Потенциал покоя мембраны. Формирование мембранного потенциала покоя

Основная физиологическая функция натрия в организме человека - регуляция объема внеклеточной жидкости, таким образом определяя объем крови и кровяное давление. Эта функция непосредственно связана с метаболизмом натрия и жидкости. Кроме этого, натрий участвует в процессе образования костной ткани, проведении нервных импульсов и др.

В медицине, в случае возникновения разного рода нарушений электролитного баланса, с целью выяснения причин этого состояния, проводят анализы на определение концентрации натрия, а также мониторинг баланса жидкости (ее поступления и выведения).

В организме человека масса жидкости занимает примерно 60%, то есть, человек, весом 70 кг, содержит примерно 40 литров жидкости, из которой около 25 л содержится в клетках (внутриклеточная жидкость - КЖ) и 14 л находится за вне клеток (внеклеточная жидкость - ВнеКЖ). Из общего количества внеклеточной жидкости примерно 3,5 л занимает плазма крови (кровяная жидкость, находящаяся внутри сосудистой системы) и около 10,5 литров - интерстициальная жидкость (ИСЖ), заполняющая пространство в тканях между клетками (см рис 1)

Рисунок 1. Распределение жидкости в организме взрослого человека, вес которого 70 кг

Общее количество жидкости в организме и сохранение постоянного уровня ее распределение между компартментами помогают обеспечить полноценное функционирование всех органов и систем, что, несомненно, является залогом крепкого здоровья. Обмен воды между внутриклеточной жидкостью и внеклеточной жидкостью происходит через мембраны клеток. Осмолярность растворов жидкости с обеих сторон мембраны непосредственно влияют на этот обмен. При условии осмотического равновесия жидкость не будет перемещаться, то есть, ее объемы в компартментах не будут изменяться. У здорового человека осмолярность внутриклеточной жидкости и плазмы крови (внеклеточной жидкости) поддерживается на уровне примерно 80-295 мОсмоль/кг.

Роль натрия в регуляции объема внеклеточной жидкости

Осмолярность - сумма концентрации всех кинетических частиц в 1 литре раствора, то есть, зависит от общей концентрации растворенных ионов. В организме человека осмолярность определяют именно электролиты, поскольку в жидких средах (внутри- и внеклеточная жидкости) ионы находятся в относительно высоких концентрациях по сравнению с другими растворенными компонентами. На рисунке 2 продемонстрировано распределение электролитов между внутриклеточной и внеклеточной жидкостями.

Рисунок 2. Концентрация растворенных компонентов во вннутриклеточной и внеклеточной жидкостях

Важно отметить, что для одновалентных ионов (калий, натрий) мэкв/л = ммоль/л, а для двухвалентных, чтобы почить количество ммоль/л, мэкв следует разделить на 2.

В левой части рисунка (ВнеКЖ) показан состав плазмы крови, который очень схож по составу с интерстициальной жидкостью (кроме низкой концентрации белка и высокой концентрации хлоридов)

Можно сделать вывод, что концентрация натрия в плазме крови является определяющим показателем объема внеклеточной жидкости и, как следствие, объема крови.

Во внеклеточной жидкости много натрия и мало калия. Напротив, в клетках содержится мало натрия - основным внутриклеточным катионом является калий. Такая разница в концентрациях электролитов во внеклеточной и внутриклеточной жидкостях поддерживается путем механизма активного транспорта ионов при участии натриево-калиевого насоса (помпы) (см рис. 3).

Рисунок 3. Поддержание концентрации натрия и калия в КЖ и ВнеКЖ

Натрий-калиевый насос, локализованный на клеточных мембранах, представляет собой энергонезависимую систему, которая есть у клеток всех типов. Благодаря этой системе из клеток выводятся ионы натрия в обмен на ионы калия. Без подобной транспортной системы ионы калия и натрия пребывали в состоянии пассивного диффундирования сквозь клеточную мембрану, что в результате привело бы к ионному равновесию между внеклеточной и внутриклеточной жидкостями.

Высокая осмолярность внеклеточной жидкости обеспечивается благодаря активному транспорту ионов натрия из клетки, что обеспечивает их высокое содержание во внеклеточной жидкости. Учитывая тот факт, что осмолярность влияет на распределение жидкости между ВнеКЖ и КЖ, следовательно, объем внеклеточной жидкости непосредственно зависит от концентрации натрия.

РЕГУЛЯЦИЯ ВОДНОГО БАЛАНСА

Поступление жидкости в организм человека должно быть адекватно ее выведению, в противном случае может возникнуть гипергидратация или дегидратация. Чтобы произошла экскреция (выведение) токсических веществ (ядовитых веществ, образующихся в организме в процессе метаболизма (обмена веществ)), почки должны ежедневно выделять минимум 500 мл мочи. К этому количеству нужно добавить 400 мл жидкости, которая ежедневно выводится через легкие в процессе дыхания, 500 мл - выводится через кожу, а также 100 мл - с фекальными массами. В результате, организм человека ежедневно теряет в среднем 1500 мл (1,5 л) жидкости.

