Основные постулаты клеточной теории сформулировали. Основные постулаты клеточной теории

Основные постулаты клеточной теории

1. Всё живое состоит из клеток. Клетка – элементарная единица жизни. Вне клеток жизнь не существует.

2. Клетки всех организмов гомологичны по строению, т.е. имеют общее происхождение и общие принципы строения. Основу клеток составляют белки, управляющие ходом всех процессов в клетке. Строение белков закодировано в молекулах ДНК. Основные жизненно важные процессы в клетках (размножение, синтез белка, получение и использование энергии) имеют общую биохимическую основу.

3. Размножение клеток осуществляется только путём деления существующих (постулат Р. Вирхова)

4. Многоклеточные организмы – это сложные комплексы клеток, дифференцированных в различные ткани и органы, согласованное функционирование которых осуществляется под управлением надклеточных гуморальной и нервной систем регуляции.

5. Все клетки многоклеточного организма тотипотентны . Это означает, что каждая клетка организма имеет полный набор информации о строении всего организма (закодированное в ДНК строение всех белков). Тотипотентность свидетельствует о наличии потенциальной (принципиальной) возможности вырастить точную копию организма из одной клетки. Такой процесс называется клонированием.

Клонирование достаточно легко реализуется у растений, которые могут быть выращены из клетки в пробирке с питательной средой и добавлением гормонов. Клонирование животных из-за очень сложных взаимоотношений эмбриона с материнским организмом пока не может быть осуществлено вне организма, поэтому является очень сложной, трудоёмкой и дорогостоящей процедурой с большой вероятностью нарушений в развитии организма.

Все известные клетки принято делить на прокариотов и эукариотов. Прокаритными являются более древние по происхождению и примитивно устроенные клетки. Основным их отличием является отсутствие ядра - специального мембранного органоида, в котором хранится ДНК у эукариотных клеток. Прокариотными клетками являются только бактерии, которые в большинстве случаев представлены одноклеточными и, реже, нитчатыми организмами из клеток, соединённых цепочку. К прокариотам относят также сине-зелёные водоросли, или цианобактерии. В большинстве случаев клетки бактерий по своим размерам не превышают нескольких микрометров, и не имеют сложных мембранных органоидов. Генетическая информация обычно сосредоточена в одной кольцевой молекуле ДНК, которая расположена в цитоплазме и имеет одну точку начала и окончания редупликации. Этой точкой ДНК закреплена на внутренней поверхности плазмалеммы , ограничивающей клетку. Цитоплазмой называют всё внутреннее содержимое клетки.

Все остальные клетки, от одноклеточных организмов до многоклеточных грибов, растений и животных, являются эукариотными (ядерными). ДНК этих клеток представлена различным количеством отдельных не кольцевых (имеющих два конца) молекул. Молекулы связаны с особыми белками – гистонами и образуют палочковидные структуры – хромосомы, хранящиеся в ядре в изолированном от цитоплазмы состоянии. Клетки эукариотных организмов более крупные и имеют в цитоплазме помимо ядра множество разнообразных мембранных органоидов сложного строения.

Основной отличительной чертой клеток растений является наличие особых органоидов – хлоропластов с зелёным пигментом хлорофиллом , за счёт которого осуществляется фотосинтез с использованием энергии света. Растительные клетки обычно имеют толстую и прочную клеточную стенку из многослойной целлюлозы, которая формируется клеткой за пределами плазмалеммы и является неактивной клеточной структурой. Такая стенка обусловливает постоянную форму клеток и невозможность их перемещения из одной части организма в другую. Характерной особенностью растительных клеток является наличие центральной вакуоли – очень крупной мембранной ёмкости, занимающей до 80-90 % объёма клетки и заполненной клеточным соком, находящимся под большим давлением. Запасным питательным веществом растительных клеток является полисахарид крахмал. Обычные размеры растительных клеток составляют от нескольких десятков до нескольких сотен микрометров.

Клетки животных обычно мельче растительных, имеют размеры около 10-20 мкм, не имеют клеточной стенки, и многие из них могут менять свою форму. Изменчивость формы позволяет им перемещаться из одной части многоклеточного организма в другую. Особенно легко и быстро перемещаются в водной среде одноклеточные животные (простейшие). Клетки отделены от окружающей среды только клеточной мембраной, которая в особых случаях имеет дополнительные структурные элементы, особенно у простейших. Отсутствие клеточной стенки позволяет использовать, помимо всасывания молекул, и процесс фагоцитоза (захват крупных нерастворимых частиц) (см. п.3.11). Энергию животные клетки получают только в процессе дыхания, окисляя готовые органические соединения. Запасным питательным продуктом является полисахарид гликоген.

Клетки грибов имеют общие свойства как с растениями, так и с животными. С растениями их сближает относительная неподвижность и наличие жёсткой клеточной стенки. Поглощение веществ осуществляется так же, как и у растений, только всасыванием отдельных молекул. Общими чертами с животными клетками является гетеротрофный способ питания готовыми органическими веществами, гликоген в качестве запасного питательного вещества, использование хитина, который входит в состав клеточных стенок.

Неклеточными формами жизни являются вирусы . В простейшем случае вирус представляет собой одну молекулу ДНК, заключённую в оболочку из белка, строение которого закодировано в этой ДНК. Такое примитивное устройство не позволяет считать вирусы самостоятельными организмами, поскольку они не в состоянии самостоятельно двигаться, питаться и размножаться. Все эти функции вирус может осуществлять только попав в клетку. Оказавшись в клетке, вирусная ДНК встраивается в ДНК клетки, многократно размножается клеточной системой редупликации с последующим синтезом вирусного белка. Через несколько часов клетка заполняется тысячами готовых вирусов и погибает в результате быстрого истощения. Освободившиеся вирусы получают возможность инфицировать новые клетки.

3.11. Упорядоченность процессов в клетке
и биологические мембраны

Основное отличие жизни – это строгий порядок протекания химических процессов в клетке. Этот порядок в значительной степени обеспечивается такими клеточными структурами, как биологические мембраны .

Мембраны представляют собой тонкие (6-10 нм) слои упорядоченно расположенных молекул. Анализ химического состава мембран показывает, что их вещество представлено преимущественно белками (50-60 %) и липидами (40-50 %). Полярная глицериновая часть липидных молекул (на рис.3.5 изображена в виде овалов) является гидрофильной и всегда стремится повернуться в сторону молекул воды.

