Что такое кровь функции крови. Кровь, ее состав, свойства и функции понятие внутренней среде организма

Кровь - это жидкая субстанция в организме человека, которая выполняет транспортные функции для кислорода и питательных веществ от кишечника ко всем органам и системам организма. Также через кровь выводятся токсичные вещества и продукты обмена. Кровь обеспечивает человеку нормальную жизнедеятельность и жизнь в целом.

Состав крови и краткое описание составных элементов

Кровь достаточно хорошо изучена. Сегодня по ее составу врачи легко определяют состояние здоровья человека и возможные заболевания.

Кровь состоит из плазмы (жидкой части) и трех плотных групп элементов: эритроциты, лейкоциты и тромбоциты. Нормальный состав крови содержит примерно 40-45% плотных элементов. Повышение этого показателя приводит к загущению крови, а уменьшение - к разжижению. Повышение плотности/густоты крови происходит из-за большой потери жидкости организмом, например, из-за поноса, при обильном потоотделении и так далее. Разжижение происходит, наоборот, из-за задержки жидкости в организме и при обильном питье (в случае, когда почки не успевают выводить лишнюю воду).

Из чего состоит плазма крови

В плазме крови присутствует до 92% воды, остальное - это жиры, белки, углеводы, минералы и витамины.

Белки в составе плазмы обеспечивают крови нормальную свертываемость, переносят различные вещества от одних органов к другим, поддерживают различные биохимические реакции организма.

Какие белки входят в состав плазмы крови:

  • альбумины (являются основным строительным материалом для аминокислот, сохраняют кровь внутри сосудов, переносят некоторые вещества);
  • глобулины (делятся на три группы, две из них переносят различные вещества, третья участвует в формировании группы крови);
  • фибриногены (принимают участие в процессе свертываемости крови).

Кроме белков в плазме крови еще могут присутствовать аминокислотные остатки в виде азотистых соединений, цепочки . Также в плазме присутствуют еще некоторые вещества, которые не должны превышать определенных показателей. В противном случае, при увеличении показателей, диагностируют нарушение выделительных функций почек.

Прочие органические соединения в плазме - это глюкоза, ферменты и липиды.

Плотные элементы крови человека

Эритроциты - это клетки без ядра. Описание было дано в предыдущей статье.

Лейкоциты отвечают за . Задача лейкоцитов - захват и обезвреживание инфекционных элементов, а также создание базы данных, которая передается последующим поколениям. Таким образом от родителей к детям передаются либо недуги, либо иммунитет.

Тромбоциты обеспечивают крови нахождение в кровяном русле. Особенность этих клеток в том, что у них нет ядра, как и у эритроцитов, и они способны прилипать куда угодно. Именно они обеспечивают свертываемость крови при повреждениях сосудов и кожи, создавая тромбозные уплотнения и не позволяя крови вытечь наружу.