Отметим, что ежедневно в организме человека в процессе метаболизма (как результат побочного продукта обмена веществ) синтезируется примерно 400 мл воды. Таким образом, чтобы поддерживать минимальный уровень водного баланса, в организм должно поступить минимум 1100 мл воды в сутки. В действительности суточный объем поступающей жидкости часто превышает указанный минимальный уровень, при этом почки, в процессе регуляции водного баланса, отлично справляются с выведением лишней жидкости.

У большинства людей средний объем суточной мочи составляет примерно 1200-1500 мл. При необходимости почки могут образовывать значительно большее количество мочи.

Осмолярность плазмы крови связана с поступлением жидкости в организм и процессом образования и выведения мочи. Например, в случае, если потеря жидкости адекватно не восполняется, объем внеклеточной жидкости снижается, а осмолярность повышается, что приводит к увеличению поступающей жидкости из клеток организма во внеклеточную жидкость, тем самым восстанавливая ее осмолярность и объем до необходимого уровня. Тем не менее, подобное внутреннее распределение жидкости эффективно только на ограниченный промежуток времени, поскольку этот процесс приводит к дегидрадации (обезвоживанию) клеток, в результате организм нуждается в поступлении из вне большего количества жидкости.

На рисунке 4 схематически представлен физиологический ответ на дефицит жидкости в организме.

Рисунок 4. Поддержание нормального водного баланса в организме регулируется гипоталамо-гипофизарной системой, чувством жажды, адекватного синтеза антидиуретического гормона и полноценного функционирования почек

При дефиците жидкости в организме, высокоосмолярная плазма крови протекает через гипоталамус, в котором осморецепторы (специальные клетки) анализируют состояние плазмы и дают сигнал к запуску механизма снижения осмолярности путем стимуляции секреции в гипофизе антидиуретического гормона (АДГ) и возникновения чувства жажды. При жажде человек старается компенсировать недостаток жидкости из вне, потребляя напитки или воду. Антидиуретический гормон оказывает влияние на функцию почек, тем самым препятствуя выведению жидкости из организма. АДГ способствует повышению реабсорбции (обратного всасывания) жидкости из собирательных трубочек и дистальных канальцев почек, в результате чего продуцируется относительно небольшое количество мочи более высокой концентрации. Несмотря на такие изменения в плазме крови, современные диагностические анализаторы позволяют оценить степень гемолиза и измерять реальный уровень содержания калия в плазме гемолизированных образцов крови.

При поступлении в организм большого количества жидкости, осмолярность внеклеточной жидкости снижается. При этом не происходит стимуляция осморецепторов в гипоталамусе - у человека не возникает чувство жажды и не повышается уровень антидиуретического гормона. С целью предотвращения чрезмерной водной нагрузки, в почках образуется большое количество разбавленной мочи.

Отметим, что ежедневно в желудочно-кишечный тракт поступает примерно 8000 мл (8 литров) жидкости в виде желудочного, кишечного и панкреатических соков, желчи, а также слюны. В нормальном состоянии примерно 99% этой жидкости реабсорбируется и только 100 мл выходит из организма с фекальными массами. Тем не менее нарушение функции сохранения воды, которая содержится в этих секретах, может привести к водному дисбалансу, что вызовет серьезные нарушения состояния всего организма.

Еще раз обратим внимание на факторы, влияющие на нормальную регуляцию водного баланса в организме человека:

  • Чувство жажды (для проявления жажды человек должен находиться в сознании)
  • Полноценное функционирование гипофиза и гипоталамуса
  • Полноценное функционирование почек
  • Полноценное функционирование желудочно-кишечного тракта

РЕГУЛЯЦИЯ БАЛАНСА НАТРИЯ

Для нормального функционирования и здоровья организма поддержка натриевого баланса имеет такое же значение, как и поддержка водного баланса. В нормальном состоянии организм взрослого человека содержит примерно 3000 ммоль натрия. Большая часть натрия содержится во внеклеточной жидкости: плазме крови и интерстициальной жидкости (концентрация натрия в них около 140 ммоль/л).

Ежедневно потери натрия составляют минимум 10 ммоль/л. Чтобы поддерживать в организме нормальный баланс, эти потери должны компенсироваться (восполняться). С питанием люди получают значительно больше натрия, чем необходимо организму для компенсации (с продуктами питания, как правило в виде соленых приправ, человек ежедневно получает в среднем 100-200 ммоль натрия). Тем не менее, несмотря на широкую вариабельность поступления натрия в организм, почечная регуляция обеспечивает выведение его излишков с мочой, тем самым поддерживая физиологический баланс.

Процесс экскреции (выведения) натрия через почки зависит непосредственно от СКФ (скорости клубочковой фильтрации). Высокая скорость клубочковой фильтрации повышает количество выведения натрия в организме, а низкая скорость СКФ - задерживает его. Примерно 95-99% натрия, проходящего процесс фильтрации в почечных клубочках, активно реабсорбируется по мере прохождения мочи через проксимальные извитые канальцы. К моменту попадания ультрафильтрата в дистальный извитые канальцы, количество натрия, уже отфильтрованного в почечных клубочках, составляет 1-5%. Будет ли оставшийся натрий выведен с мочой или реабсорбируется в кровь, зависит непосредственно от концентрации в крови гормона надпочечников - альдостерона.