Рис.3.5. Схема жидкостно-мозаичного строения биологической мембраны (заштрихованы гидрофоб­ные части белковых молекул)

Длинные углеводородные цепи жирных кислот, наоборот, будучи гидрофобными, выталкиваются из воды, и им ничего не остаётся, как повернуться навстречу друг другу. Поэтому в водных растворах при наличии достаточного количества липидных молекул они самосборкой укладываются в билипидный слой. Самосборка означает, что перемещение молекул происходит исключительно за счёт диффузионных процессов, без участия ферментов и без затрат биохимической энергии АТФ.

Билипидный слой представляет собой жидкокристаллическую структуру, обеспечивающую строгий порядок расположения молекул, одновременно с возможностью свободного их перемещения, как в жидкости, в пределах одного липидного слоя. Переместиться в другой слой молекула липида не может, поскольку для этого надо протащить гидрофильную часть через толстый гидрофобный слой.

Белки встраиваются в билипидный слой различными способами (мозаично), в зависимости от распределения гидрофобных (на рис.3.5 заштрихованы) и гидрофильных участков. Целиком гидрофильные белки (1) оказываются связанными с гидрофильной поверхностью мембраны. Целиком гидрофобные (2) – оказываются внутри гидрофобного слоя. Белки, имеющие гидрофобные и гидрофильные участки (3,4), размещаются так, что гидрофобные зоны располагаются внутри билипидного слоя, а гидрофильные – снаружи.

Белки с гидрофильно-гидрофобными свойствами (3,4) являются неподвижными и сохраняют строгий порядок расположения в мембране. Целиком гидрофильные (1) или гидрофобные (2) белки, напротив, относительно подвижны и могут служить связующими элементами между неподвижными белками.

Мембраны делят клетку на отдельные зоны (компартменты ), не позволяя смешиваться растворам разного химического состава, формируют мембранные органоиды с различными функциями. Эти функции определяются составом ферментов (см. п. 3.6), встроенных в мембрану органоида. Строгий порядок расположения ферментов в мембране обеспечивает заданную последовательность превращения молекул. Взаимодействие мембранных органоидов обеспечивается встроенными в мембраны рецепторными белками, которые распознают тип контактирующей мембраны и инициируют необходимые в данной ситуации химические и физические превращения.

Мембранными органоидами клетки являются ядро, митохондрии, пластиды растительных клеток, различные вакуоли, аппарат Гольджи и эндоплазматическая сеть, представляющая собой сложную систему полостей и каналов, в разных частях которой происходят различные химические процессы, связанные как с синтезом, так и с деструкцией различных молекул.

Одной из основных функций мембран в клетке является транспорт веществ. Различают активный и пассивный транспорт.

Пассивный транспорт происходит без затрат энергии АТФ. Используется энергия теплового движения молекул. Направление транспорта клеткой не регулируется. Молекулы перемещаются по закону диффузии, из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации). Различают простую диффузию, диффузию через поры и облегченную диффузию.

Простой диффузией через мембрану могут транспортироваться только гидрофобные молекулы, хорошо растворимые в жирах, или очень мелкие молекулы, движущиеся с большой скоростью (различные газы) (рис.3.6).

Гидрофильные молекулы могут перемещаться диффузией через поры , которые представляют собой участки мембраны с прерыванием билипидного слоя. Таким образом, например, в клетку и из клетки транспортируется вода. Движение молекул растворителя через полупроницаемую мембрану получило название осмос .

Облегченная диффузия осуществляется жирорастворимым белковым переносчиком, на поверхности которого имеется небольшой гидрофильный участок, позволяющий связываться с гидрофильными молекулами. Это позволяет перебрасывать через мембрану молекулы, которые не могут самостоятельно преодолеть билипидный слой.

Активный транспорт осуществляется с затратой энергии АТФ и может идти как против, так и по градиенту концентрации. Каждый вид молекул или ионов, активно транспортируемых в клетку или из клетки, имеет свой собственный белковый переносчик. Большинство переносчиков производят транспортировку за счет энергии мембранного электрического потенциала. Этот потенциал создаётся сложными белковыми комплексами (около 20 белков), получившими название АТФ-азы . Эти комплексы способны расщеплять АТФ на аденозиндифосфорную кислоту (АДФ) и фосфат. При этом выделяющаяся энергия макроэргической связи (см. п.3.7) так конформирует белки АТФ-азного комплекса, что они перебрасывают положительно заряженные ионы (Н + или Nа +) с внутренней стороны мембраны на внешнюю. Таким образом, с внутренней стороны образуется избыток отрицательных ионов (ОН¯, Cl¯, SO 4 2-), а снаружи – положительных.

Средняя величина мамбранного потенциала (около 80 мВ) является важнейшим показателем нормального состояния клеток. Уменьшение этого потенциала свидетельствует о неблагополучном состоянии клетки, а его отсутствие означает смерть. За счёт энергии мембранного потенциала клетка производит самые различные виды работ, в том числе и активный транспорт веществ. Белковые переносчики, осуществляющие активный транспорт, устроены так, что в местах их встраивания в мембрану катионы под действием электрического поля могут проскочить обратно. При этом энергия проскока используется конформирующимися белками для переброски соответствующей молекулы или иона.

Самым сложным видом активного транспорта является фагоцитоз . С его помощью транспортируются крупные частицы и агрегаты молекул. В фагоцитозе участвуют большие участки мембраны и тысячи молекул, среди которых есть рецепторные белки. Эти белки при контакте мембраны с частицей запускают сложную цепочку взаимодействий и перестройки мембраны таким образом, что частица окружается мембраной и оказывается внутри клетки (рис.3.6). Такое поступление в клетку называется эндоцитозом . Аналогичным образом скопление ненужных отходов может быть выброшено из клетки наружу (экзоцитоз) . Фагоцитоз протекает с затратами большого количества молекул АТФ.

Впервые клетки, а точнее клеточные стенки (оболочки) мертвых клеток, были обнаружены в срезах пробки с помощью микроскопа, английским ученым Робертом Гуком в 1665 году. Именно он и предложил термин «клетка».
Позднее голландец А. Ван Левенгук открыл множество одноклеточных организмов в каплях воды, а в крови людей красные кровяные клетки (эритроциты).

То, что помимо клеточной оболочки все живые клетки имеют внутреннее содержимое полужидкое студенистое вещество, ученые смогли открыть только только в начале XIX века. Это полужидкое студенистое вещество назвали протоплазмой. В 1831 году было открыто клеточное ядро, и все живое содержимое клетки — протоплазму стали подразделять на ядро и цитоплазму.