КРОВЬ
жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты). Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету. Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток. Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем ок. 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты.
Функции крови. Примитивные многоклеточные организмы (губки, актинии, медузы) живут в море, и "кровью" для них является морская вода. Вода омывает их со всех сторон и свободно проникает в ткани, доставляя питательные вещества и унося продукты метаболизма. Высшие организмы не могут обеспечить свою жизнедеятельность таким простым способом. Их тело состоит из миллиардов клеток, многие из которых объединены в ткани, составляющие сложные органы и органные системы. У рыб, например, хотя они и живут в воде, не все клетки находятся настолько близко к поверхности тела, чтобы вода обеспечивала эффективную доставку питательных веществ и удаление конечных продуктов метаболизма. Еще сложнее дело обстоит с наземными животными, вовсе не омываемыми водой. Ясно, что у них должна была возникнуть собственная жидкая ткань внутренней среды - кровь, а также распределительная система (сердце, артерии, вены и сеть капилляров), обеспечивающая кровоснабжение каждой клетки. Функции крови значительно сложнее, чем просто транспорт питательных веществ и отходов метаболизма. С кровью переносятся также гормоны, контролирующие множество жизненно важных процессов; кровь регулирует температуру тела и защищает организм от повреждений и инфекций в любой его части.
Транспортная функция. С кровью и кровоснабжением тесно связаны практически все процессы, имеющие отношение к пищеварению и дыханию - двум функциям организма, без которых жизнь невозможна. Связь с дыханием выражается в том, что кровь обеспечивает газообмен в легких и транспорт соответствующих газов: кислорода - от легких в ткани, диоксида углерода (углекислого газа) - от тканей к легким. Транспорт питательных веществ начинается от капилляров тонкого кишечника; здесь кровь захватывает их из пищеварительного тракта и переносит во все органы и ткани, начиная с печени, где происходит модификация питательных веществ (глюкозы, аминокислот, жирных кислот), причем клетки печени регулируют их уровень в крови в зависимости от потребностей организма (тканевого метаболизма). Переход транспортируемых веществ из крови в ткани осуществляется в тканевых капиллярах; одновременно в кровь из тканей поступают конечные продукты, которые далее выводятся через почки с мочой (например, мочевина и мочевая кислота).
См. также
ДЫХАНИЯ ОРГАНЫ ;
КРОВЕНОСНАЯ СИСТЕМА ;
ПИЩЕВАРЕНИЕ . Кровь переносит также продукты секреции эндокринных желез - гормоны - и тем самым обеспечивает связь между различными органами и координацию их деятельности (см. также ЭНДОКРИННАЯ СИСТЕМА). Регуляция температуры тела. Кровь играет ключевую роль в поддержании постоянной температуры тела у гомойотермных, или теплокровных, организмов. Температура человеческого тела в нормальном состоянии колеблется в очень узком интервале ок. 37° С. Выделение и поглощение тепла различными участками тела должны быть сбалансированы, что достигается переносом тепла с помощью крови. Центр температурной регуляции располагается в гипоталамусе - отделе промежуточного мозга. Этот центр, обладая высокой чувствительностью к небольшим изменениям температуры проходящей через него крови, регулирует те физиологические процессы, при которых выделяется или поглощается тепло. Один из механизмов состоит в регуляции тепловых потерь через кожу посредством изменения диаметра кожных кровеносных сосудов кожи и соответственно объема крови, протекающей вблизи поверхности тела, где тепло легче теряется. В случае инфекции определенные продукты жизнедеятельности микроорганизмов либо продукты вызванного ими распада тканей взаимодействуют с лейкоцитами, вызывая образование химических веществ, стимулирующих центр температурной регуляции в головном мозге. В результате наблюдается подъем температуры тела, ощущаемый как жар. Защита организма от повреждений и инфекции. В осуществлении этой функции крови особую роль играют лейкоциты двух типов: полиморфноядерные нейтрофилы и моноциты. Они устремляются к месту повреждения и накапливаются вблизи него, причем большая часть этих клеток мигрирует из кровотока через стенки близлежащих кровеносных сосудов. К месту повреждения их привлекают химические вещества, высвобождаемые поврежденными тканями. Эти клетки способны поглощать бактерии и разрушать их своими ферментами. Таким образом, они препятствуют распространению инфекции в организме. Лейкоциты принимают также участие в удалении мертвых или поврежденных тканей. Процесс поглощения клеткой бактерии или фрагмента мертвой ткани называется фагоцитозом, а осуществляющие его нейтрофилы и моноциты - фагоцитами. Активно фагоцитирующий моноцит называют макрофагом, а нейтрофил - микрофагом. В борьбе с инфекцией важная роль принадлежит белкам плазмы, а именно иммуноглобулинам, к которым относится множество специфических антител. Антитела образуются другими типами лейкоцитов - лимфоцитами и плазматическими клетками, которые активируются при попадании в организм специфических антигенов бактериального или вирусного происхождения (либо присутствующих на клетках, чужеродных для данного организма). Выработка лимфоцитами антител против антигена, с которым организм встречается в первый раз, может занять несколько недель, но полученный иммунитет сохраняется надолго. Хотя уровень антител в крови через несколько месяцев начинает медленно падать, при повторном контакте с антигеном он вновь быстро растет. Это явление называется иммунологической памятью. При взаимодействии с антителом микроорганизмы либо слипаются, либо становятся более уязвимыми для поглощения фагоцитами. Кроме того, антитела мешают вирусу проникнуть в клетки организма хозяина (см. также ИММУНИТЕТ).
рН крови. pH - это показатель концентрации водородных (H) ионов, численно равный отрицательному логарифму (обозначаемому латинской буквой "p") этой величины. Кислотность и щелочность растворов выражают в единицах шкалы рН, имеющей диапазон от 1 (сильная кислота) до 14 (сильная щелочь). В норме рН артериальной крови составляет 7,4, т.е. близок к нейтральному. Венозная кровь из-за растворенного в ней диоксида углерода несколько закислена: диоксид углерода (СО2), образующийся в ходе метаболических процессов, при растворении в крови реагирует с водой (Н2О), образуя угольную кислоту (Н2СО3). Поддержание рН крови на постоянном уровне, т.е., другими словами, кислотно-щелочного равновесия, исключительно важно. Так, если рН заметно падает, в тканях снижается активность ферментов, что опасно для организма. Изменение рН крови, выходящее за рамки интервала 6,8-7,7, несовместимо с жизнью. Поддержанию этого показателя на постоянном уровне способствуют, в частности, почки, поскольку они по мере надобности выводят из организма кислоты или мочевину (которая дает щелочную реакцию). С другой стороны, рН поддерживается благодаря присутствию в плазме определенных белков и электролитов, обладающих буферным действием (т.е. способностью нейтрализовать некоторый избыток кислоты или щелочи).
КОМПОНЕНТЫ КРОВИ
Рассмотрим более подробно состав плазмы и клеточных элементов крови.
Плазма. После отделения взвешенных в крови клеточных элементов остается водный раствор сложного состава, называемый плазмой. Как правило, плазма представляет собой прозрачную или слегка опалесцирующую жидкость, желтоватый цвет которой определяется присутствием в ней небольшого количества желчного пигмента и других окрашенных органических веществ. Однако после потребления жирной пищи в кровь попадает множество капелек жира (хиломикронов), в результате чего плазма становится мутной и маслянистой. Плазма участвует во многих процессах жизнедеятельности организма. Она переносит клетки крови, питательные вещества и продукты метаболизма и служит связующим звеном между всеми экстраваскулярными (т.е. находящимися вне кровеносных сосудов) жидкостями; последние включают, в частности, межклеточную жидкость, и через нее осуществляется связь с клетками и их содержимым. Таким образом плазма контактирует с почками, печенью и другими органами и тем самым поддерживает постоянство внутренней среды организма, т.е. гомеостаз. Основные компоненты плазмы и их концентрации приведены в табл. 1. Среди растворенных в плазме веществ - низкомолекулярные органические соединения (мочевина, мочевая кислота, аминокислоты и т.д.); большие и очень сложные по структуре молекулы белков; частично ионизированные неорганические соли. К числу наиболее важных катионов (положительно заряженных ионов) относятся катионы натрия (Na+), калия (K+), кальция (Ca2+) и магния (Mg2+); к числу важнейших анионов (отрицательно заряженных ионов) - хлорид-анионы (Cl-), бикарбонат (HCO3-) и фосфат (HPO42- или H2PO4-). Основные белковые компоненты плазмы - альбумин, глобулины и фибриноген.
Таблица 1. КОМПОНЕНТЫ ПЛАЗМЫ
(в миллиграммах на 100 миллилитров)

Натрий 310-340
Калий 14-20
Кальций 9-11
Фосфор 3-4,5
Хлорид-ионы 350-375
Глюкоза 60-100
Мочевина 10-20
Мочевая кислота 3-6
Холестерин 150-280
Белки плазмы 6000-8000
Альбумин 3500-4500
Глобулин 1500-3000
Фибриноген 200-600
Диоксид углерода 55-65
(объем в миллилитрах,
с поправкой на температуру
и давление, в расчете
на 100 миллилитров плазмы)