Альдостерон усиливает реабсорбцию натрия в обмен на ионы водорода или калия, тем самым оказывая влияние на клетки дистальных канальцев почек. То есть, при условии высокого содержания альдостерона в крови, большая часть остатков натрия реабсорбируется; при низкой концентрации - натрий выводится с мочой в больших количествах.

Рисунок 5.

Контролирует процесс выработки альдостерона (см рисунок 5). Ренин - фермент, который продуцируется почками в клетках юкстагломерулярного аппарата в ответ на снижение кровотока через почечные клубочки. Поскольку скорость почечного кровотока, как и кровотока через другие органы, зависит от объема крови, следовательно, и от концентрации натрия в крови, секреция ренина в почках повышается в случае снижения уровня натрия в плазме.

Благодаря ренину происходит ферментативное расщепление белка, также известного как рениновый субстрат . Одним из продуктов этого расщепления является ангиотензин I - пептид, содержащий 10 аминокислот.

Еще один фермент - АПФ (ангиотензинпревращающий фермент) , который синтезируется в основном в легких. В процессе метаболизма АПФ отделяет от ангиотензина I две аминокислоты, что приводит к образованию октопептида - гормона ангиотензина II.

Ангиотензин II обладает очень важными для организма свойствами:

  • Вазоконстрикция - сужение кровеносных сосудов, что способствует повышению давления крови и восстанавливает нормальный почечный кровоток
  • Стимулирует выработку альдостерона в клетках коры надпочечников, тем самым активируя реабсорбцию натрия, что способствует восстановлению нормального кровотока через почки и общего объема крови в организме.

При повышении объема крови и кровяного давления клетками сердца секретируется гормон, являющийся антагонистом альдостерона - ANP (предсердный натрийуретический пептид , или ПНП). ПНП способствует снижению реабсорбции натрия в дистальных канальцах почек, тем самым усиливает его выведение с мочой. То есть, система «обратной связи» обеспечивает четкую регуляцию баланса натрия в организме.

Данные специалистов говорят, что в организм человека через желудочно-кишечный тракт каждый день поступает примерно 1500 ммоль натрия. Примерно 10 ммоль натрия, который экскретируется с фекальными массами, реабсорбируется. В случае нарушения функций желудочно-кишечного тракта, количество реабсорбируемого натрия снижается, что приводит к его дефициту в организме. При нарушенном механизме почечной компенсации, начинают проявляться признаки этого дефицита.

Поддержание нормального баланса натрия в организме зависит от 3-х основных факторов:

  • Функции почек
  • Секреции альдостерона
  • Функционирования желудочно-кишечного тракта

КАЛИЙ

Калий участвует в проведении нервных импульсов, процессе сокращения мускулатуры, обеспечивает действие многих ферментов. В организме человека содержится в среднем 3000 ммоль калия, большая часть которого содержится в клетках. Концентрация калия в плазме крови составляет примерно 0,4%. Несмотря на то, что его концентрацию в крови можно измерять, результат анализа не будет объективно отражать общее содержание калия в организме. Тем не менее, для поддержания общего баланса калия, необходимо сохранять нужный уровень концентрации этого элемента в плазме крови.

Регуляция баланса калия

Организм ежедневно теряет с калом, мочой и потом минимум 40 ммоль калия. Поддержание необходимого калиевого баланса требует восполнения этих потерь. Рацион питания, который содержит овощи, фрукты, мясо и хлеб, обеспечивает примерно 100 ммоль калия в день. чтобы обеспечить необходимый баланс, излишки калия выводятся с мочой. Процесс фильтрации калия, как и натрия, происходит в почечных клубочках (как правило он реабсорбируется в проксимальной (начальной) части почечных канальцев. В собирательных клубочках и дистальных отделах канальцев происходит тонкая регуляция (калий может реабсорбироваться или секретироваться в обмен на ионы натрия).

Ренин-ангиотензинальдостероновая система регулирует натрий-калиевый обмен, а точнее - стимулирует его (альдостерон запускает реабсорбцию натрия и процесс выведения калия с мочой).

Кроме этого, количество выводимого с мочой калия определяется функцией почек в регуляции кислотно-щелочного баланса (pH) крови в физиологических пределах нормы. Например, одним из механизмов предотвращения окисления крови является выведение из организма с мочой избытка ионов водорода (это происходит путем обмена ионов водорода на ионы натрия в дистальных почечных канальцах). Таким образом, при ацидозе меньшее количество натрия может обмениваться на калий, в результате почки выводят меньше калия. Существуют и другие пути взаимодействия между кислотно-основным состоянием и калием.

В нормальном состоянии примерно 60 ммоль калия выделяется в желудочно-кишечный тракт, где большая его часть реабсорбируется (с фекальными массами организм теряет около 10 ммоль калия). В случае нарушения функций желудочно-кишечного тракта, механизм реабсорбции нарушается, что может привести к дефициту калия.