Позднее по мере совершенствования техники микроскопии в цитоплазме были обнаружены многочисленные органоиды (слово «органоид» имеет греческие корни и означает «похожий на орган»), и цитоплазму стали подразделять на органоиды и жидкую часть — гиалоплазму.

Известные немецкие ученые ботаник Матиас Шлейден и зоолог Теодор Шванн, активно работавшие с клетками растений и животных, пришли к выводу, что все клетки имеют похожее строение и состоят из ядра, органоидов и гиалоплазмы. Позднее в 1838-1839 г. они сформулировали основные положения клеточной теории . Согласно этой теории клетка является основной структурной единицей всех живых организмов, как растительных, так и животных, а процесс роста организмов и тканей обеспечивается процессом образования новых клеток.

Через 20 лет немецким анатомом Рудольфом Вирховым было сделано еще одно важное обобщение: новая клетка может возникнуть только из предшествующей клетки. Когда выяснелось, что сперматозоид и яйцеклетка — тоже клетки, соединяющиеся друг с другом в процессе оплодотворения, стало понятно, что жизнь из поколения в поколение — это непрерывная последовательность клеток. По мере развития биологии и открытия процессов деления клеток (митоза и мейоза) клеточная теория дополнялась все новыми положениями. В современном виде основные положения клеточной теории можно сформулировать так:

1. Клетка — основная структурно-функциональная и генетическая единица всех живых организмов и наименьшая единица живого.

Этот постулат был полностью доказан современной цитологией. Кроме того, клетка представляет собой открытую для обмена с внешней средой, саморегулирующуюся и самовоспроизводящуюся систему.

В настоящее время ученые научились выделять различные компоненты клетки (вплоть до отдельных молекул). Многие из этих компонентов могут даже функционировать самостоятельно, если создать им соответствующие условия. Так, например, сокращения актино-миозинового комплекса может быть вызвано добавлением в пробирку АТФ. Искусственный синтез белов и нуклеиновых кислот тоже стало реальностью в наше время, но все это лишь только части живого. Для полноценной работы всех этих комплексов, входящих в состав клетки, нужны еще дополнительные вещества, ферменты, энергия и т.д. И только клетки являются самостоятельными и саморегулирующимися системами, т.к. имеют все необходимое для поддержания полноценной жизнедеятельности.

2. Строение клеток, их химический состав и основные проявления процессов жизнедеятельности сходны у всех живых организмов (одноклеточных и многоклеточных).

В природе существует два типа клеток: прокариотические и эукариотические. Несмотря на их некоторые различия это правило для них справедливо.
Общий принцип организации клеток определяется необходимостью осуществить ряд обязательных функций, направленных на поддержание жизнедеятельности самих клеток. Например, у всех клеток есть оболочка, которая с одной стороны изолируюет ее содержимое от окружающей среды, с другой — контролирует поток веществ в клетку и из нее.

Органоиды или органеллы — постоянные специализированные структуры в клетках живых организмов. Органоиды разных организмов имеют общий план строения и работают по единым механизмам. Каждый органоид отвечает за определенные функции, которые жизненно необходимы для клетки. Благодаря органоидам в клетках происходит энергетический обмен, биосинтез белка, появляется способность к воспроизводству. Органоиды стали сопоставлять с органами многоклеточного организма, отсюда и появился этот термин.

У многоклеточных организмов хорошо прослеживается значительное разнообразие клеток, которое связано с их функциональной специализацией. Если сравнить, например, мышечные и эпительные клетки, можно заметить, что они отличаются друг от друга преимущественным развитием разных видов органоидов. Клетки приобретают черты функциональной специализации, которые необходимы для выполнения конкретных функций, в результате клеточной дифференцировки в процессе онтогенеза.

3. Любая новая клетка может образоваться только в результате деления материнской клетки.

Размножение клеток (т.е. увеличение их количества) будь то прокариоты или эукариоты может происходить только делением уже существующих клеток. Делению обязательно предшествует процесс предварительного удвоения генетического материала (репликация ДНК). Началом жизни организма является оплодотворенная яйцеклетка (зигота), т.е. клетка образующаяся в результате слияния яйцеклетки и сперматозоида. Все остальное разнообразие клеток в организме — результат бесчисленного числа ее делений. Таким образом, можно сказать, что все клетки в организме родственны, развиваются одинаковым образом из одного источника.

4. Многоклеточные организмы — живые организмы, состоящие из множества клеток. Большая часть этих клеток дифференцирована, т.е. различаются по своему строению, выполняемым функциям и образуют различные ткани.

Многоклеточные организмы — это целостные системы специализированных клеток, регулируемыми межклеточными, нервными и гуморальными механизмами. Следует различать многоклеточность и колониальность. У колониальных организмов нет дифференцированных клеток, а следовательно, нет разделения тела на ткани. В многоклеточные организмы помимо клеток входят еще неклеточные элементы, например, межклеточное вещество соединительной ткани, костный матрикс, плазма крови.

В итоге можно сказать, что вся жизнедеятельность организмов от их рождения до смерти: наследственность, рост, обмен веществ, болезни, старение и т.п. — все это многообразные аспекты деятельности различных клеток организма.

Клеточная теория оказала огромное влияние на развитие не только биологии, но и естествознания в целом, так как она установила морфологическую основу единства всех живых организмов, дала общебиологическое объяснение жизненных явлений. По своему значению, клеточная теория не уступает таким выдающимся достижениям науки, как закон превращения энергии или эволюционная теория Ч. Дарвина. Итак, клетка — основа организации представителей царств растений, грибов и животных — возникла и развивалась в процессе биологической эволюции.

Клеточная теория - это обобщенные представления о строении клеток как единиц живого, об их размножении и роли в формировании многоклеточных организмов.

Появлению и формулированию отдельных положений клеточной теории предшествовал довольно длительный период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных. Этот период был связан с развитием применения и усовершенствования различных оптических методов исследований.

Роберт Гук первым наблюдал с помощью увеличительных линз подразделение тканей пробки на «ячейки», или «клетки». Его описания послужили толчком для появления систематических исследований анатомии растений, которые подтвердили наблюдения Роберта Гука и показали, что разнообразные части растений состоят из тесно расположенных «пузырьков», или «мешочков». Позднее А. Левенгук открыл мир одноклеточных организмов и впервые увидел клетки животных. Позднее клетки животных были описаны Ф. Фонтана; но эти и другие многочисленные исследования не привели в то время к пониманию универсальности клеточного строения, к четким представлениям о том, что же являет собой клетка. Прогресс в изучении микроанатомии и клетки связан с развитие микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки - ядро. Все эти многочисленные наблюдения позволили Т. Шванну в 1838 г. сделать ряд обобщений. Он показал, что клетки растений и животных принципиально сходны между собой. «Заслуга Т. Шванна заключалась не в том, что он открыл клетки как таковые, а в том, что он научил исследователей понимать их значение». Дальнейшее развитие эти представления получили в работах Р. Вирхова. Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие биологии, послужили главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основы для понимания жизни, для объяснения родственной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение и на сегодняшний день, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток. В настоящее время клеточная теория постулирует:

Клетка - элементарная единица живого: - вне клетки нет жизни.

Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определенное целостное образование, состоящее из сопряженных функциональных единиц - органелл или органоидов.

Клетки сходны - гомологичны - по строению и по основным свойствам.

Клетки увеличиваются в числе путем деления исходной клетки после удвоения ее генетического материала: клетка от клетки.

Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединенных и интегрированных в системы тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных.

Клетки многоклеточных организмов тотипотентны, т.е. обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

Представление о клетке как о самостоятельной жизнедеятельной единице было дано еще в работах Т. Шванна. Р. Вирхов также считал, что каждая клетка несет в себе полную характеристику жизни: «Клетка есть последний морфологический элемент всех живых тел, и мы не имеем права искать настоящей жизнедеятельности вне ее».

Современная наука полностью доказала это положение. В популярной литературе клетку часто называют «атомом жизни», «квантом жизни», подчеркивая тем самым, что клетка - это наименьшая единица живого, вне которой нет жизни.

Такая общая характеристика клетки должна в свою очередь опираться на определение живого - что такое живое, что такое жизнь. Очень трудно дать окончательное определение живого, жизни.

М.В. Волькенштейн дает следующее определение жизни: «живые организмы представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, важнейшими функционирующими веществами которых являются белки и нуклеиновые кислоты». Живому свойствен ряд совокупных признаков, таких, как способность к воспроизведению, использование и трансформация энергии, метаболизм, чувствительность, изменчивость. И такую совокупность этих признаков можно обнаружить на клеточном уровне. Нет меньшей единицы живого, чем клетка. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и убедиться, что многие из них обладают специфическими функциональными особенностями. Так, выделенные актомиозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки прекрасно «работают» многие ферменты, участвующие в синтезе или распаде сложных биоорганических молекул; выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок, разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т.д. Можно ли считать все эти клеточные компоненты, структуры, ферменты, молекулы живыми? Можно ли считать живым актомиозиновый комплекс? Думается, что нет, хотя бы потому, что он обладает лишь частью набора свойств живого. То же относится и к остальным примерам. Только клетка как таковая является наименьшей единицей, обладающей всеми вместе взятыми свойствами, отвечающими определению «живое».

Что же такое клетка, какое ей можно дать общее определение? Из школьного курса известно, что разнообразные клетки имеют совершенно несходную морфологию, их внешний вид и величины значительно расходятся. Действительно, что общего между звездчатой формой некоторых нервных клеток, шаровидной формой лейкоцита и трубкообразной формой клетки эндотелия. Такое же разнообразие форм встречается и среди микроорганизмов. Поэтому мы должны находить общность живых объектов не в их внешней форме, а в общности их внутренней организации.

Среди живых организмов встречаются два типа организации клеток. К наиболее простому типу строения можно отнести клетки бактерий и синезеленых водорослей, к более высокоорганизованному - клетки всех остальных живых существ, начиная от низших растений и кончая человеком.

Принято называть клетки бактерий и синезеленых водорослей прокариотическими, а клетки всех остальных представителей живого - эукариотическими, потому что у последних обязательной структурой служит клеточное ядро, отделенное от цитоплазмы ядерной оболочкой.

Содержимое прокариотической клетки одето плазматической мембраной, играющей роль активного барьера между собственно цитоплазмой клетки и внешней средой. Обычно снаружи от плазматической мембраны расположена клеточная стенка или оболочка - продукт клеточной активности. У прокариотических клеток нет морфологически выраженного ядра, но присутствует в виде так называемого нуклеоида зона, заполненная ДНК.

В основном веществе цитоплазмы прокариотических клеток располагаются многочисленные рибосомы, цитоплазматические же мембраны обычно выражены не так сильно, как у эукариотических клеток, хотя некоторые виды бактерий богаты внутриклеточными мембранными системами. Очень сильно цитоплазматические мембраны развиты у синезеленых водорослей. Обычно все внутриклеточные мембранные системы прокариот развиваются за счет плазматической мембраны.

Но не только присутствие морфологически - выраженного ядра является отличительным признаком эукариотических клеток. У клеток высшего типа кроме ядра в цитоплазме существует целый набор специальных обязательных структур, органелл, выполняющих отдельные специфические функции. К числу органелл относят мембранные структуры: систему эндоплазматической сети, аппарат Гольджи, лизосомы, митохондрии, пластиды. Кроме того, для эукариотических клеток характерно наличие мембранных структур, таких как микротрубочки, микрофиламенты, центриоли и др.

Эукариотические клетки обычно намного крупнее прокариотических. Так, палочковидные бактерии имеют длину до 5 мкм, а толщину около 1 мкм, в то время как эукариотические клетки в поперечнике могут достигать десятков мкм.

Несмотря на четкие морфологические отличия, и прокариотические и эукариотические клетки имеют много общего, что и позволяет отнести их к одной, клеточной, системе организации живого. И те и другие одеты плазматической мембраной, обладающей сходной функцией активного переноса веществ из клетки и внутрь ее; синтез белка у них происходит на рибосомах; сходны и другие процессы, такие, как синтез РНК и репликация ДНК, похожи и биоэнергетические процессы. Исходя из вышесказанного клетке можно дать общее определение. Клетка - это ограниченная активной мембраной, упорядоченная структурированная система биополимеров и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Короче: клетка - самоподдерживающаяся и самовоспроизводящаяся система биополимеров. Это определение дает описание основных свойств «живого» - воспроизведение подобного себе из неподобного себе.

У многоклеточных организмов часть клеток утрачивает свойство размножаться, но они остаются клетками до тех пор, пока способны вести синтетические процессы, регулировать транспорт веществ межу клеткой и средой, использовать для этих процессов энергию. Есть примеры безъядерных клеток, это скорее не собственно клетки, а их остатки - одетые мембраной участки цитоплазмы с ограниченными функциональными потенциями.