Белки плазмы. Из всех белков в наибольшей концентрации в плазме присутствует альбумин, синтезируемый в печени. Он необходим для поддержания осмотического равновесия, обеспечивающего нормальное распределение жидкости между кровеносными сосудами и экстраваскулярным пространством (см. ОCМОС). При голодании или недостаточном поступлении белков с пищей содержание альбумина в плазме падает, что может привести к повышенному накоплению воды в тканях (отек). Это состояние, связанное с белковой недостаточностью, называется голодным отеком. В плазме присутствуют глобулины нескольких типов, или классов, важнейшие из которых обозначаются греческими буквами a (альфа), b (бета) и g (гамма), а соответствующие белки - a1, a2, b, g1 и g2. После разделения глобулинов (методом электрофореза) антитела обнаруживаются лишь во фракциях g1, g2 и b. Хотя антитела часто называют гамма-глобулинами, тот факт, что некоторые из них присутствуют и в b-фракции, обусловил введение термина "иммуноглобулин". В a- и b-фракциях содержится множество различных белков, обеспечивающих транспорт в крови железа, витамина В12, стероидов и других гормонов. В эту же группу белков входят и факторы коагуляции, которые наряду с фибриногеном участвуют в процессе свертывания крови. Основная функция фибриногена состоит в образовании кровяных сгустков (тромбов). В процессе свертывания крови, будь то in vivo (в живом организме) или in vitro (вне организма), фибриноген превращается в фибрин, который и составляет основу кровяного сгустка; не содержащая фибриногена плазма, обычно имеющая вид прозрачной жидкости бледно-желтого цвета, называется сывороткой крови.
Эритроциты. Красные кровяные клетки, или эритроциты, представляют собой круглые диски диаметром 7,2-7,9 мкм и средней толщиной 2 мкм (мкм = микрон = 1/106 м). В 1 мм3 крови содержится 5-6 млн. эритроцитов. Они составляют 44-48% общего объема крови. Эритроциты имеют форму двояковогнутого диска, т.е. плоские стороны диска как бы сжаты, что делает его похожим на пончик без дырки. В зрелых эритроцитах нет ядер. Они содержат главным образом гемоглобин, концентрация которого во внутриклеточной водной среде ок. 34%. В пересчете на сухой вес содержание гемоглобина в эритроцитах - 95%; в расчете на 100 мл крови содержание гемоглобина составляет в норме 12-16 г (12-16 г%), причем у мужчин оно несколько выше, чем у женщин. Кроме гемоглобина эритроциты содержат растворенные неорганические ионы (преимущественно К+) и различные ферменты. Две вогнутые стороны обеспечивают эритроциту оптимальную площадь поверхности, через которую может происходить обмен газами: диоксидом углерода и кислородом. Таким образом, форма клеток во многом определяет эффективность протекания физиологических процессов. У человека площадь поверхностей, через которые совершается газообмен, составляет в среднем 3820 м2, что в 2000 раз превышает поверхность тела. В организме плода примитивные красные кровяные клетки вначале образуются в печени, селезенке и тимусе. С пятого месяца внутриутробного развития в костном мозге постепенно начинается эритропоэз - образование полноценных эритроцитов. В исключительных обстоятельствах (например, при замещении нормального костного мозга раковой тканью) взрослый организм может вновь переключиться на образование эритроцитов в печени и селезенке. Однако в нормальных условиях эритропоэз у взрослого человека идет лишь в плоских костях (ребрах, грудине, костях таза, черепа и позвоночника). Эритроциты развиваются из клеток-предшественников, источником которых служат т.н. стволовые клетки. На ранних стадиях формирования эритроцитов (в клетках, еще находящихся в костном мозге) четко выявляется клеточное ядро. По мере созревания в клетке накапливается гемоглобин, образующийся в ходе ферментативных реакций. Перед тем как попасть в кровоток, клетка утрачивает ядро - за счет экструзии (выдавливания) или разрушения клеточными ферментами. При значительных кровопотерях эритроциты образуются быстрее, чем в норме, и в этом случае в кровоток могут попадать незрелые формы, содержащие ядро; очевидно, это происходит из-за того, что клетки слишком быстро покидают костный мозг. Срок созревания эритроцитов в костном мозге - от момента появления самой юной клетки, узнаваемой как предшественник эритроцита, и до ее полного созревания - составляет 4-5 дней. Срок жизни зрелого эритроцита в периферической крови - в среднем 120 дней. Однако при некоторых аномалиях самих этих клеток, целом ряде болезней или под воздействием определенных лекарственных препаратов время жизни эритроцитов может сократиться. Большая часть эритроцитов разрушается в печени и селезенке; при этом гемоглобин высвобождается и распадается на составляющие его гем и глобин. Дальнейшая судьба глобина не прослеживалась; что же касается гема, то из него высвобождаются (и возвращаются в костный мозг) ионы железа. Утрачивая железо, гем превращается в билирубин - красно-коричневый желчный пигмент. После незначительных модификаций, происходящих в печени, билирубин в составе желчи выводится через желчный пузырь в пищеварительный тракт. По содержанию в кале конечного продукта его превращений можно рассчитать скорость разрушения эритроцитов. В среднем во взрослом организме ежедневно разрушается и вновь образуется 200 млрд. эритроцитов, что составляет примерно 0,8% общего их числа (25 трлн.).



Значение для антропологии и судебной медицины. Из описания систем АВ0 и резус ясно, что группы крови имеют значение для генетических исследований и изучения рас. Они легко определяются, причем у каждого конкретного человека данная группа либо есть, либо ее нет. Важно отметить, что хотя те или иные группы крови встречаются в разных популяциях с разной частотой, нет никаких оснований утверждать, что определенные группы дают какие-либо преимущества. А тот факт, что в крови у представителей разных рас системы групп крови практически одни и те же, делает бессмысленным разделение расовых и этнических групп по крови ("негритянская кровь", "еврейская кровь", "цыганская кровь"). Группы крови имеют важное значение в судебной медицине для установления отцовства. Например, если женщина с группой крови 0 предъявляет мужчине с группой крови В иск, что именно он является отцом ее ребенка, имеющего группу крови А, суд должен признать мужчину невиновным, так как его отцовство генетически невозможно. На основании данных о группах крови по системам АВ0, Rh и MN у предполагаемого отца, матери и ребенка, удается оправдать больше половины мужчин (51%), ложно обвиненных в отцовстве.
ПЕРЕЛИВАНИЕ КРОВИ
С конца 1930-х годов переливание крови или ее отдельных фракций получило широкое распространение в медицине, особенно в военной. Основная цель переливания крови (гемотрансфузии) - замена эритроцитов больного и восстановление объема крови после массивной кровопотери. Последняя может произойти либо спонтанно (например, при язве двенадцатиперстной кишки), либо в результате травмы, в ходе хирургической операции или при родах. Переливание крови применяют также для восстановления уровня эритроцитов при некоторых анемиях, когда организм теряет способность вырабатывать новые кровяные клетки с той скоростью, какая требуется для нормальной жизнедеятельности. Общее мнение авторитетных медиков таково, что переливание крови следует производить только в случае строгой необходимости, поскольку оно связано с риском осложнений и передачи больному инфекционного заболевания - гепатита, малярии или СПИДа.
Типирование крови. Перед переливанием определяют совместимость крови донора и реципиента, для чего проводится типирование крови. В настоящее время типированием занимаются квалифицированные специалисты. Небольшое количество эритроцитов добавляют к антисыворотке, содержащей большое количество антител к определенным эритроцитарным антигенам. Антисыворотку получают из крови доноров, специально иммунизированных соответствующими антигенами крови. Агглютинацию эритроцитов наблюдают невооруженным глазом или под микроскопом. В табл. 4 показано, как можно использовать антитела анти-А и анти-В для определения групп крови системы АВ0. В качестве дополнительной проверки in vitro можно смешать эритроциты донора с сывороткой реципиента и, наоборот, сыворотку донора с эритроцитами реципиента - и посмотреть, не будет ли при этом агглютинации. Данный тест называют перекрестным типированием. Если при смешивании эритроцитов донора и сыворотки реципиента агглютинирует хотя бы небольшое количество клеток, кровь считается несовместимой.