Транспорт калия через клеточные мембраны

Низкая концентрация калия во внеклеточной жидкости и высокая - во внутриклеточной жидкости регулируется с помощью натрий-калиевой помпы. Ингибирование (торможение) или стимуляция (усиление) этого механизма влияет на концентрацию калия в плазме крови, так как происходит изменение соотношение концентраций во внеклеточной и внутриклеточной жидкостях. Отметим, что с ионами калия при прохождении через клеточные мембраны конкурируют ионы водорода, то есть, уровень калия в плазме крови оказывает влияние на кислотно-основной баланс.

Значительное снижение или увеличение концентрации калия в плазме крови вовсе не указывает не дефицит или избыток этого элемента в организме в целом - это может указывать о нарушении необходимого баланса вне- и внутриклеточного калия.

Регуляция концентрации калия в плазме крови происходит за счет следующих факторов:

  • Поступление калия с пищей
  • Функции почек
  • Функции желудочно-кишечного тракта
  • Выработки альдостерона
  • Кислотно-щелочного баланса
  • Натриево-калиевой помпы

История открытия

В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионы К + , и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазмой мышцы и окружающей средой, который составлял около - 70 мВ.

Согласно теории Ю. Бернштейна, при возбуждении клетки её мембрана повреждается, и ионы К + вытекают из клетки по концентрационному градиенту до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя. Это утверждение, относящееся скорее к потенциалу действия , было опровергнуто Ходжкином и Хаксли в 1939 году.

Теорию Бернштейна касательно потенциала покоя подтвердил Кеннет Стюарт Коул (Kenneth Stewart Cole), иногда его инициалы ошибочно пишут как K.C. Cole, из-за его прозвища, Кейси («Kacy»). ПП и ПД изображены на известной иллюстрации Коула и Curtis, 1939. Этот рисунок стал эмблемой Membrane Biophysics Group of the Biophysical Society (см. иллюстрацию).

Общие положения

Для того, чтобы на мембране поддерживалась разность потенциалов, необходимо, чтобы была определенная разность концентрации различных ионов внутри и снаружи клетки.

Концентрации ионов в клетке скелетной мышцы и во внеклеточной среде

Потенциал покоя для большинства нейронов составляет величину порядка −60 мВ - −70 мВ. У клеток невозбудимых тканей на мембране также имеется разность потенциалов, разная для клеток разных тканей и организмов.

Формирование потенциала покоя

ПП формируется в два этапа.

Первый этап: создание незначительной (-10 мВ) отрицательности внутри клетки за счёт неравного асимметричного обмена Na + на K + в соотношении 3: 2. В результате этого клетку покидает больше положительных зарядов с натрием, чем возвращается в неё с калием. Такая особенность работы натрий-калиевого насоса, осуществляющего взаимообмен этих ионов через мембрану с затратами энергии АТФ , обеспечивает его электрогенность.

Результаты деятельности мембранных ионных насосов-обменников на первом этапе формирования ПП таковы:

1. Дефицит ионов натрия (Na +) в клетке.

2. Избыток ионов калия (K +) в клетке.

3. Появление на мембране слабого электрического потенциала (-10 мВ).

Второй этап: создание значительной (-60 мВ) отрицательности внутри клетки за счёт утечки из неё через мембрану ионов K + . Ионы калия K + покидают клетку и уносят с собой из неё положительные заряды, доводя отрицательность до -70 мВ.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

См. также

Примечания

Ссылки

Дудель Й., Рюэгг Й., Шмидт Р. и др. Физиология человека: в 3-х томах. Пер. с англ / под ред Р. Шмидта и Г. Тевса. - 3. - М .: Мир, 2007. - Т. 1. - 323 с илл. с. - 1500 экз. - ISBN 5-03-000575-3


Wikimedia Foundation . 2010 .

Смотреть что такое "Потенциал покоя" в других словарях:

    ПОТЕНЦИАЛ ПОКОЯ, электрический потенциал между внутренней и наружной средой клетки, возникающий на ее мембране; у нейронов и мышечных клеток достигает величины 0,05 0,09 В; возникает из за неравномерного распределения и накопления ионов по разные … Энциклопедический словарь

    Мембранный потенциал покоя, разность потенциалов, существующая у живых клеток в состоянии физиол. покоя, между их цитоплазмой и внеклеточной жидкостью. У нервных и мышечных клеток П. п. варьирует обычно в диапазоне 60 90 мВ, причём внутр. сторона …

    потенциал покоя - напряжение покоя — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы напряжение покоя EN rest potentialresting… … Справочник технического переводчика

    потенциал покоя - Rest(ing) Potential Потенциал покоя Потенциал, существующий между средой, в которой находится клетка, и ее содержимым … Толковый англо-русский словарь по нанотехнологии. - М.

