Как определить зазор в зубчатом зацеплении. О контрольных размерах зубчатых колёс и боковом зазоре

Глава 1 ОБЩИЕ СВЕДЕНИЯ

ОСНОВНЫЕ ПОНЯТИЯ О ЗУБЧАТЫХ ПЕРЕДАЧАХ

Зубчатая передача состоит из пары находящихся в зацеплении зубчатых колес или зубчатого колеса и рейки. В первом случае она служит для передачи вращательного движения от одного вала к другому, во втором - для превращения вращательного движения в поступательное.

В машиностроении применяют следующие виды зубчатых передач: цилиндрические (рис. 1) при параллельном расположении валов; конические (рис. 2, а) при пересекающихся и перекрещивающихся валах; винтовые и червячные (рис. 2, б и в) при перекрещивающихся валах.

Зубчатое колесо, передающее вращение, называют ведущим, приводимое во вращение - ведомым. Колесо зубчатой пары с меньшим числом зубьев называют шестерней, сопряженное с ним парное колесо с большим числом зубьев - колесом.

Отношение числа зубьев колеса к числу зубьев шестерни называют передаточным числом:

Кинематической характеристикой зубчатой передачи является передаточное отношение i , представляющее собой отношение угловых скоростей колес, а при постоянном i - и отношение углов поворота колес

Если при i не стоят индексы, то под передаточным отношением следует понимать отношение угловой скорости ведущего колеса к угловой скорости ведомого.

Зубчатое зацепление называют внешним, если оба зубчатых колеса имеют внешние зубья (см. рис. 1, а, б), и внутренним, если одно из колес имеет внешние, а второе - внутренние зубья (см. рис. 1, в).

В зависимости от профиля зубьев колес различают зацепления трех основных видов: эвольвентные, когда профиль зуба образован двумя симметричными эвольвентами; циклоидальные, когда профиль зубьев образован циклоидальными кривыми; зацепления Новикова, когда профиль зуба образован дугами окружности.

Эвольвентой, или разверткой окружности, называется кривая, которую описывает точка, лежащая на прямой (так называемой производящей прямой) линии, касательной к окружности и перекатываемой по окружности без скольжения. Окружность, разверткой которой является эвольвента, называют основной окружностью. С увеличением радиуса основной окружности кривизна эвольвенты уменьшается. При радиусе основной окружности, равном бесконечности, эвольвента превращается в прямую, что соответствует профилю зуба рейки, очерченному по прямой.

Наиболее широкое применение находят зубчатые передачи с эвольвентным зацеплением, которое имеет следующие преимущества перед другими видами зацепления: 1) допускается небольшое изменение межосевого расстояния при неизменном передаточном отношении и нормальной работе сопряженной пары зубчатых колес; 2) облегчается изготовление, так как одним и тем же инструментом можно нарезать колеса

Рис. 1.

Рис. 2.

с различным числом зубьев, но одинакового модуля и угла зацепления; 3) колеса одного и того же модуля сопрягаются между собой независимо от числа зубьев.

Приведенные ниже сведения относятся к эвольвентному зацеплению.

Схема звольвентного зацепления (рис. 3, а). Два колеса с эвольвентными профилями зубьев соприкасаются в точке А, находящейся на линии центров О 1 О2 и называемой полюсом зацепления. Расстояние aw между осями колес передачи по межосевой линии называют межосевым расстоянием. Через полюс зацепления проходят начальные окружности зубчатого колеса, описанные вокруг центров О1 и О2 и при работе зубчатой пары перекатывающиеся одна по другой без скольжения. Понятие о начальной окружности не имеет смысла для одного отдельно взятого колеса, и в этом случае применяют понятие о делительной окружности, на которой шаг и угол зацепления колеса соответственно равны теоретическому шагу и углу зацепления зуборезного инструмента. При нарезании зубьев методом обкатки делительная окружность представляет собой как бы производственную начальную окружность, возникающую в процессе изготовления колеса. В случае передачи без смещения делительные окружности совпадают в начальными.

Рис. 3. :

а - основные параметры; б - инволюта; 1 - линия зацепления; 2 - основная окружность; 3 - начальная и делительная окружности

При работе цилиндрических зубчатых колес точка касания зубьев перемещается по прямой MN, касательной к основным окружностям, проходящей через полюс зацепления и называемой линией зацепления, являющейся общей нормалью (перпендикуляром) к сопряженным эвольвентам.