Переливание крови и ее хранение. Первоначальные методы прямого переливания крови от донора реципиенту отошли в прошлое. Сегодня донорскую кровь берут из вены в стерильных условиях в специально подготовленные емкости, куда предварительно внесены антикоагулянт и глюкоза (последняя - в качестве питательной среды для эритроцитов при хранении). Из антикоагулянтов чаще всего используют цитрат натрия, который связывает находящиеся в крови ионы кальция, необходимые для свертывания крови. Жидкую кровь хранят при 4° С до трех недель; за это время остается 70% первоначального количества жизнеспособных эритроцитов. Поскольку этот уровень живых эритроцитов считается минимально допустимым, кровь, хранившуюся больше трех недель, для переливания не используют. В связи с растущей потребностью в переливании крови появились методы, позволяющие сохранить жизнеспособность эритроцитов в течение более длительного времени. В присутствии глицерина и других веществ эритроциты могут храниться сколь угодно долго при температуре от -20 до -197° С. Для хранения при -197° С используют металлические контейнеры с жидким азотом, в которые погружают контейнеры с кровью. Кровь, бывшую в заморозке, успешно применяют для переливания. Заморозка позволяет не только создавать запасы обычной крови, но и собирать и хранить в специальных банках (хранилищах) крови редкие ее группы. Раньше кровь хранили в стеклянных контейнерах, но сейчас для этой цели используются в основном пластиковые емкости. Одно из главных преимуществ пластикового мешка состоит в том, что к одной емкости с антикоагулянтом можно прикрепить несколько мешочков, а затем с помощью дифференциального центрифугирования в "закрытой" системе выделить из крови все три типа клеток и плазму. Это очень важное новшество в корне изменило подход к переливанию крови. Сегодня уже говорят о компонентной терапии, когда под переливанием имеется в виду замена лишь тех элементов крови, в которых нуждается реципиент. Большинству людей, страдающих анемией, нужны только цельные эритроциты; больным лейкозом требуются в основном тромбоциты; больные гемофилией нуждаются лишь в определенных компонентах плазмы. Все эти фракции могут быть выделены из одной и той же донорской крови, после чего останутся только альбумин и гамма-глобулин (и тот, и другой имеют свои сферы применения). Цельная кровь применяется лишь для компенсации очень большой кровопотери, и сейчас ее используют для переливания менее чем в 25% случаев.
Плазма. При острой сосудистой недостаточности, вызванной массивной кровопотерей или же шоком вследствие тяжелого ожога либо травмы с разможжением тканей, требуется очень быстро восстановить объем крови до нормального уровня. Если цельная кровь недоступна, для спасения жизни больного могут быть использованы ее заменители. В качестве таких заменителей чаще всего применяется сухая человеческая плазма. Ее растворяют в водной среде и вводят больному внутривенно. Недостаток плазмы как кровезаменителя состоит в том, что с ней может передаваться вирус инфекционного гепатита. Для снижения риска заражения используются различные подходы. Например, вероятность заражения гепатитом уменьшается, хотя и не сводится к нулю, при хранении плазмы в течение нескольких месяцев при комнатной температуре. Возможна также тепловая стерилизация плазмы, сохраняющая все полезные свойства альбумина. В настоящее время рекомендуется использовать только стерилизованную плазму. В свое время при тяжелом нарушении водного баланса, обусловленном массивной кровопотерей или шоком, в качестве временных заменителей белков плазмы применялись синтетические кровезаменители, например полисахариды (декстраны). Однако применение таких веществ не дало удовлетворительных результатов. Физиологические (солевые) растворы при срочных переливаниях тоже оказались не столь эффективны, как плазма, раствор глюкозы и другие коллоидные растворы.
Банки крови. Во всех развитых странах создана сеть станций переливания крови, которые обеспечивают гражданскую медицину необходимым количеством крови для переливания. На станциях, как правило, только собирают донорскую кровь, а хранят ее в банках (хранилищах) крови. Последние предоставляют по требованию больниц и клиник кровь нужной группы. Кроме того, они обычно располагают специальной службой, которая занимается получением из просроченной цельной крови как плазмы, так и отдельных фракций (например, гамма-глобулина). При многих банках имеются также квалифицированные специалисты, проводящие полное типирование крови и изучающие возможные реакции несовместимости.
Уменьшение риска заражения. Особую опасность представляет заражение реципиента вирусом иммунодефицита человека (ВИЧ), вызывающим синдром приобретенного иммунодефицита (СПИД). Поэтому в настоящее время вся донорская кровь подвергается обязательной проверке (скринингу) на наличие в ней антител против ВИЧ. Однако антитела появляются в крови лишь спустя несколько месяцев после попадания ВИЧ в организм, поэтому скрининг не дает абсолютно надежных результатов. Сходная проблема возникает и при скрининге донорской крови на вирус гепатита В. Более того, долгое время не существовало серийных методов выявления гепатита С - они разработаны лишь в последние годы. Поэтому переливание крови всегда связано с определенным риском. Сегодня надо создавать условия для того, чтобы любой человек мог хранить в банке свою кровь, сдав ее, например, перед запланированной операцией; это позволит в случае кровопотери использовать для переливания его собственную кровь. Заражения можно не бояться и в тех случаях, когда вместо эритроцитов вводят их синтетические заменители (перфторуглероды), которые тоже служат переносчиками кислорода.
БОЛЕЗНИ КРОВИ
Болезни крови проще всего разделить на четыре категории - в зависимости от того, какие из основных компонентов крови при этом затрагиваются: эритроциты, тромбоциты, лейкоциты или плазма.
Аномалии эритроцитов. Болезни, связанные с аномалиями эритроцитов, сводятся к двум противоположным типам: анемии и полицитемии. Анемии - заболевания, при которых снижено либо количество эритроцитов в крови, либо содержание гемоглобина в эритроцитах. В основе анемии могут лежать следующие причины: 1) сниженная продукция эритроцитов или гемоглобина, не компенсирующая нормального процесса разрушения клеток (анемии, обусловленные нарушением эритропоэза); 2) ускоренное разрушение эритроцитов (гемолитическая анемия); 3) значительная потеря эритроцитов при сильных и продолжительных кровотечениях (постгеморрагическая анемия). Во многих случаях болезнь обусловлена комбинацией двух из этих причин (см. также АНЕМИЯ).
Полицитемия. В отличие от анемии при полицитемии количество эритроцитов в крови превышает норму. При истинной полицитемии, причины которой остаются неизвестными, наряду с эритроцитами увеличивается, как правило, содержание в крови лейкоцитов и тромбоцитов. Полицитемия может развиваться и в тех случаях, когда под действием факторов внешней среды или болезни снижается связывание кислорода кровью. Так, повышенный уровень эритроцитов в крови характерен для жителей высокогорья (например, для индейцев в Андах); то же наблюдается и у больных с хроническими нарушениями легочного кровообращения.