    Потенциал покоя - Потенциал неактивного нейрона. Называется также мембранным потенциалом … Психология ощущений: глоссарий

    потенциал покоя - разность потенциала между содержимым клетки и внеклеточной жидкостью. В нервных клетках п.п. участвует в поддержании готовности клетки к возбуждению. * * * Мембранный биоэлектрический потенциал (около 70мВ) в нервной клетке, находящейся в… … Энциклопедический словарь по психологии и педагогике

    Потенциал покоя - – разность электрических зарядов между наружной и внутренней поверхностями мембраны в состоянии физиологического покоя клетки, регистрируемый до начала действия раздражителя … Словарь терминов по физиологии сельскохозяйственных животных

    Мембранный потенциал, регистрируемый до начала действия раздражителя … Большой медицинский словарь

    - (физиологический) разность потенциалов между содержимым клетки (волокна) и внеклеточной жидкостью; скачок потенциала локализуется на поверхностной мембране, при этом её, внутренняя сторона заряжена электроотрицательно по отношению к… … Большая советская энциклопедия

    Быстрое колебание (спайк) мембранного потенциала, возникающее при возбуждении нервных, мышечных, нек рых железистых и растит, клеток; электрич. сигнал, обеспечивающий быструю передачу информации в организме. Подчиняется правилу «всё или ничего»… … Биологический энциклопедический словарь

Книги

  • 100 способов изменить жизнь. Часть 1 , Парфентьева Лариса. О книге Сборник вдохновляющих историй о том, как изменить жизнь к лучшему, от человека, сумевшего развернуть свою собственную жизнь на 180 градусов. Эта книга родилась из еженедельной рубрики…

Статья на конкурс «био/мол/текст»: Потенциал покоя - это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.

Мембранные транспортные структуры - натрий-калиевые насосы - создают предпосылки для возникновения потенциала покоя. Предпосылки эти - разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K +) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.

Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка - нейрон. Главное, что лежит в основе работы нейрона - это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя .

Определение понятия «потенциал покоя»

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал - мембранный потенциал покоя .

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии .

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e ), полный электрический заряд любого тела можно представить как q = ±N×e , где N - целое число.

Потенциал покоя - это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде - это ионные токи .

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи - положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K +), а внутри - отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K +).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они - отрицательные.

Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки - тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность - тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» - возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» - смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия - Na + - и калия - K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

  1. вначале она обменивает «свой» натрий на «чужой» калий (да-да, одни положительные ионы на другие, такие же положительные);
  2. потом из неё происходит утечка этих «наменянных» положительных ионов калия, вместе с которыми из клетки утекают положительные заряды.

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

В мембране нервной клетки постоянно работают белковые насосы-обменники (аденозинтрифосфатазы, или Na + /K + -АТФазы), встроенные в мембрану. Они меняют «собственный» натрий клетки на наружный «чужой» калий.

Но ведь при обмене одного положительного заряда (Na +) на другой такой же положительный заряд (K +) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 - горький, 0,05–0,1 - горько-солёный, а начиная с 0,2 и выше - сложный вкус, состоящий из солёного, горького и кислого .

Важно здесь то, что обмен натрия на калий - неравный . За каждые отданные клеткой три иона натрия она получает всего два иона калия . Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)

Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной - поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток .

Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na +) в клетке.
  2. Избыток калия (K +) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь : растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой - потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки . И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na +) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.

По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране - «калиевые каналы утечки», которые в норме открыты и выпускают калий .

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление - к деполяризации. ...Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка - это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) .

От химического - к электрическому

А теперь - ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов .

Калий (K +) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» - отрицательные заряды. Но они не могут просочиться через мембрану - в отличие от ионов калия - т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это - большая часть потенциала покоя.

Для этой составной части потенциала покоя есть даже специальное название - концентрационный потенциал . Концентрационный потенциал - это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия .

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста , по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал E K:

где Е к - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, F - постоянная Фарадея, К + внеш и K + внутр - концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида - K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей Р K: PNa :P Cl = 1: 0,04: 0,45 .

Заключение

Итак, поте нциал покоя состоит из двух частей:

  1. −10 мВ , которые получаются от «несимметричной» работы мембранного насоса-обменника (ведь он больше выкачивает из клетки положительных зарядов (Na +), чем закачивает обратно с калием).
  2. Вторая часть - это всё время утекающий из клетки калий, уносящий положительные заряды. Его вклад - основной: −60 мВ . В сумме это и дает искомые −70 мВ.

Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.

Вот теперь мембранный потенциал покоя окончательно сформирован.

Схема работы Na + /K + -АТФазы наглядно иллюстрирует «несимметричный» обмен Na + на K + : выкачивание избыточного «плюса» в каждом цикле работы фермента приводит к отрицательному заряжению внутренней поверхности мембраны. Чего в этом ролике не сказано, так это того, что АТФаза ответственна за менее чем 20% потенциала покоя (−10 мВ): оставшаяся «отрицательность» (−60 мВ) появляется за счет выхода из клетки через «калиевые каналы утечки» ионов K + , стремящихся выровнять свою концентрацию внутри клетки и вне нее.