Угол atw между линией зацепления MN и перпендикуляром к межосевой линии O1O2 (или между межосевой линией и перпендикуляром к линии зацепления) называется углом зацепления.

Элементы прямозубого цилиндрического колеса (рис. 4): da- диаметр вершин зубьев; d - диаметр делительный; df - диаметр впадин; h - высота зуба - расстояние между окружностями вершин и впадин; ha - высота делительной головки зуба - расстояние между окружностями делительной и вершин зубьев; hf - высота делительной ножки зуба - расстояние между окружностями делительной и впадин; pt - окружной шаг зубьев - расстояние между одноименными профилями соседних зубьев по дуге концентрической окружности зубчатого колеса;

st - окружная толщина зуба - расстояние между разноименными профилями вуба по дуге окружности (например, по делительной, начальной); ра - шаг эвольвентного зацепления - расстояние между двумя точками одноименных поверхностей соседних зубьев, расположенных на нормали MN к ним (см. рис. 3).

Окружной модуль mt-линейная величина, в п (3,1416) раз меньше окружного шага. Введение модуля упрощает расчет и изготовление зубчатых передач, так как позволяет выражать различные параметры колеса (например, диаметры колеса) целыми числами, а не бесконечными дробями, связанными с числом п . ГОСТ 9563-60* установил следующие значения модуля, мм: 0,5; (0,55); 0,6; (0,7); 0,8; (0,9); 1; (1,125); 1,25; (1,375); 1,5; (1,75); 2; (2,25); 2,5; (2,75); 3; (3,5); 4; (4,5); 5; (5,5); 6; (7); 8; (9); 10; (11); 12; (14); 16; (18); 20; (22); 25; (28); 32; (36); 40; (45); 50; (55); 60; (70); 80; (90); 100.

Рис. 4.

Значения делительного окружного шага pt и шага зацепления ра для различных модулей представлены в табл. 1.

1. Значения делительного окружного шага и шага зацепления для различных модулей (мм)

В ряде стран, где еще применяют дюймовую систему (1" = 25,4 мм), принята питчевая система, по которой параметры зубчатых колес выражены через питч (pitch - шаг). Наиболее распространена система диаметрального питча, применяемая для колес с питчем от единицы и выше:

где г - число зубьев; d - диаметр делительной окружности, дюймы; р - диаметральный питч.

При расчете эвольвентного зацепления пользуются понятием эвольвентного угла профиля зуба (инволюты), обозначаемого inv aх. Он представляет собою центральный угол 0х (см. рис. 3, б), охватывающий часть эвольвенты от ее начала до какой-то точки хi и определяется по формуле:

где ах - угол профиля, рад. По этой формуле рассчитаны таблицы инволюты, которые приведены в справочниках .

Радиан равен 180°/п = 57° 17" 45" или 1° = 0,017453 рад. На эту величину нужно умножить угол, выраженный в градусах, чтобы перевести его в радианы. Например, ах = 22° = 22 X 0,017453 = 0,38397 рад .

Исходный контур. При стандартизации зубчатых колес и зуборезного инструмента для упрощения определения формы и размеров нарезаемых зубьев и инструмента введено понятие исходного контура. Это контур зубьев номинальной исходной зубчатой рейки в сечении плоскостью, перпендикулярной к ее делительной плоскости. На рис. 5 показан исходный контур по ГОСТ 13755-81 (СТ СЭВ 308-76) - прямобочный реечный контур со следующими значениями параметров и коэффициентов: угол главного профиля а = 20° ; коэффициент высоты головки h*a = 1 ; коэффициент высоты ножки h*f = 1,25 ; коэффициент радиуса кривизны переходной кривой р*f = 0,38 ; коэффициент глубины захода зубьев в паре исходных контуров h*w = 2 ; коэффициент радиального зазора в паре исходных контуров С* = 0,25 .

Допускается увеличение радиуса переходной кривой рf = р*m , если это не нарушает правильности зацепления в передаче, а также увеличение радиального зазора С = С*m до 0,35m при обработке долбяками или шеверами и до 0,4m при обработке под зубошлифование. Могут быть передачи с укороченным зубом, где h*a = 0,8 . Часть зуба между делительной поверхностью и поверхностью вершин зубьев называют делительной головкой зуба, высота которой ha = hф*m; часть зуба между делительной поверхностью и поверхностью впадин - делительной ножкой зуба. При введении зубьев одной рейки во впадины другой до совпадения их профилей (пара исходных контуров) между вершинами и впадинами образуется радиальный зазор с . Высота захода или высота прямолинейного участка составляет 2m, а высота зуба m + m + 0,25m = 2,25m . Расстояние между одноименными профилями соседних зубьев называют шагом р исходного контура, его значение р = пm , а толщина зуба рейки в делительной плоскости составляет половину шага.