Аномалии тромбоцитов. Известны следующие аномалии тромбоцитов: падение их уровня в крови (тромбоцитопения), увеличение этого уровня (тромбоцитоз) или, что бывает редко, аномалии их формы и состава. Во всех названных случаях возможно нарушение функции тромбоцитов с развитием таких явлений, как склонность к кровоподтекам (подкожным кровоизлияниям) при ушибах; пурпура (спонтанные капиллярные кровотечения, часто подкожные); продолжительные, трудно останавливаемые кровотечения при травмах. Чаще всего встречается тромбоцитопения; ее причины - повреждение костного мозга и избыточная активность селезенки. Тромбоцитопения может развиваться как изолированное нарушение, так и в сочетании с анемией и лейкопенией. Когда не удается обнаружить явную причину болезни, говорят о т.н. идиопатической тромбоцитопении; чаще всего она встречается в детском и юношеском возрасте одновременно с гиперактивностью селезенки. В этих случаях удаление селезенки способствует нормализации уровня тромбоцитов. Есть и другие формы тромбоцитопении, которые развиваются либо при лейкозе или иной злокачественной инфильтрации костного мозга (т.е. заселении его раковыми клетками), либо при повреждении костного мозга под действием ионизирующей радиации и лекарственных препаратов.
Аномалии лейкоцитов. Как и в случае эритроцитов и тромбоцитов, лейкоцитарные аномалии связаны либо с возрастанием, либо с уменьшением количества лейкоцитов в крови.
Лейкопения. В зависимости от того, каких белых клеток крови становится меньше, различают два вида лейкопении: нейтропения, или агранулоцитоз (снижение уровня нейтрофилов), и лимфопения (снижение уровня лимфоцитов). Нейтропения возникает при некоторых инфекционных заболеваниях, сопровождающихся подъемом температуры (грипп, краснуха, корь, свинка, инфекционный мононуклеоз), и при кишечных инфекциях (например, при брюшном тифе). Нейтропению могут также вызывать лекарственные препараты и токсичные вещества. Поскольку нейтрофилы играют ключевую роль в защите организма от инфекции, нет ничего удивительного в том, что при нейтропении на коже и слизистых нередко появляются инфицированные язвы. При тяжелых формах нейтропении возможно заражение крови, грозящее смертельным исходом; часто отмечаются инфекции глотки и верхних дыхательных путей. Что касается лимфопении, то одна из ее причин - сильное рентгеновское облучение. Она также сопровождает некоторые заболевания, в частности болезнь Ходжкина (лимфогранулематоз), при которой нарушаются функции иммунной системы.
Лейкоз. Подобно клеткам других тканей организма, клетки крови могут перерождаться в раковые. Как правило, перерождению подвергаются лейкоциты, обычно какого-то одного типа. В результате развивается лейкоз, который может быть идентифицирован как моноцитарный лейкоз, лимфолейкоз или - в случае перерождения полиморфноядерных стволовых клеток - миелолейкоз. При лейкозе в крови в большом количестве обнаруживаются аномальные или незрелые клетки, которые иногда дают раковые инфильтраты в разных частях тела. Вследствие инфильтрации костного мозга раковыми клетками и замещения ими тех клеток, которые участвуют в эритропоэзе, лейкоз часто сопровождается анемией. Кроме того, анемия при лейкозе может возникать и потому, что быстро делящиеся клетки-предшественники лейкоцитов истощают запасы питательных веществ, необходимые для образования эритроцитов. Некоторые формы лейкоза поддаются лечению препаратами, подавляющими активность костного мозга (см. также ЛЕЙКОЗ).
Аномалии плазмы. Имеется группа болезней крови, которые характеризуются повышенной склонностью к кровотечениям (как спонтанным, так и в результате травм), связанной с недостаточностью в плазме определенных белков - факторов свертывания крови. Наиболее распространенная болезнь такого типа - гемофилия А (см. ГЕМОФИЛИЯ). Другой тип аномалии связан с нарушением синтеза иммуноглобулинов и соответственно с недостаточностью в организме антител. Это заболевание называется агаммаглобулинемией, причем известны как наследственные формы данной болезни, так и приобретенные. В основе ее лежит дефект лимфоцитов и плазматических клеток, в функцию которых входит продукция антител. Некоторые формы этой болезни приводят к смертельному исходу еще в детском возрасте, другие успешно лечат ежемесячными инъекциями гамма-глобулина.
КРОВЬ ЖИВОТНЫХ
У животных, кроме наиболее просто организованных, есть сердце, система кровеносных сосудов и некий специализированный орган, в котором может совершаться газообмен (легкие или жабры). Даже у самых примитивных многоклеточных организмов существуют подвижные клетки, т.н. амебоциты, которые переходят из одной ткани в другую. Эти клетки обладают некоторыми свойствами лимфоцитов. У животных, имеющих замкнутую кровеносную систему, кровь как по составу плазмы, так и по структуре и размерам клеточных элементов похожа на человеческую. У многих из них, в частности у большинства беспозвоночных, в крови нет клеток, подобных эритроцитам, а дыхательный пигмент (гемоглобин или гемоцианин) находится в плазме (гемолимфе). Как правило, эти животные отличаются малой активностью и низкой скоростью процессов обмена веществ. Возникновение клеток с гемоглобином, как это видно на примере эритроцитов человека, существенно увеличивает эффективность транспорта кислорода. Как правило, у рыб, земноводных и пресмыкающихся эритроциты ядерные, т.е. даже в зрелой форме они сохраняют ядро, хотя у некоторых видов встречаются в небольшом количестве и безъядерные красные клетки. Эритроциты низших позвоночных обычно крупнее, чем у млекопитающих. У птиц эритроциты имеют форму эллипса и содержат ядро. У всех перечисленных животных в крови есть также клетки, сходные с гранулоцитами и агранулоцитами человека. Для животных с меньшим кровяным давлением, чем у человека и высших млекопитающих, характерны и более простые механизмы гемостаза: в некоторых случаях остановка кровотечения достигается прямой закупоркой поврежденных сосудов крупными тромбоцитами. Млекопитающие почти не различаются по типу и размерам клеток крови. Исключение составляет верблюд, эритроциты которого не круглые, а в форме эллипса. Содержание эритроцитов в крови разных животных варьирует в широких пределах, а диаметр их колеблется от 1,5 мкм (азиатский оленек) до 7,4 мкм (лесной североамериканский сурок). Иногда в криминалистике возникает задача определить, оставлено ли данное пятно крови человеком или оно имеет животное происхождение. Хотя у разных видов животных также имеются групповые факторы крови (часто многочисленные), система групп крови не достигла у них такого уровня развития, как у человека. При исследовании пятен используют специфические для каждого вида антисыворотки против некоторых животных тканей, в том числе крови.
Толковый словарь Даля

