотерапии. Для ускорения реабилитации после травмы врач назначит физиотерапевтические процедуры, препараты, способные ускорять регенерацию, а также средства для предупреждения вторичного инфицирования.

Если симпатическая нервная структура страдает от избытка выделения гормонов, эндокринолог подберет медикаменты для изменения концентрации их в кровяном русле. Дополнительно назначают отвары и настои целебных трав с успокоительным эффектом – мелисса, ромашка, а также мята, валериана. По индивидуальным показаниям прибегают к помощи антидепрессантов, антиконвульсантов либо нейролептиков. Наименования, дозы и продолжительность лечения – прерогатива невропатолога. Самолечение абсолютно недопустимо.

Отлично зарекомендовало себя санаторно-курортное лечение – грязелечение, водолечение, гирудотерапия, радоновые ванны. Комплексное воздействие изнутри – отдых, правильное питание, витамины и снаружи – целебные обвертывания травами, грязями, ванны с лечебной солью, приводят в норму все отделы периферической нервной системы.

Профилактика

Лучшим лечением любой болезни, безусловно, является профилактика. Для предупреждения функциональных сбоев в иннервации того или иного органа, специалисты рекомендуют людям соблюдать основные принципы здорового образа жизни:

  • отказаться от вредных привычек – употребления табачной, алкогольной продукции;
  • хорошо высыпаться – не менее 8–9 часов сна в проветриваемом, затемненном, спокойном помещении;
  • скорректировать рацион – преобладание овощей, различных фруктов, зелени, злаковых культур;
  • соблюдение водного режима – прием не менее 1.5–2 л очищенной воды, соков, морсов, компотов, чтобы из тканей удалялись токсины и шлаки;
  • ежедневная активность – пешие долгие прогулки, посещение бассейна, спортивного зала, освоение йоги, пилатеса.

У человека, который тщательно следит за своим здоровьем, посещает врача для ежегодного медицинского осмотра, нервы будут спокойными на любом их уровне. Поэтому и о таких проблемах, как потливость, тахикардия, одышка, высокое давление они знают только понаслышке, от своих родственников.



Поделиться