Одно время первый постулат клеточной теории подвергался многочисленным нападкам и критике. Некоторые авторы указывали, что в многоклеточных организмах, особенно у животных, кроме клеток существуют и межклеточные, промежуточные вещества, которые тоже, казалось обладали свойствами живого. Однако было показано, что межклеточные вещества представляют собой не самостоятельные образования, а продукты активности отдельных групп клеток.

Другие возражения касались того, что часто у животных кроме отдельных клеток встречаются так называемые симпласты и синцитии, а у растительных клеток - плазмодии. По морфологическому описанию - это крупные цитоплазматические образования со множеством ядер, не разделенные на отдельные клеточные территории. Примерами таких симпластов могут быть мышечные волокна позвоночных или эпидермис у ленточных червей, а также плазмодии у низших грибов миксомицетов. Однако если проследить за развитием таких «неклеточных» форм, то легко убедиться в том, что они возникают вторично за счет слияния отдельных клеток или же в результате деления одних ядер без разделения цитоплазмы, т.е. без цитотомии.

Контрольная работа по теме: «

1.Основные постулаты «клеточной теории» сформулировали в 1838-1839гг.:

1. А. Левенгук, Р. Броун

2. Т. Шванн, М. Шлейден

3. Р. Броун, М. Шлейден

4.Т. Шванн, Р. Вирхов.

2.Фотосинтез происходит:

1. в хлоропластах 2. в вакуолях

3. в лейкопластах 4. в цитоплазме

3.Белки, жиры и углеводы накапливаются про запас:

1. в рибосомах 2. в комплексе Гольджи

3. в митохондриях 4.в цитоплазме

4. Какую долю (%) в клетке в среднем составляют макроэлементы

1. 80% 2. 20 % 3. 40% 4. 98%

5. Клетки не синтезирующие органические вещества, а использующие готовые

1. автотрофы 2. гетеротрофы

3. прокариоты 4. эукариоты

6.Одна из функций клеточного центра

1. Образование веретена деления

2. Формирование ядерной оболочки

3. Управление биосинтезом белка

4. Перемещение веществ в клетке

7.В лизосомах происходит

1. Синтез белков

2. Фотосинтез

3. Расщепление органических веществ

4. Коньюгация хромосом

8.

органоиды

характеристики

1Плазматическая мембрана

Б. Синтез белка.

3Митохондрии

В. Фотосинтез.

4Пластиды

5Рибосомы

Е. Немембранные.

7Клеточный центр

Ж. Синтез жиров и углеводов.

8Комплекс Гольджи

3. Содержит ДНК.

И. Одномембранные

10Лизосомы

М. Двухмембранные.

О. Есть только у растений.

П. Есть только у растений.

9. Мембраны и каналы гранулярной эндоплазматической сети (ЭПС) осуществляют синтез и транспорт:

1. белков 2. липидов

3.углеводов 4. нуклеиновых кислот.

10. В цистернах и пузырьках аппарата Гольджи осуществляется:

1. секреция белков

2. синтез белков, секреция углеводов и липидов

3. синтез углеводов и липидов, секреция белков, углеводов и липидов.

4. синтез белков и углеводов, секреция липидов и углеводов.

11.Клеточный центр присутствует в клетках:

1. всех организмов 2. только животных

3. только растений 4. всех животных и низших растений.

Вторая часть

В-1 Какие структуры клетки претерпевают наибольшие изменения в процессе митоза?

1)ядро 4)лизосомы

2)цитоплазма 5)клеточный центр

3)рибосомы 6)хромосомы

В-2. Какие функции в клетке выполняет комплекс Гольджи?

1) синтез белка

2) образует лизосомы

3) обеспечивает сборку рибосом

4)участвует в окислении веществ

5)обеспечивает упаковку веществ в секреторные пузырьки

6) участвует в выделении веществ за пределы клетки

В-3 Установите соответствие между особенностью обмена веществ и группой организмов, для которого она характерна.

ОСОБЕННОСТЬ ОРГАНИЗМЫ

а) выделение кислорода в атмосферу 1)автотрофы

б) использование энергии пищи, для синтеза АТФ 2)гетеротрофы

в) использование готовых органических веществ

г) синтез органических веществ из неорганических

д) использование углекислого газа для питания

В-4. Установите соответствие между процессом, протекающим в клетке, и органоидом, для которого он характерен.

ПРОЦЕСС ОРГАНОИД

А) восстановление углекислого газа до глюкозы 1) митохондрия

Б) синтез АТФ в процессе дыхания 2)хлоропласт

В) первичный синтез органических веществ

Г) превращение световой энергии в химическую

Д) расщепление органических веществ до углекислого газа и воды.

Контрольная работа по теме: « Клеточное строение организмов»

1. Оболочки клеток состоят из:

1. плазмалеммы (цитоплазматической мембраны)

2. плазмалеммы у животных и клеточных стенок у растений

3. клеточных стенок

4. плазмалеммы у животных, плазмалеммы и клеточных стенок у растений.

2.Функции «силовых станций» выполняют в клетке:

1. рибосомы

2. митохондрии

3. цитоплазме

4. вакуоли

3.Органоид, участвующий в делении клетки:

1. рибосомы

2. пластиды

3. Митохондрии

4.клеточный центр

4.Клетки, синтезирующие органические вещества из неорганических

1. автотрофы

2. гетеротрофы

3. прокариоты

4. эукариоты

5.Наука изучающая строение и жизнедеятельность клетки

1.Биология 2.Цитология

3.Гистология 4. Физиология

6.Немембранный органоид клетки

1.Клеточный центр 2.Лизосома

3.Митохондрия 4.Вакуоль

7. Распределите характеристики соответственно органоидам клетки (поставьте буквы
соответствующие характеристикам органоида, напротив названия органоида).

органоиды

характеристики

Плазматическая мембрана

А. Транспорт веществ по клетке.

Б. Синтез белка.

Митохондрии

В. Фотосинтез.

Пластиды

Г. Движение органоидов по клетке.

Рибосомы

Д. Хранение наследственной информации.

Е. Немембранные.

Клеточный центр

Ж. Синтез жиров и углеводов.

Комплекс Гольджи

3. Содержит ДНК.

И. Одномембранные

Лизосомы

К. Обеспечение клетки энергией.

Л. Самопереваривание клетки и внутриклеточное пищеварение.

М. Двухмембранные.

Н.Связь клетки с внешней средой.

О. Есть только у растений.

П. Есть только у растений.