Для улучшения плавности работы цилиндрических колес (преимущественно при увеличении окружной скорости их вращения) применяют профильную модификацию зуба, в результате которой поверхность зуба выполняется с преднамеренным отклонением от теоретической эвольвентной формулы у вершины или у основания зуба. Например, срезают профиль зуба у его вершины на высоте hc = 0,45m от окружности вершин на глубину модификации А = (0,005%0,02) m (рис. 5, б)

Для улучшения работы зубчатых колес (повышения прочности зубьев, плавности зацепления и тп.), получения заданного межосевого расстояния, во избежание подрезания *1 зубьев и для других целей производят смещение исходного контура.

Смещение исходного контура (рис. 6) - расстояние по нормали между делительной поверхностью зубчатого колеса и делительной плоскостью исходной зубчатой рейки при ее номинальном положении.

При нарезании зубчатых колес без смещения инструментом реечного типа (червячные фрезы, гребенки) делительная окружность колеса обкатывается без скольжения по средней линии рейки. В этом случае толщина зуба колеса равна половине шага (если не учитывать нормального бокового зазора *2, значение которого мало.

Рис. 7. Боковой с и радиальный in зазоры зубчатого зацепления

При нарезании зубчатых колес со смещением, исходную рейку смещают в радиальном направлении. Делительная окружность колеса обкатывается не по средней линии рейки, а по какой-то другой прямой, параллельной средней линии. Отношение смешения исходного контура к расчетному модулю - коэффициент смещения исходного контура х. У колес со смещением толщина зуба по делительной окружности не равна теоретической, т. е. половине шага. При положительном смещении исходного контура (от оси колеса) толщина зуба на делительной окруж¬ности больше, при отрицательном (в направлении оси колеса) - меньше

половины шага.

Для обеспечения бокового зазора в зацеплении (рис. 7) толщину зуба колес делают несколько меньше теоретической. Однако ввиду ма¬лой величины этого смещения такие колеса практически считают коле¬сами без смещения.

При обработке зубьев методом обкатки зубчатые колеса со смеще¬нием исходного контура нарезают тем же инструментом и при той же настройке станка, что и колеса без смещения. Воспринимаемое смеще¬ние - разность межосевого расстояния передачи со смещением и ее делительного межосевого расстояния.

Определения и формулы для геометрического расчета основных параметров зубчатых колес приведены в табл. 2.


2. Определения и формулы расчета некоторых параметров эвольвентных цилиндрических зубчатых колес


Параметр

Обо­зна­чение

Определение

Расчетные формулы и указания

Рисунок

Исходные данные

Модуль: расчетный

эвольвентного зацепления

Делительный нормальный модуль зубьев. Линейная величина, в п раз меньшая делительного окружного шага

По ГОСТ 9563 - 60*

Угол профиля исходного контура

Острый угол между касательной к профилю зуба рейки и прямой, перпендикулярной к делительной плоскости рейки

По ГОСТ 13755-81
а = 20°

Число зубьев: шестерни колеса

Угол наклона линии зуба

Коэффициент высоты головки

Отношение расстояния ha между окружностями вершин зубьев и делительной к расчетному модулю

Коэффициент радиального зазора

Отношение расстояния C между поверхностью вершин одного колеса передачи и поверхностью впадин другого к расчетному модулю

7

Коэффициент смещения:
у шестерни,
у колеса

Отношение расстояния между делительной поверхностью колеса и делительной плоскостью производящей рейки к расчетному модулю

Расчет параметров

Диаметры зубчатого колеса:

Делительный

Диаметры концентрических окружностей

О П И С А Н И Е 359500

Союз Советских

Социалистических

Республик

Зависимое от авт. свидетельства №

Заявлено 16.VI.1970 (№ 1449690i25-28) с присоединением заявки №

М. Кл. G 01Ь 5/14

Комитет по делам изобретений и открытий при Совете Министров

А. Ю. Лядов и В. С. Корепанов

Алтайский моторный завод

Заявитель

СПОСОБ ОПРЕДЕЛЕНИЯ ВЕЛИЧИНЫ БОКОВОГО ЗАЗОРА

Изобретение относится к области контроля в машиностроении, а именно к определению бокового зазора в зубчатом зацеплении для случаев размещения зубчатых колес в разъединяющихся корпусах, плоскость разъединения которых не проходит через оси сопрягаемых колес.