Литература

  1. Jacqueline Fischer-Lougheed, Jian-Hui Liu, Estelle Espinos, David Mordasini, Charles R. Bader, et. al.. (2001). Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels . J Cell Biol . 153 , 677-686;
  2. Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. (1998). Role of an inward rectifier K + current and of hyperpolarization in human myoblast fusion . J. Physiol. 510 , 467–476;
  3. Sarah Sundelacruz, Michael Levin, David L. Kaplan. (2008). Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells . PLoS ONE . 3 , e3737;
  4. Павловская М.В. и Мамыкин А.И. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / Электронное пособие по общему курсу физики. СПб: Санкт-Петербургский государственный электротехнический университет;
  5. Ноздрачёв А.Д., Баженов Ю.И., Баранникова И.А., Батуев А.С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А.Д. Ноздрачёва. СПб: Лань, 2001. - 1088 с.;
  6. Макаров А.М. и Лунева Л.А. Основы электромагнетизма / Физика в техническом университете. Т. 3;
  7. Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. - 271 с.;
  8. Родина Т.Г. Сенсорный анализ продовольственных товаров. Учебник для студентов вузов. М.: Академия, 2004. - 208 с.;
  9. Кольман Я. и Рем К.-Г. Наглядная биохимия. М.: Мир, 2004. - 469 с.;
  10. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000. - 277 с..

Итак, есть два факта, которые необходимо учесть, чтобы понять механизмы, поддерживающие мембранный потенциал покоя.

1 . Концентрация ионов калия в клетке значительно выше, чем во внеклеточной среде. 2 . Мембрана в покое избирательно проницаема для К + , а для Nа + проницаемость мембраны в покое незначительна. Если принять проницаемость для калия за 1, то проницаемость для натрия в покое составит лишь 0,04. Следовательно, существует постоянный поток ионов К + из цитоплазмы по градиенту концентрации . Калиевый ток из цитоплазмы создает относительный дефицит положительных зарядов на внутренней поверхности, для анионов клеточная мембрана непроницаема в результате цитоплазма клетки оказывается заряженной отрицательно по отношению к окружающей клетку среде. Эта разность потенциалов между клеткой и внеклеточным пространством, поляризация клетки, называется мембранным потенциалом покоя (МПП).

Возникает вопрос: почему же ток ионов калия не продолжается до уравновешивания концентраций иона вне и внутри клетки? Следует вспомнить о том, это заряженная частица, следовательно, ее движение зависит и от заряда мембраны. Внутриклеточный отрицательный заряд, который создается благодаря току ионов калия из клетки, препятствует выходу из клетки новых ионов калия. Поток ионов калия прекращается, когда действие электрического поля компенсирует движение иона по градиенту концентрации. Следовательно, для данной разности концентраций ионов на мембране формируется так называемый РАВНОВЕСНЫЙ ПОТЕНЦИАЛ для калия. Этот потенциал (Ek) равен RT/nF *ln /, (n – валентность иона.) или

Ek=61,5 log/

Мембранный потенциал (МП) в большой степени зависит от равновесного потенциала калия, однако, часть ионов натрия все же проникает в покоящуюся клетку, так же, как и ионы хлора. Таким образом, отрицательный заряд, который имеет мембрана клетки, зависит от равновесных потенциалов натрия, калия и хлора и описывается уравнением Нернста. Наличие этого мембранного потенциала покоя чрезвычайно важно, потому, что именно он определяет способность клетки к возбуждению - специфическому ответу на раздражитель.

Возбуждение клетки

Возбуждение клетки (переход от покоя к активному состоянию) происходит при повышении проницаемости ионных каналов для натрия, а иногда и для кальция. Причиной изменения проницаемости может быть и изменение потенциала мембраны - активируются электровозбудимые каналы, и взаимодействие мембранных рецепторов с биологически активным веществом – рецептор - управляемые каналы, и механическое воздействие. В любом случае для развития возбуждения необходима начальная деполяризация - небольшое снижение отрицательного заряда мембраны, вызванная действием раздражителя. Раздражителем может быть любое изменение параметров внешней или внутренней среды организма: свет, температура, химические вещества (воздействие на вкусовые и обонятельные рецепторы), растяжение, давление. Натрий устремляется в клетку, возникает ионный ток и происходит снижение мембранного потенциала - деполяризация мембраны.

Таблица 4

Изменение мембранного потенциала при возбуждении клетки .

Обратите внимание на то, что вход натрия в клетку осуществляется по градиенту концентрации и по электрическому градиенту: концентрация натрия в клетке в 10 раз ниже, чем во внеклеточной среде и заряд по отношению к внеклеточному - отрицательный. Одновременно активируются и калиевые каналы, но натриевые (быстрые) активируются и инактивируются в течение 1 – 1,5 миллисекунд, а калиевые дольше.