8. Основной запасной углевод в животных клетках:

1. крахмал 2. глюкоза 3. гликоген 4. жир

9. Мембраны и каналы гладкой эндоплазматической сети (ЭПС) осуществляют синтез и транспорт:

1 белков и углеводов 2 липидов 3 жиров и углеводов 4нуклеиновых кислот

10.Лизосомы формируются на:

1. каналах гладкой ЭПС

2. каналах шероховатой ЭПС

3. цистернах аппарата Гольджи

4. внутренней поверхности плазмалеммы.

11.Микротрубочки клеточного центра участвуют в формировании:

1. только цитоскелета клетки

2. веретена деления

3. жгутиков и ресничек

4. цитоскелета клетки, жгутиков и ресничек.

Вторая часть

В-1.Основные положения клеточной теории позволяют сделать вывод о

1)биогенной миграции атомов

2)родстве организмов

3)происхождении растений и животных от общего предка

4)появлении жизни около 4,5 млрд.лет назад

5)сходном строении клеток всех организмов

6)взаимосвязи живой и неживой природы

В-2 Какие процессы жизнедеятельности происходят в ядре клетки?

1)образование веретена деления

2)формирование лизосом

3)удвоение молекул ДНК

4)синтез РНК

5)образование митохондрий

6) образование рибосом

В-3 Установите соответствие между строением, функцией органоидов клетки и их видом.

СТРОЕНИЕ, ФУНКЦИИ ОРГАНОИДЫ

В) обеспечивает образование кислорода

Г) обеспечивает окисление органических веществ

В-4 Какие функции выполняет в клетке плазматическая мембрана?

1)придаёт клетке жёсткую форму.

2)отграничивает цитоплазму от окружающей среды

3) синтезирует РНК

4) способствует поступлению ионов в клетку

5) обеспечивает передвижение веществ в клетке

6) участвует в фагоцитозе и пиноцитозе.

ОТВЕТЫ

В-1 1-2, 2-1, 3-2, 4-4, 5-2, 6-1, 7-3, 8-1н,2д,3к,4мо,5б,6ж,7е,8а,9гп,10л; 9-1,10-3 ,11-4

В-1 156; В-2 256; В-3 12211; В-4 21221.

В-2 1-4, 2-2, 3-4, 4-1,5-2, 6-1, 7-1н,2д,3к,4мо,5б,6ж,7е,8а,9гп,10л; 8-3, 9-3, 10-3,11-2

В-1 235; В-2 346; В-3 21212; В-4 246.

Клеточная теория Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т.п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, "одичавшими" генами. Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека).

Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.



Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии, симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, т.е. образуется оно в результате метаболизма клеток. Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

3-Структура и функции протопласта Протопласт- содержимое растительной клетки; состоит из клеточной мембраны, цитоплазмы и ядра, но не включает клеточную оболочку П. получают искусственно для клонирования и регенерации из них целых р-ний, применения в клеточной инженерии В состав протопласта входит цитоплазма (Ц) и одно или несколько ядер. По химическому составу П содержит белки, жиры, углеводы и минеральные вещества. П на 75-90% состоит из воды. Белки могут быть связаны с другими органическими соединениями и образовывать сложные соединения – протеиды

4- Структура и общая характеристика мембран клетки . Плазматическая (цитоплазматическая) мембрана - обязательный компонент любой клетки. Она отграничивает клетку и обеспечивает сохранение существующих различий между клеточным содержимым и окружающей средой. Мембрана служит высокоизбирательным «входным» селективным фильтром и отвечает за активный транспорт веществ в клетку и из нее. Цитоплазматическую мембрану растительной клетки обычно называют плазмалеммой. Как и любая биологическая мембрана, она представляет собой липидный бислой с большим количеством белков. Основу липидного бислоя составляют фосфолипиды. Помимо них в состав липидного слоя входят гликолипиды и стерины. Липиды достаточно активно перемещаются в пределах своего монослоя, но возможны и их переходы из одного монослоя в другой. Такой переход, называемый «флип-флоп» (от англ. flip-flop), осуществляется ферментом флипазой. Кроме липидов и белков в плазмалемме присутствуют углеводы. Соотношение липидов, белков и углеводов в плазматической мембране растительной клетки составляет приблизительно 40:40: 20. Мембранные белки связаны с липидным бислоем различными способами. Первоначально белки мембран разделяли на два основных типа: периферийные и интегральные. Периферийные белки ассоциированы с мембраной за счет присоединения к интегральным белкам или липидному бислою слабыми связями: водородными, электростатическими, солевыми мостиками. Они в основном растворимы в воде и легко отделяются от мембраны без ее разрушения. Некоторые периферийные белки обеспечивают связь между мембранами и цитоскелетом. Интегральные белки мембран нерастворимы в воде.

Мембраны, виды, состав и функции. Мембраны - клеточные структуры липопротеиновой природы, отделяют клеточное содержимое от внешней среды, регулируют обмен м/у клеткой и средой, делят протопласт на отсеки, или компартменты, предназначенные для тех или иных специализированных метаболических путей. Некоторые хим. реакции, в частности световые реакции фотосинтеза в хлоропластах или окислительное фосфорилирование при дыхании в митохондриях, протекают на самих мембранах. На мембранах располагаются+ и рецепторные участки для распознания внешних стимулов (гормонов или других хим. в-в), поступающих из окр. среды или из другой части самого организма. Различают наружные ограничивающие мембраны, в том числе мембрану протоплазмы (плазмалемму), вакуоли (тоноплат), ядра, митохондрий, пластид, лизосом и субъединиц диктиосом, а также внутренние мембраны цитоплазмы (ЭДС), митохондрий и пластид. Мембраны обладают след. св-ми : подвижностью, текучестью, способностью замыкаться, полупроницаемостью в зависимости от тургорного давления. Общие функции мембран: барьерная, избирательная проницаемость для ионов и метаболитов, место локализации интегральных белков. Специфические функции: ближний транспорт по симпласту, фотосинтетическое фосфорилирование, окислительное фосфорилирование, место локализации редокс-системы, рецепторная. Хим. состав : белки, липиды, вода, полисахариды, кальций.

Свойства мембран . Мембраны - структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях. Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Функции биологических мембран следующие: Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы. Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот. Выполняют роль рецепторов (получение и преобразование сит-налов из окружающей среды, узнавание веществ клеток и т. д.). Являются катализаторами (обеспечение примембранных химических процессов). Участвуют в преобразовании энергии.