  • Состав крови – это совокупность всех включенных в нее составных частей , а также органов и отделов человеческого организма, в которых происходит образование ее структурных элементов.

    В последнее время, ученые относят к системе крови также и органы, ответственные за выведение продуктов жизнедеятельности организма из кровотока, а также места, в которых распадаются отжившие свой срок клетки крови.

    Кровь составляет около 6-8% от общей массы тела взрослого человека. В среднем ОЦК (объем циркулирующей крови) составляет 5 – 6 литров. Для детей общий процент кровотока в 1,5 – 2,0 раза больше, чем для взрослых.

    У новорожденных ОЦК равен 15% от массы тела, а у детей до года – 11%. Это объясняется особенностями их физиологического развития .

    Главные составляющие

    Свойства крови полностью определяются ее составом .

    Кровь – это соединительная ткань организма, находящаяся в жидком агрегатном состоянии и осуществляющая поддержание гомеостаза (постоянства внутренней среды организма) в теле человека.

    Она выполняет ряд жизненно важных функций, и состоит из двух основных элементов:

    1. Форменные элементы крови (кровяные клетки, которые образуют твердую фракцию кровяного русла);
    2. Плазма (жидкая часть кровотока, представляет собой воду с растворенными или диспергированными в ней органическими и неорганическими веществами).

    Соотношение твердых тел к жидкой фракции в крови человека строго контролируется. Показатель отношения между этими величинами называется гематокрит. Гематокрит – это процент форменных элементов в кровотоке по отношению к его жидкой фазе. В норме он примерно равен 40 – 45%.

    Задайте свой вопрос врачу клинической лабораторной диагностики

    Анна Поняева. Закончила нижегородскую медицинскую академию (2007-2014) и Ординатуру по клинико-лабораторной диагностике (2014-2016).

    Любые отклонения будут говорить о нарушениях, которые могут уходить, как в сторону увеличения числа (сгущению крови), так и в сторону снижения (избыточному разжижению).

    Гематокрит

    Гематокрит постоянно поддерживается на одном и том же уровне .

    Это происходит за счет моментальной адаптации организма к любым изменяющимся условиям.

    Например, при избыточном объеме воды в плазме, включается ряд приспособительных механизмов, таких как:

    1. Диффузия воды из кровеносного русла в межклеточное пространство (этот процесс осуществляется за счет разницы осмотического давления, о котором поговорим позже);
    2. Активация работы почек по выведению лишнего количества жидкости;
    3. Если имеет место кровотечение (потеря значительного числа эритроцитов и других клеток крови), то в этом случае костный мозг начнет усиленно продуцировать форменные элементы, чтобы выровнять соотношение – гематокрит;

    Таким образом, при помощи резервных механизмов, гематокрит постоянно поддерживается на необходимом уровне.

    Процессы, позволяющие восполнить количество воды в плазме (при повышении числа гематокрита):

    1. Отдача воды из межклеточного пространства в кровяное русло (обратная диффузия);
    2. Снижение потоотделения (за счет подачи сигнала из продолговатого мозга);
    3. Снижение выделительной активности почек;
    4. Жажда (человек начинает хотеть пить).

    При нормальном включении в работу всех звеньев приспособительного аппарата, проблем с временным колебанием гематокритного числа не возникает.

    Если какое – то звено нарушено или сдвиги слишком существенны, срочно требуется медицинское вмешательство. Может быть произведено переливание крови, введение внутривенно капельно плазмозамещающих растворов или простое разбавление густой крови натрия хлоридом (физиологическим раствором). При необходимости вывода из кровяного русла лишней жидкости будут применены сильные диуретики, вызывающие обильное мочеиспускание.

    Общая структура элементов

    Итак, кровь состоит из твердой и жидкой фракции – плазмы и форменных элементов. Каждое из составляющих включает в себя отдельные виды клеток и веществ, рассмотрим их в отдельности.

    Плазма крови представляет собой водный раствор химических соединений разной природы.

    Она состоит из воды и так называемого сухого остатка, в котором все они и будут представлены.

    Сухой остаток состоит из:

    Все питательные вещества, которые переносит кровь по организму, находятся именно там, в растворенном виде. Сюда же можно отнести и продукты распада пищи, трансформирующиеся в простые молекулы питательных веществ.

    Они поставляются к клеткам всего организма как энергетический субстрат.

    Форменные элементы крови входят в состав твердой фазы. К ним относятся:

    1. Эритроциты (красные кровяные тельца);
    2. Тромбоциты (бесцветные кровяные тельца);
    3. Лейкоциты (белые клетки крови), они классифицируются на:

    Что такое кровь, знает каждый. Мы видим ее, когда травмируем кожные покровы, например, если порезались или укололись. Нам известно, что она густая и красная. Но из чего состоит кровь? Это знает далеко не каждый. А между тем ее состав сложен и неоднороден. Это не просто красная жидкость. Окрас ей придает вовсе не плазма, а форменные частицы, находящиеся в ней. Давайте разберемся, что же такое наша кровь.

    Из чего состоит кровь?