Существует ряд способов для определения величины бокового зазора в зубчатом зацеплении, заключающихся в измерении геометрических параметров элементов зацепления с последующим расчетом величины бокового зазора.

Недостатком известных способов является невозможность определить предлагаемый боковой зазор в зубчатых колесах до соединения частей корпуса между собой — этим обусловливается высокая трудоемкость подбора и регулировки величины бокового зазора, так как требуется многократная сборка-разборка с подбором соединяемых узлов.

Целью настоящего изобретения является создание такого способа получения величин, составляющих боковой зазор, который позволил бы уменьшить трудоемкость сборки колес зубчатого зацепления.

Для этой цели замеряют величины отклонения профиля впадины зубчатого колеса относительно общей плоскости разъема одного из корпусов от расчетного, затем замеряют величину отклонения профиля впадины относительно общей плоскости разъема второго из корпусов от расчетного, а величину бокового зазора определяют как произведение алгебра5 ической суммы замеренных величин отклонений размеров от расчетных, умноженное на синус угла зацепления по формуле; S=2a sinn, где S — величина бокового зазора; а — угол зацепления зубчатых колес; а — алгебраическая сумма отклонений размеров от расчетных.

Процесс определения бокового зазора поясняется чертежом.

На фиг. 1 изображен один из сопрягаемых

15 узлов с зубчатым колесом и измерительным элементом; на фиг. 2 изображен второй из сопрягаемых узлов со вторым колесом и измерительным элементом.

Н, — теоретический, расчетный размер от общей плоскости разъединения корпусов до положения зажимаемого измерительным элементом 1 во впадине зубчатого колеса 2;

Но, — действительный размер от общей плоскости разъединения корпусов до положения, занимаемого измерительным элементом 1 во впадине зубчатого колеса 2; а, — величина отклонения в расположен30 ном профиле впадины зубчатого ко359500 аз = ̈́— Н, Ф1/д. f

Изд. Иа 1787

Подписное

Заказ 3968/1

Типография, пр. Сапунова, 2 леса 2 относительно общей плоскости разъема корпусов; определяется по формуле: а,=Н,— На, Нр, — теоретический, расчетный размер от общей оси разъединения корпусов до положения, занимаемого измерительным элементом 1 во впадине зубчатого колеса 8; 10

Нв, — действительный размер от общей плоскости разъединения корпусов до положения, занимаемого измерительным элементом 1 во впадине зубчатого колеса 3; 15

a> — величина отклонения в расположении профиля впадины зубчатого колеса 8 относительно общей плоскости разьема корпусов; определяется по формуле: гю

Таким образом, общая сумма отклонений двух замеров составляет:

Определение величины бокового зазора в зубчатом зацеплении осуществляется следующим образом.

Вначале определяют по чертежу расчетные величины Н, и Н, затем измерительным устройством определяют их действительные величины На, и На„после чего находят соответствующие отклонения а> и а, а зазор определяют по формуле:

5 = 2аяпа, где $ — величина бокового зазора, а — сумма отклонений двух замеров, сс — угол зацепления зубчатой передачи.

П р едм ет изобретения

Способ определения величины бокового зазора в зубчатом зацеплении, заключающийся в том, что измеряют геометрические параметры элементов зацепления и расчетом определяют величину бокового зазора, отличающийся тем, что, с целью получения величин, составляющих боковой зазор в зубчатом зацеплении с зубчатыми колесами, размещенными в разъединяющихся корпусах, плоскость разьединения которых не проходит через оси сопрягаемых зубчатых колес, замеряют величину отклонения расположения профиля впадины зубчатого колеса относительно общей плоскости разъема одного из корпусов от расчетного, затем замеряют величину отклонения профиля впадины относительно общей плоскости разъема второго из корпусов от расчетного, а величину бокового зазора определяют как произведение алгебраической суммы замеренных величин отклонений размеров от расчетных, умноженное на синус угла зацепления по формуле.