Изменения мембранного потенциала принято изображать графически. На верхнем рисунке представлена начальная деполяризация мембраны - изменение потенциала в ответ на действие раздражителя. Для каждой возбудимой клетки существует особый уровень мембранного потенциала, при достижении которого резко изменяются свойства натриевых каналов. Этот потенциал назван критическим уровнем деполяризации (КУД ). При изменении мембранного потенциала до КУД открываются быстрые, потенциал зависимые натриевые каналы, поток ионов натрия устремляется в клетку. При переходе положительно заряженных ионов в клетку, в цитоплазме - увеличивается положительный заряд. В результате этого трансмембранная разность потенциалов уменьшается, значение МП снижается до 0, а затем, по мере дальнейшего поступления натрия в клетку происходит перезарядка мембраны и реверсия заряда (овершут)- теперь поверхность становится электроотрицательной по отношению к цитоплазме - мембрана ДЕПОЛЯРИЗОВАНА полностью – средний рисунок. Дальнейшего изменения заряда не происходит потому, что инактивируются натриевые каналы – больше натрий в клетку поступать не может, хотя градиент концентрации изменяется весьма незначительно. Если раздражитель обладает такой силой, что деполяризует мембрану до КУД, этот раздражитель называется пороговым, он вызывает возбуждение клетки. Точка реверса потенциала – это знак того, что вся гамма раздражителей любой модальности переведена в язык нервной системы - импульсы возбуждения. Импульсы, или потенциалы возбуждения называются потенциалами действия. Потенциал действия (ПД) – быстрое изменение мембранного потенциала в ответ на действия раздражителя пороговой силы. ПД имеет стандартные амплитуду и временные параметры, не зависящие от силы стимула - правило "ВСЕ ИЛИ НИЧЕГО". Следующий этап – восстановление мембранного потенциала покоя - реполяризация (нижний рисунок) в основном обусловлена активным ионным транспортом. Наиболее важен процесс активного транспорта - это работа Na/K - насоса, который выкачивает ионы натрия из клетки, одновременно закачивая ионы калия внутрь клетки. Восстановление мембранного потенциала происходит благодаря току ионов калия из клетки – калиевые каналы активируются и пропускают ионы калия до достижения равновесного калиевого потенциала. Это процесс важен потому, что до тех пор, пока не восстановлен МПП, клетка не способна воспринимать новый импульс возбуждения.

ГИПЕРПОЛЯРИЗАЦИЯ - кратковременное увеличение МП после его восстановления, которое обусловлено повышением проницаемости мембраны для ионов калия и хлора. Гиперполяризация бывает только после ПД и характерна далеко не для всех клеток. Попытаемся еще раз представить графически фазы потенциала действия и ионные процессы, лежащие в основе изменений потенциала мембраны (рис. 9). На оси абсцисс отложим значения мембранного потенциала в милливольтах, на оси ординат – время в миллисекундах.

1. Деполяризация мембраны до КУД – могут открыться любые натриевые каналы, иногда кальциевые, и быстрые, и медленные, и потенциал-зависимые, и рецептор-управляемые. Это зависит от вида раздражителя и типа клеток

2. Быстрое поступление натрия в клетку - открываются быстрые, потенциал-зависимые натриевые каналы, и деполяризация достигает точки реверса потенциала – происходит перезарядка мембраны, знак заряда меняется на положительный.

3. Восстановление градиента концентрации по калию – работа насоса. Калиевые каналы активированы, калий переходит из клетки во внеклеточную среду – реполяризация, начинается восстановление МПП

4. Следовая деполяризация, или отрицательный следовой потенциал - мембрана еще деполяризована относительно МПП.

5. Следовая гиперполяризация. Калиевые каналы остаются открытыми и дополнительный ток калия гиперполяризует мембрану. После этого клетка возвращается к исходному уровню МПП. Длительность ПД составляет для разных клеток от 1 до 3-4 мс.

Рисунок 9 Фазы потенциала действия

Обратите внимание на три величины потенциала, важные и постоянные для каждой клетки ее электрические характеристики.

1. МПП - электроотрицательность мембраны клетки в покое, обеспечивающая способность к возбуждению - возбудимость. На рисунке МПП = -90 мв.

2. КУД - критический уровень деполяризации (или порога генерации мембранного потенциала действия) - это такая величина мембранного потенциала, при достижении которой открываются быстрые , потенциал зависимые натриевые каналы и происходит перезарядка мембраны за счет поступления в клетку положительных ионов натрия. Чем выше электроотрицательность мембраны, тем труднее деполяризовать ее до КУД, тем менее возбудима такая клетка.

3. Точка реверса потенциала (овершут) - такая величинаположительного мембранного потенциала, при которой положительно заряженные ионы уже не проникают в клетку - кратковременный равновесный натриевый потенциал. На рисунке + 30 мв. Суммарное изменение потенциала мембраны от –90 до +30 составит для данной клетки 120 мВ, эта величина и является потенциалом действия. Если этот потенциал возник в нейроне, он будет распространяться по нервному волокну, если в мышечных клетках – будет распространяться по мембране мышечного волокна и приведет к сокращению, в железистых к секреции – к действию клетки. Это и есть специфический ответ клетки на действие раздражителя, возбуждение.

При действии раздражителя подпороговой силы возникает неполная деполяризация - ЛОКАЛЬНЫЙ ОТВЕТ (ЛО). Неполная, или частичная деполяризация – это такое изменение заряда мембраны, которое не достигает критического уровня деполяризации (КУД).

Оглавление темы "Передача информации посредством электрического возбуждения.":
1. Передача информации посредством электрического возбуждения. Потенциал покоя.
2. Диффузионный потенциал. Трансмембранный градиент концентрации калия.