5-структура и функции эндоплазматической сети. Эндоплазмат ическая сеть, Эндоплазматический ретикулум (ЭПР) - сложная система каналов, окруженных мембранами (6-7 нм), пронизывающая всю толщу цитоплазмы. Каналы имеют расширения - цистерны, которые могут обособляться в крупные пузырьки и сливаться в вакуоли. Каналы и цистерны ЭПР заполнены электронно-прозрачной жидкостью, содержащей растворимые белки и другие соединения. К мембране ЭПР могут быть прикреплены рибосомы. Благодаря этому поверхность мембран становится шероховатой. Такие мембраны носят название гранулярных, в отличие от гладких - агранулярных. Мембраны ЭПР связаны с мембраной ядра. Имеются данные, что эндоплазматический ретикулум возникает благодаря выростам, образующимся на наружной ядерной мембране. С другой стороны ядерная оболочка воссоздается из пузырьков ЭПР на стадии телофазы.Физиологическое значение эндоплазматического ретикулума многообразно. Мембраны ЭПР разделяют клетку на отдельные отсеки (компартменты) и тем клетке по всей цитоплазме. Аппарат Гольджи имеет два конца, два полюса: на одном полюсе, формирующем, образуются новые цистерны, на втором полюсе, секретирующем, происходит образование пузырьков. И тот, и другой процесс происходят непрерывно: по мере того как одна цистерна образует пузырьки и, таким образом, расформировывается, ее место занимает другая цистерна. Расстояние между отдельными цистернами постоянно (20-25 нм). Одна из основных функций аппарата Гольджи - это накопление и секреция веществ и, прежде всего углеводов, что проявляется в его участии в формировании клеточной оболочки и плазмалеммы. Одновременно цистерны аппарата Гольджи, по-видимому, могут служить для удаления некоторых веществ, выработанных клеткой.

6 - Вакуоли - крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы (рис. 1.12).

Рис. 1.12 . Вакуоль в растительной клетке: 1 - вакуоль; 2 - цитопяаз-матические тяжи; 3 - ядро; 4 - хлоропласты.

Содержимое вакуолей -клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них являются продуктами метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества - фитогормоны (регуляторы роста), фитонциды, ферменты. В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

Функции вакуолей следующие:

Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, определяющее относительную жесткость растительных клеток и обусловливающее растяжение клеток во время их роста.

В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, так как в их клетки путем осмоса непрерывно поступает вода из окружающего гипотонического раствора (концентрация веществ в речной или озерной воде значительно ниже, чем концентрация веществ в клетках простейших). Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.

8 -Химический состав кл.стенки Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы: Структурные компоненты, представленные целлюлозой у большинства автотрофных растений. Компоненты матрикса, т. е. основного вещества, наполнителя оболочки - гемицеллюлозы, белки, липиды. Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие ее изнутри) - лигнин и суберин.

Компоненты, адкрустирующие стенку, т.е. откладывающиеся на ее поверхности, - кутин, воск. Основной структурный компонент оболочки - целлюлоза представлена неразветвленными полимерными молекулами, состоящими из 1000-11000 остатков - D глюкозы, соединенных между собой гликозидными связями. Наличие гликозидных связей создает возможность образования поперечных стивок. Благодаря этому, длинные и тонкие молекулы целлюлозы объединяются в элементарные фибриллы или мицеллы. Каждая мицелла состоит из 60-100 параллельно расположенных цепей целлюлозы. Мицеллы сотнями группируются в мицеллярные ряды и составляют микрофибриллы диаметром 10-15 нм. Целлюлоза обладает кристаллическими свойствами благодаря упорядоченному расположению мицелл в микрофибриллах. Микрофибриллы, в свою очередь перевиваются между собой как пряди в канате и объединяются в макрофибриллы. Макрофибриллы имеют толщину около 0,5 мкм. и могут достигать в длину 4мкм. Целлюлоза не обладает ни кислыми, ни щелочными свойствами. Структура клеточной стенки Клеточная стенка (оболочка) является неотъемлемым компонентом клеток растений и грибов и представляет собой продукт их жизнедеятельности. Она придает клеткам механическую прочность, защищает их содержимое от повреждений и избыточной потери воды, поддерживает форму клеток и их размер, а также препятствует разрыву клеток в гипотонической среде. Клеточная стенка участвует в поглощении и обмене различных ионов, т. е. является ионообменником. Через клеточную оболочку осуществляется транспорт веществ.В состав клеточной стенки входят структурные компоненты (целлюлоза у растений и хитин у грибов), компоненты матрикса (гемицеллюлоза, пектин, белки), инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности оболочки (кутин и воск).

Функции клеточной стенки Клеточные стенки обеспечивают отдельным клеткам и растению в целом механическую прочность и опору. В некоторых тканях прочность усиливается благодаря интенсивной лигнификации (небольшое количество лигнина присутствует во всех клеточных стенках). Особо важную роль играет лигнификация клеточных стенок у древесных и кустарниковых пород. . Относительная жесткость клеточных стенок и сопротивление растяжению обусловливают тургесцентность клеток, когда в них осмотическим путем поступает вода. Это усиливает опорную функцию во всех растх и служит единственным источником опоры для травянистых растений и для таких органов, как листья, т. е. там, где отсутствует вторичный рост. Клеточные стенки также предохраняют клетки от разрыва в гипотонической среде.

Ориентация целлюлозных микрофибрилл ограничивает и в известной мере регулирует как рост, так и форму клеток, поскольку от расположения этих микрофибрилл зависит способность клеток к растяжению. Если, например, микрофибриллы располагаются поперек клетки, опоясывая ее как бы обручами, то клетка, в которую путем осмоса поступает вода, будет растягиваться в продольном направлении. Стенки клеток эндодермы корня пропитаны суберином и поэтому служат барьером на пути движения воды. У некоторых клеток их видоизмененные стенки хранят запасы питательных веществ; таким способом, например, запасаются гемицеллюлозы в некоторых семенах.

9-Общая характеристика класса растительных белков. Белки́ (протеи́ны, полипепти́ды) - высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул белков образуют сложные комплексы, например, фотосинтетический комплекс. Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров - полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют важную роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.Белки - важная часть питания животных и человека, поскольку в их организме не могут синтезироваться все необходимые аминокислоты и часть из них поступает с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются при биосинтезе белков организма или подвергаются дальнейшему распаду для получения энергии.Определение аминокислотной последовательности первого белка - инсулина - методом секвенирования белков принесло Фредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобина были получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в 1958 году, за что в 1962 году они получили Нобелевскую премию по химии.