Задание и исходные данные к расчету

Для заданной пары зубчатых колес установить степени точности по нормам кинематической точности, плавности и контакта; назначить комплекс контролируемых показателей и установить по стандарту числовые значения допусков и предельных отклонений по каждому из контролируемых показателей.

Выполнить рабочий чертеж одного зубчатого колеса в соответствии с требованиями стандартов.

Параметры зубчатого зацепления указаны в табл. 1.

Расчет начальных параметров

Межосевое расстояние aW рассчитывается по формуле:

где d1 и d2 – диаметры соответственно шестерни и колеса.

aW=(69+150)/2=110 мм.

Расчет параметров зубчатого зацепления.

Согласно , табл. 5.12 и 5.13 назначаем 8–ю степень точности передачи, так как окружные скорости невысоки, как и передаваемые мощности. Данная степень точности отмечена как наиболее используемая.

Назначим комплекс показателей точности, пользуясь материалом табл. 5.6., 5.7., 5.9., 5.10., назначаем:

допуск на радиальное биение зубчатого венца Fr:

допуск на местную кинематическую погрешность f"i:

допуск на предельные отклонения шага fpt:

fpt=±20 мкм;

допуск на погрешность профиля ff:

Пусть суммарное пятно контакта обладает следующими параметрами:

ширина зубчатого венца bW составляет по высоте зуба не менее 50 % и по длине зуба не менее 70 % – тогда справедливо:

допуск на непараллельность fХ:

допуск на перекос осей fY:

допуск на направление зуба Fb:

шероховатость зубьев RZ:

Минимальный боковой зазор рассчитывается по алгоритму примера главы 5.3. :

где jn1 и jn2 – соответственно слагаемые 1 и 2.

где а – межосевое рассстояние, мм;

aР1 , aР2 – коэффициенты теплового расширения соответственно для зубчатых колес и корпуса, 1/° С;

t1 , t2 – предельные температуры, для которых рассчитывается боковой зазор соответственно зубчатых колес и корпуса, ° С; принимаем согласно заданию t1=50, t2=35.

jn min=59 мкм. Cледовательно, пользуясь табл. 5.17., принимаем вид сопряжения С и IV класс отклонения межосевого расстояния. Тогда предельное отклонение межосевого расстояния:

Максимальный возможный боковой зазор определяется по формуле:

jn max=jn min+0.684 (TH1+TH2+2fa) ,

где TH1 , TH2– допуск на смещение исходного контура;

fa – предельное отклонение межосевого.

jn max=325 мкм.

Назначим контрольный комплекс для взаимного расположения разноименных профилей зубьев. Для этого из табл 5.30. возьмем длину общей нормали W при m=3 и zn=2 – число одновременно контролируемых зубьев.

Wm=10.7024 мм;

W=m*Wm =23.1072 мм.

Верхнее отклонение EW ms, мкм:

EW ms= EW ms1 + EW ms2 ,

где EW ms1 , EW ms2 – наименьшее дополнительное смещение исходного контура, соответственно слагаемое 1 и 2:

EW ms=71 мкм.

Допуск на среднюю длину общей нормали:

.

Данный результат отображается на чертеже.

Дополнительно

Проектирование технологии ремонта гидроцилиндров с использованием полимерных материалов
Одно из направлений повышения эффективности производства - его переоснащение современной техникой, внедрение передовых технологических процессов и достижений современной науки. В лесной промышленности и лесном хозяйстве таким направлением наряду с увеличением единичной мощности выпускаемой те...

Кибернетика и синергетика – науки о самоорганизующихся системах
Фронт современной науки простирается от сравнительно част­ных, конкретных концепций относительно различных областей физи­ческого и химического мира, до глубочайших теорий, охватывающих различные сферы природы, общества и технической деятельности че­ловека. К последним следует отнести кибернетику и...

Теоретически эвольвентные зубчатые зацепления являются двухпрофильными (в контакте оба профиля зуба).

Практически такие зацепления неработоспособны из-за наличия:

Погрешности изготовления и ошибок монтажа;

Температурных деформаций;

Изгиба зубьев под нагрузкой;

Из-за отсутствия смазки между сопряженными поверхностями.

Таким образом, работоспособным является однопрофильное зацепление, в котором передача вращения осуществляется парой сопряженных профилей, а другая пара профилей образует боковой зазор, необходимый для компенсации выше указанных погрешностей.