    Весь объем крови в организме человека можно разделить на две части. Конечно, это деление условно. Первая часть - периферическая, то есть та, что течет в артериях, венах и капиллярах, вторая - кровь, находящаяся в кроветворных органах и тканях. Естественно, что она постоянно циркулирует по организму, и потому разделение это формальное. Кровь человека состоит из двух компонентов - плазмы и форменных частиц, которые находятся в ней. Это эритроциты, лейкоциты и тромбоциты. Они отличаются друг от друга не только строением, но и выполняемой функцией в организме. Каких-то частиц больше, каких-то меньше. Кроме форменных компонентов, в крови человека обнаруживаются различные антитела и прочие частички. В норме кровь стерильна. Но при патологических процессах инфекционного характера в ней можно обнаружить бактерии и вирусы. Итак, из чего состоит кровь, и в каких соотношениях находятся эти компоненты? Этот вопрос уже давно изучен, и наука располагает точными данными. У взрослого человека объем самой плазмы составляет от 50 до 60%, а форменных компонентов - от 40 до 50% всей крови. Важно ли это знать? Конечно, зная процентное содержание эритроцитов или можно дать оценку состояния здоровья человека. Отношение форменных частиц к общему объему крови называют гематокритным числом. Чаще всего оно ориентируется не на все компоненты, а только на эритроциты. Этот показатель определяют с помощью градуированной стеклянной трубочки, в которую помещают кровь и центрифугируют ее. При этом тяжелые компоненты опускаются на дно, а плазма, напротив, поднимается вверх. Кровь как бы расслаивается. После этого лаборантам остается только посчитать, какую часть занимает тот или иной компонент. В медицине такие анализы получили широкое распространение. В настоящее время их делают на автоматических

    Плазма крови

    Плазма - это жидкая составляющая крови, в которой находятся взвешенные клетки, белки и прочие соединения. По ней они доставляются к органам и тканям. Из чего состоит Около 85% - это вода. На долю остальных 15% приходятся органические и неорганические вещества. Также в плазме крови находятся газы. Это, конечно же, углекислый газ и кислород. На приходится 3-4%. Это анионы (PO 4 3- , HCO 3- , SO 4 2-) и катионы (Mg 2+ , K + , Na +). Органические вещества (приблизительно 10%) делятся на безазотистые (холестерин, глюкоза, лактат, фосфолипиды) и азотсодержащие вещества (аминокислоты, белки, мочевина). Также в плазме крови обнаруживаются биологически активные вещества: ферменты, гормоны и витамины. На их долю приходится около 1%. С точки зрения гистологии плазма - это не что иное, как межклеточная жидкость.

    Эритроциты

    Итак, из чего состоит кровь человека? Кроме плазмы, в ней находятся и форменные частицы. Красные кровяные тельца, или эритроциты, пожалуй, самая многочисленная группа этих компонентов. Эритроциты в зрелом состоянии не имеют ядра. По форме они напоминают двояковогнутые диски. Период их жизни составляет 120 дней, после чего они разрушаются. Это происходит в селезенке и печени. В эритроцитах содержится важный белок - гемоглобин. Он играет ключевую роль в процессе газообмена. В этих частицах происходит транспорт кислорода и Именно белок гемоглобин делает кровь красной.

    Тромбоциты

    Из чего состоит кровь человека, кроме плазмы и эритроцитов? В ней находятся тромбоциты. Они имеют большое значение. Эти маленькие диаметром всего 2-4 микрометра играют решающую роль в тромбозе и гомеостазе. Тромбоциты имеют дискообразную форму. Они свободно циркулируют в кровотоке. Но их отличительной чертой является способность чутко реагировать на повреждения сосудов. Это их основная функция. При травмировании стенки кровеносного сосуда они, соединяясь друг с другом, «заделывают» повреждение, образуя очень плотный сгусток, который не дает вытекать крови. Тромбоциты образуются после фрагментации своих более крупных предшественников мегакариоцитов. Они находятся в костном мозге. Всего из одного мегакариоцита образуется до 10 тысяч тромбоцитов. Это довольно большое количество. Продолжительность жизни тромбоцитов составляет 9 дней. Конечно, они могут просуществовать и меньше, так как погибают во время закупоривания повреждения в кровеносном сосуде. Старые тромбоциты распадаются в селезенке в процессе фагоцитоза и в печени с помощью клеток Купфера.

    Лейкоциты

    Белые клетки крови, или лейкоциты, - это агенты иммунной системы организма. Это единственная частица из тех, что входит в состав крови, которая может покидать кровяное русло и проникать в ткани. Такая способность активно способствует выполнению ее основной функции - защиты от чужеродных агентов. Лейкоциты уничтожают патогенные белки и прочие соединения. Они участвуют в реакциях иммунитета, вырабатывая при этом Т-клетки, способные распознать вирусы, чужеродные белки и другие вещества. Также лимфоциты выделяют В-клетки, продуцирующие антитела, и макрофаги, пожирающие крупные патогенные клетки. Очень важно при диагностировании заболеваний знать состав крови. Именно увеличенное количество лейкоцитов в ней указывает на развивающееся воспаление.

    Органы кроветворения

    Итак, разобрав состав и осталось выяснить, где образуются ее основные частицы. Они имеют короткий срок жизни, поэтому необходимо постоянно их обновлять. Физиологическая регенерация компонентов крови основана на процессах разрушения старых клеток и, соответственно, образования новых. Это происходит в органах кроветворения. Самым главным из них у человека является костный мозг. Он располагается в длинных трубчатых и тазовых костях. Кровь проходит фильтрацию в селезенке и печени. В этих органах также осуществляется ее иммунологический контроль.

    Кровь вместе с лимфой и межтканевой жидкостью составляет внутрен­нюю среду организма, в которой протекает жизнедеятельность всех клеток и тканей.

    Особенности:

    1) является жидкой средой, содержащей форменные элементы;

    2) находится в постоянном движении;

    3) составные части в основном образуются и разрушаются вне ее.

    Кровь вместе с кроветворными и кроверазрушающими органами (кост­ным мозгом, селезенкой, печенью и лимфатическими узлами) составляет це­лостную систему крови. Деятельность этой системы регулируется нейрогу­моральным и рефлекторным путем.

    Благодаря циркуляции в сосудах кровь выполняет в организме следую­щие важнейшие функции:

    14. Транспортная – кровь транспортирует питательные вещества (глюкозу, аминокислоты, жиры и др.) к клеткам, а конечные продукты обмена веществ (аммиак, мочевину, мочевую кислоту и др.) - от них к органам выделения.

    15. Регуляторная – осуществляет перенос гормонов и других физио­логических активных веществ, воздействующих на различные органы и ткани; регуляция постоянства температуры тела – перенос тепла от ор­ганов с интенсивным его образованием к органам с менее интенсивной теплопродукцией и к местам охлаждения (кожа).

    16. Защитная – благодаря способности лейкоцитов к фагоцитозу и наличию в крови иммунных тел, обезвреживающих микроорганизмы и их яды, разрушающих чужеродные белки.