Функции белков:

Так же как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки - необходимые компоненты всех живых организмов, они участвуют в большинстве жизненных процессов клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур - органелл, секретируются во внеклеточное пространство для обмена сигналами между клетками, гидролиза пищи и образования межклеточного вещества. Многие функции белки выполняют благодаря своей ферментативной активности. Так, ферментами являются двигательный белок миозин, регуляторные белки протеинкиназы, транспортный белок натрий-калиевая аденозинтрифосфатаза и др. Каталитическая функция Наиболее хорошо известная роль белков в организме - катализ различных химических реакций. Ферменты - группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и матричного синтеза РНК. Известно несколько тысяч ферментов; среди них такие, как, например, пепсин, расщепляют белки в процессе пищеварения. В процесс посттрансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками. Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой, протекает в 1017 быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента). Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами. Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и ещё меньшее количество - в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности - напрямую участвуют в катализе. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

Структурная функция Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина - это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин - основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная функция Существуют несколько видов защитных функций белков:

Физическая защита . В ней принимает участие коллаген - белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоев кожи)дермы); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами этой группы белков служат фибриногены и тромбины, участвующие в свёртывании крови.

Химическая защита . Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Иммунная защита . Белки, входящие в состав крови и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белки системы комплемента и антитела (иммуноглобулины) относятся к белкам второй группы; они нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничена.

Регуляторная функция Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют транскрипцию, трансляцию, сплайсинг, а также активность других белков и др. Регуляторную функцию белки осуществляют либо за счёт ферментативной активности (например, протеинкиназы), либо за счёт специфического связывания с другими молекулами, как правило, влияющего на взаимодействие с этими молекулами ферментов. Так, транскрипция генов определяется присоединением факторов транскрипции - белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы - ферменты, которые активируют или подавляют активность других белков путём присоединения к ним фосфатных групп.

Сигнальная функция Сигнальная функция белков - способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, о́рганами и разными организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов. Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др. Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста. Цитокины - небольшие пептидные информационные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и апоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служить фактор некроза опухоли, который передаёт сигналы воспаления между клетками организма.

Транспортная функция Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (аффинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов. Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние, заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану. Многие ионные каналы специализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них. Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. «Электростанция клетки» - АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам.Запасная (резервная) функция белков К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.Рецепторная функция Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях - свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы белок-рецептор происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определённую химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, внутри.Моторная (двигательная) функция Целый класс моторных белков обеспечивает движения организма (например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят молекулы и органоиды из периферических частей клетки по направлению к центросоме, кинезины в противоположном направлении. Динеины также отвечают за движение ресничек и жгутиков эукариот. Цитоплазматические варианты миозина могут принимать участие в транспорте молекул и органоидов по микрофиламентам.

. Стуктуры белковой молекулы. Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот (правда, модификации происходят уже после синтеза белка на рибосоме). Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки всего из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации - белками, хотя это деление весьма условно.При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-COOH) другой аминокислоты образуются пептидные связи. Концы белка называют C- и N-концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -NH2, соответственно). При синтезе белка на рибосоме новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует в ДНК последовательность из трёх нуклеотидов - так называемый триплет или кодон. То, какая аминокислота соответствует данному кодону в мРНК, определяется генетическим кодом, который может несколько отличаться у разных организмов. Синтез белков на рибосомах происходит, как правило, из 20 аминокислот, называемых стандартными. Триплетов, которыми закодированы аминокислоты в ДНК, у разных организмов от 61 до 63 (то есть от числа возможных триплетов (4³ = 64), вычтено число стоп-кодонов (1-3)). Поэтому появляется возможность, что большинство аминокислот может быть закодировано разными триплетами. То есть, генетический код может является избыточным или, иначе, вырожденным. Это было окончательно доказано в эксперименте при анализе мутаций. Генетический код, кодирующий различные аминокислоты имеет разную степень вырожденности (кодируются от 1 до 6 кодонами), это зависит от частоты встречаемости данной аминокислоты в белках, за исключением аргинина. Часто основание в третьем положении оказывается несущественным для специфичности, то есть одна аминокислота может быть представлена четырьмя кодонами, различающимися только третьим основанием. Иногда различие состоит в предпочтении пурина пиримидину. Это называют вырожденностью третьего основания.

9-Классификация и характеристика углеводов В химическом плане углеводы можно определить как альдегидные или кетонные производные полиатомных спиртов или как соединения, при гидролизе которых образуются эти производные. Моносахариды – углеводы, которые не могут быть гидролизованы до более простых форм. Их можно подразделить на триозы, тетрозы, петнозы, гексозы, гептозы и октозы в зависимости от числа содержащихся в их молекуле атома углерода; их можно также разделить на альдозы и кетозы в зависимости от присутствия альдегидной или кетоновой группы. Из гексоз наиболее важное значение имеют глюкоза, галактоза, фруктоза и манноза.Гликозиды – соединения, образующиеся путем конденсации моносахарида с гидроксильной группой другого соединения, которым может быть другой моносахарид или вещество неуглеводной природы. Гликозиды найдены в составе многих лекарств и пряностей, они являются также компонентами животных тканей. Сердечные гликозиды обнаружены во многих растх и влияют на работу сердечной мышцы. Дисахариды при гидролизе дают две молекулы моносахарида (одинаковых или различных). Примером служит сахароза, лактоза или мальтоза. Олигосахариды при гидролизе дают 3-6 моносахаридов. Физиологически важными дисахаридами являются мальтоза, сахароза, лактоза и трегалоза. Полисахариды дают при гидролизе более 6 молекул моносахаридов. Они могут быть линейными или разветвленными. Примерами служат крахмал и декстрины.

10-Общая характеристика класса липидов растении. Липиды- разнообразные по структуре соединения, характеризующиеся почти полным отсутствием полярных групп в строении молекулы. В связи с этим липиды растворимы в неполярных жидкостях (эфир, хлороформ). В агрономии все в-ва, растворимые в этих растворителях, получили название «сырого жира». Характерной особенностью липидов явл. высокое содержание в молекулах гидрофобных радикалов и групп, что делает их нерастворимыми в воде. Все липиды могут быть разделены на две группы: жиры и жироподобные в-ва, или липоиды. К жироподобным в-вам относят фосфолипиды, сфинголипиды, гликолипиды, стероиды (играют опред. роль в структуре клеточных мембран, являются витаминами группы D), воски(защищают), кутин и суберин, растворимые в жирах пигменты (хлорофиллы, каротиноиды, фикобилины). Обладают гидрофобными сво-ми. Растворимы в бензине, бензоле, хлороформе, эфирах, ацетоне. Участвуют в адсорбции, откладываются в запас, защитные функции (предохраняют от обезвоживания).

Поделиться