Боковой зазор j n обеспечивает небольшой люфт (поворот) зубчатого колеса в передаче при заторможенном или неподвижном втором колесе. Боковой зазор измеряется вдоль линии зацепления между касательными к нерабочим профилям зубьев в сечении, перпендикулярном к направлению зубьев, и в плоскости, касательной к основным цилиндрам.

Для нормальной работы боковой зазор в передаче должен быть не меньше установленного гарантированного зазора j n min и не больше наибольшего допустимого зазора.

Требования к боковому зазору между нерабочими профилями зубьев в собранной передаче, объединенные в норму бокового зазора, назначают дополнительно независимо от точности изготовления передач и колес.

Величина бокового зазора является характеристикой вида сопряжения (рис.60).


Рис. 59. Схема расположения полей допусков на боковой зазор

Стандартом предусматривается шесть видов сопряжения и восемь видов допусков бокового зазора для зубчатых передач с модулем св. 1 мм (табл. 14).

Выбор вида сопряжения не зависит от степени точности зубчатого колеса, а зависит от межосевого расстояния, скорости вращения, и температурногорежима работы передачи.

Для нерегулируемых передач с модулем св. 1 мм установлены шесть классов отклонений межосевого расстояния , обозначаемых в порядке убывания точности римскими цифрами I, II, III, IV, V, VI.

Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния. Например, для передач с модулем св.1 мм сопряжения H и E обеспечиваются при II классе, а сопряжения D,C,B и A - соответственно при III, IV, V и VI классах соответственно.

Для гарантированного бокового зазора j n min по ГОСТ 1643 установленыряды значений , зависящие от вида сопряжения и равные допускам (IT q ) определенных квалитетов по ГОСТ 25346 на соответствующее межосевое расстояние передачи (табл. 15).

Таблица 15

Соответствие видов сопряжения и видов допусков j n

Виды сопряжений H E D C B A Примечание
Виды допусков бокового зазора, Т jn h h d c b a Дополнительные виды допусков: x, y, z
Гарантированный боковой зазор j n min IT 7 IT 8 IT 9 IT 10 IT 11 Допуск на соответствующее межосевое расстояние a
Классы отклонений межосевого расстояния II II III IV V V I На нерегулируемые передачи
Примечание. Обозначения видов сопряжений расположены в порядке возрастания допусков бокового зазора.

Величина необходимого бокового зазора, соответствующая температурной компенсации , определяется по формуле:

j n I = a [α 1 (t 1 – 20 0)- α 2 (t 2 - 20 0)] ∙ 2Sinα,

где a – межосевое расстояние передачи, a = m (z 1 + z 2)/ 2 , мм; α 1 и α 2 - коэффициенты линейного расширения для материала соответственно зубчатых колес и корпуса; t 1 и t 2 – предельные температуры, для которых рассчитывается боковой зазор,соответственно зубчатых колес и корпуса. При расчетах можно принять: α стали = 12∙10 -6 , 1 / град; α чугуна = 11∙10 -6 , 1 / град; α алюмин. = 20∙10 -6 ,1 / град.

При угле исходного профиля α = 20 0 получим:

j n I = 0,684 a [α 1 (t 1 – 20 0)- α 2 (t 2 - 20 0)].

Величина бокового зазора, обеспечивающая нормальные условия смазки, зависит от окружной скорости и способа подачи смазки. Ориентировочно ее можно определить в зависимости от модуля.

Боковой зазор j n между неработающими профилями зубьев сопряженных колес определяют в сечении, перпендикулярном направлению зубьев, в плоскости, касательной к основным цилиндрам (рисунок 36). Этот зазор необходим для устранения заклинивания при нагреве передачи (температурная компенсация), размещения слоя смазки, а также для компенсации погрешностей изготовления и сборки. Боковой зазор приводит к появлению при реверсировании передач мертвого хода, величину которого ограничивают для уменьшения ударов по нерабочим профилям зубьев. Теоретическая зубчатая передача является двухпрофильной и беззазорной (j n = 0). Реальная передача должна иметь боковой зазор.

Минимальная величина бокового зазора j n min определяет вид сопряжения зубьев. Стандартами предусматривается шесть видов сопряжения: А (с увеличенным гарантированным зазором j n min для 3-12 степеней точности), В (с нормальным гарантированным зазором, 3-11), С, D (с уменьшенным j n min , 3-9, 3-8), Е (с малым j n min , 3-7), Н (нулевым j n min , 3-7).