    17. Дыхательная – доставка кислорода от легких к тканям, углекис­лого газа – из тканей к легким.

    У взрослого человека общее количество крови составляет 5- 8% веса тела, что соответствует 5-6 л. Объем крови принято обозначать по отноше­нию к весу тела (мл/кг). В среднем он равен у мужчин 61,5 мл/кг, у женщин - 58,9 мл/кг.

    В кровеносных сосудах в состоянии покоя циркулирует не вся кровь. Около 40-50% ее находится в кровяных депо (селезенке, печени, сосудах кожи и легких). Печень – до 20 %, селезенка – до 16%, подкожная сосуди­стая сеть – до 10 %

    Состав крови. Кровь состоит из форменных элементов (55-58%) - эритроцитов, лейкоцитов и тромбоцитов - и жидкой части - плазмы (42-- 45%).

    Эритроциты – специализированные безъядерные клетки диаметром 7-8 мк. Образуются в красном костном мозге, разрушаются в печени- и селе­зенке. В 1 мм3 крови – 4–5 млн. эритроцитов Строение и состав эритроцитов обусловлены выполняемой ими функцией - транспорт газов. Форма эритро­цитов в виде двояковогнутого диска увеличивает соприкосновение с окружающей средой, способствуя этим ускорению процессов газообмена.

    Гемоглобин обладает свойством легко связывать и отщеплять кисло­род. Присоединяя его, он становится оксигемоглобином. Отдавая кислород в местах с малым его содержанием, он превращается в восста­новленный (редуцированный) гемоглобин.

    В скелетной и сердечной мышцах содержится мышечный гемоглобин - миоглобин (важная роль в снабжении кислородом работающих мышц).

    Лейкоциты , или белые кровяные тельца, по морфологическим и функ­циональным признакам представляют собой обычные клетки, содержащие ядро и протоплазму специфической структуры. Они образуются в лимфати­ческих узлах, селезенке и костном мозге. В 1 мм 3 крови человека находится 5-6 тыс. лейкоцитов.

    Лейкоциты неоднородны по своему строению: в одних из них прото­плазма имеет зернистое строение (гранулоциты), в других нет зернистости (агронулоциты). Гранулоциты составляют 70-75% всех лейкоцитов и делят­ся в зависимости от способности окрашиваться нейтральными, кислыми или основными красками на нейтрофилы (60-70%), эозинофилы, (2-4%) и ба­зофилы (0,5- 1 %). Агранулоциты – лимфоциты (25-30%) и моноциты (4-8%).

    Функции лейкоцитов:

    1) защитная (фагоцитоз, продукция антител и разрушение токсинов белкового происхождения);

    2) участие в расщеплении пищевых веществ

    Тромбоциты - плазматические образования овальной или круглой формы диаметром 2-5 мк. В крови человека и млекопитающих они не име­ют ядра. Тромбоциты образуются в красном костном мозге и в селезенке, и их количество колеблется от 200 тыс. до-б00 тыс. в 1 мм3 крови. Они играют важную роль в процессе свертывания крови.

    Основная функция лейкоцитов – иммунногенез (способность синтези­ровать антитела или иммунные тела, которые обезвреживают микробы и про­дукты их жизнедеятельности). Лейкоциты, обладая способностью к амебо­видным движениям, адсорбируют циркулирующие в крови антитела и, про­никая через стенки сосудов, доставляют их в ткани к очагам воспаления. Нейтрофилы, содержащие большое количество ферментов, обладают способ­ностью к захватыванию.и перевариванию болезнетворных микробов (фаго­цитоз – от греч. Phagos - пожирающий). Перевариваются и клетки организ­ма, дегенерирующие в очагах воспаления.

    Лейкоциты участвуют также в восстановительных процессах после вос­паления тканей.

    Защита организма от кровотечений. Эта функция осуществляется благодаря способности крови к свертыванию. Сущность свертывания крови заключается в переходе растворенного в плазме белка фибриногена в не­растворенный белок - фибрин, который образует нити, склеенные с краями раны. Сгусток крови. (тромб) преграждает дальнейшее кровотечение, предохраняя организм от кровопотерь.

    Превращение фиброногена в фибрин осуществляется при воздействии фермента тромбина, который образуется из белка протромбина под влияние тромбопластина, появляющегося в крови при разрушении тромбоцитов. Об­разование тромбопластина и превращение протромбина в тромбин проте­кают при участии ионов кальция.

    Группы крови. Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в эритроцитах людей агглютиногены А и В. В плазме крови находятся агглютинины a и b (гамма-глобулины). Согласно классификации К.Ландштейнера и Я.Янского в зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов различают 4 группы крови. Эта система получила название АВО. Группы крови в ней обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы.

    Групповые антигены – это наследственные врожденные свойства кро­ви, не меняющиеся в течение всей жизни человека. Агглютининов в плазме крови новорожденных нет. Они образуются в течение первого года жизни ре­бенка под влиянием веществ, поступающих с пищей, а также вырабатывае­мых кишечной микрофлорой, к тем антигенам, которых нет в его собствен­ных эритроцитах.

    I группа (О) – в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины a и b

    II группа (А) – в эритроцитах содержится агглютиноген А, в плазме – агглютинин b ;

    III группа (В) – в эритроцитах находится агглютиноген В, в плазме – аг­глютинин a ;

    IV группа (АВ) – в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.

    У жителей Центральной Европы I группа крови встречается в 33,5%, II группа – 37,5%, III группа – 21%, IV группа – 8%. У 90% коренных жителей Америки встречается I группа крови. Более 20% населения Центральной Азии имеют III группу крови.

    Агглютинация происходит в том случае, если в крови человека встре­чаются агглютиноген с одноименным агглютинином: агглютиноген А с аг­глютинином а или агглютиноген В с агглютинином b. При переливании не­совместимой крови в результате агглютинации и последующего их гемолиза развивается гемотрансфузионный шок, который может привести к смерти. Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывали наличие агглютиногенов в эритроцитах до­нора и агглютининов в плазме реципиента. Плазму донора во внимание не принимали, так как она сильно разбавлялась плазмой реципиента.

    Согласно данному правилу кровь I группы можно переливать людям со всеми группами крови (I, II, III, IV), поэтому людей с первой группой крови называют универсальными донорами. Кровь II группы можно переливать лю­дям со II и IY группами крови, кровь III группы – с III и IV, Кровь IV группы можно переливать только людям с этой же группой крови. В то же время лю­дям с IV группой крови можно переливать любую кровь, поэтому их называ­ют универсальными реципиентами. При необходимости переливания больших количеств крови этим правилом пользоваться нельзя.

    Поделиться