4. Влияние глии на состав межклеточной среды. Гематоэнцефалический барьер.
5. Потенциал действия. Временной ход потенциала действия. Реполяризация.
6. Следовые потенциалы. Природа потенциала действия. Порог и возбудимость.
7. Проводимость мембраны. Ионные токи во время потенциала действия.
8. Кинетика ионных токов во время возбуждения. Регистрация мембранных токов.
9. Натрий (Na) и калиевая (K) проводимость во время потенциала действия.
10. Инактивация натриевого (Nа) - тока.

В плазме крови концентрация калия (K) обычно поддерживается близкой к своему нормальному уровню -4 мМ (табл. 1.1). Однако во многих нервных клетках не происходит быстрого обмена ионов с плазмой, и для них [К+]0 может существенно отличаться от нормального уровня. На рис. 2.3 схематически изображен нейрон ЦНС, который отделен от ближайшего капилляра глиальными клетками. Здесь внеклеточное пространство существует в виде узких щелей шириной примерно 15 нм. Периферические аксоны аналогичным образом тесно окружены шванновскими клетками. Такие интерстициальные пространства вполне адекватно обеспечивают в длительных временных масштабах выравнивание состава внешней среды путем диффузии, однако при интенсивной активности нейронов концентрации ионов во внеклеточном пространстве могут на короткое время значительно изменяться. Во время интенсивной электрической активности ионы натрия (Na+) входят в клетку, а ионы калия (K) выходят из нее.


Рис. 2.10. Зависимость максимальной натриевой (Na)-проницаемости , P(Na), от величины скачков деполяризации. Перехват Ранвье был деполяризован от исходного мембранного потенциала -80 мВ до тестирующих потенциалов, отложенных по оси абсцисс. На вставке: деполяризация до тестирующего потенциала и возникающий в ответ натрия (Na) - ток, I(Na). Максимум lNo определяет (вместе с внутри- и внеклеточной концентрациями натрия (Na) и мембранным потенциалом) максимальную P(Na). Кривые зависимости P(Na) от потенциала смещаются вдоль оси абсцисс при изменениях внеклеточной концентрации кальция (Са2+) ([Са2+]0 от 0 до 20 мМ). При снижении [Са2+]0 пороговая деполяризация для повышения P(Na) уменьшается; происходит повышение возбудимости перехвата Ранвье (по с изменениями)

Высокая внеклеточная концентрация натрия (Na+) при этом заметно не меняется, тогда как концентрация калия (K) может существенно-возрастать. Внеклеточную концентрацию К+ можно измерить с помощью микроэлектродов, заполненных селективными К+-ионообменниками. При высокой активности нервных клеток внеклеточная концентрация калия (K) возрастает от нормального уровня 3-4 мМ до 10 мМ . Согласно уравнению Нернста (см. рис. 2.2), такие высокие внеклеточные концентрации калия (K) вызывают сильную деполяризацию нервных клеток. Не исключено, что деполяризация, которая обусловлена повышенной внеклеточной концентрацией калия (K), является одной из причин развития в мозге судорожных разрядов, возникающих, например, во время эпилептических приступов . После окончания интенсивной работы клеток процесс активного транспорта калия (K) может сдвинуть его внеклеточную концентрацию ниже нормального уровня, вызывая гиперполяризацию нервных клеток.


Рис. 2.3. А-Г. Свойства глиальных клеток. А. Схема относительного расположения нейронов, глии и капилляров, составленная по электронно-микроскопическим данным. Астроцит (обозначен розовым цветом), в который введен микроэлектрод для регистрации мембранного потенциала, находится между капилляром и нейроном. Все клетки разделены межклеточными промежутками шириной примерно 15 нм (на схеме относительная ширина щелей увеличена). Б. Зависимость мембранного потенциала глиальных клеток (ордината) от внеклеточной концентрации калия [К+]0. Средний уровень потенциала покоя (ПП) составляет -89 мВ. Экспериментальные данные отклоняются от потенциалов рассчитанных по уравнению Нернста, только при [К+]0 = 0,3 мМ. В. Деполяризация глиальных клеток, обусловленная активностью окружающих нейронов, в зрительном нерве протея (Necturus). при его раздражении одним или тремя стимулами с интервалами 1 с (показаны вертикальными стрелками). Г. Деполяризация глиальных клеток в том же препарате во время серии стимулов длительностью 20 с при частоте 1, 2 или 5 Гц; в последнем случае деполяризация достигает почти 20 мВ. B и Г: следует обратить внимание на гораздо более медленный (секунды!) временной ход деполяризации по сравнению с потенциалом действия (по с изменениями)

Во время активности нейронов ЦНС может изменяться внеклеточная концентрация еще одного иона -кальция (Са) . Концентрацию кальция (Са), так же как и концентрацию калия (K) , можно измерить с помощью микроэлектродов, заполненных селективным ионообменником. При активации синаптических окончаний кальция (Са) входит в них; соответственно во время их высокочастотного возбуждения обнаруживается снижение внеклеточной концентрации кальция (Са) . При низкой концентрации кальция (Са) повышается возбудимость нейронов (см. ниже, рис. 2.10), что может приводить к патологическим изменениям в них .

Поделиться