Установлено восемь видов допусков Тj n бокового зазора (при этом Тj n =

j n min - j n max): h, d, c, b, a, z, y, x. Допуски расположены в порядке возрастания. Видам сопряжения Н и Е соответствует вид допуска h, видам сопряжения D, С, В, А – соответственно d, c, b , a. Допускается по технологическим или иным соображениям менять соответствие видов сопряжения и допуски бокового зазора, используя также виды допуска z, y, x (см. рисунок 36).

Установлено шесть классов отклонений межосевых расстояний, обозначаемых в порядке убывания точности римскими цифрами от 1 до Y1. Гарантированный боковой зазор обеспечивается при соблюдении установленных для данного вида сопряжения классов отклонений межосевого расстояния (Н, Е –II класс, D, C, B, A – III, IY, Y, YI классы).

Минимальный боковой зазор j n min должен учитывать температурную компенсацию j nt и слой смазки  см:

j n min = j nt +  см. (3.156)

Рисунок 36 – Боковой зазор в зубчатой передаче

Необходимую температурную компенсацию можно рассчитать, зная температуру колеса t кол и корпуса передачи t пер и учитывая, что боковой зазор j n измеряют под углом профиля :

t = a w [ кол (t кол – 20 0) -  кор (t кор – 20 0)],

где w – межосевое расстояние,  I – коэффициенты линейного расширения ( кол – колеса,  кор – корпуса).

Учитывая, что толщина смазки должна составлять от 0,01 до 0,03 модуля, получим, что минимальный (гарантированный) боковой зазор j n min должен быть равен

j n min = (0,01  0,03) m + a w [(( кол (t кол –20 0) -  пер (t пер – 20 0) 2sin (3.157)

Сопряжение вида В гарантирует боковой зазор, при котором исключается заклинивание зубьев передачи от нагрева при разности температур колес и корпуса 25 0 С (см. рисунок 36).

Как следует из сказанного, вид сопряжения зубьев назначается расчетным или опытным путем независимо от степеней точности. Допустимые погрешности изготовления или монтажа зубчатой передачи, зависящие от степеней точности, сказываются на максимальной величине бокового зазора.

Существуют три метода обеспечения бокового зазора: регулирование расстояния между осями передачи, применение при изготовлении специального инструмента с утолщенными зубьями и метод радиального смещения исходного контура рейки зубонарезного инструмента.

Первый метод практически не применяют, т.к. перемещение рабочих валов для получения бокового зазора приводит к уменьшению активной части профиля и коэффициента перекрытия; этот метод невозможен при нескольких парах сопряженных зубьев, сидящих на двух параллельных валах, так как отрегулированный боковой зазор одной пары шестерен дает неприемлемые значения для остальных пар шестерен.

Второй метод получения “тонких” зубьев шестерен за счет увеличения толщины режущих зубьев инструмента (фрез, реек и т.д.) ведет к увеличению номенклатуры и удорожанию инструмента.

Третий метод получил преимущественное распространение, так как использует стандартный инструмент и позволяет обеспечивать любые боковые зазоры за счет дополнительного смещения зубонарезного инструмента в “тело” заготовки. Наименьший боковой зазор создается за счет уменьшения толщины зуба по постоянной хорде Е с методом радиального смещения исходного контура на величину Е Н. Дополнительное уменьшение толщины зуба по хорде на величину допуска Т с происходит за счет допуска на смещение исходного контура Т Н, что вызывает соответствующее увеличение бокового зазора. Зависимости, характеризующие изменение бокового зазора от смещения исходного контура и утонения зуба показана на рисунке 36:

j n min = 2 Е Н sin; (3.158)

E C = 2E H tg. (3.159)

Таким образом, боковой зазор определяется смещением исходного контура Е Н, межосевым расстоянием а (для него установлены отклонения f a), толщиной зуба на делительной окружности или постоянной хордой зуба

При наличии радиального биения F r толщины зубьев не остаются постоянными, но изменяются с приближением и удалением к ведущему колесу, поэтому Т Н  F r:

Т Н = 1,1 F r + 20. (3.160)

Боковой зазор состоит из гарантированного бокового зазора j n min и бокового зазора j n 1 для компенсации погрешности изготовления и монтажа (1 и 2 – колесо и шестерни):

j n min + j n1 = (Е Н 1 + Е Н 2)2 sin. (3.161)

Принимая смещение колеса и шестерни приблизительно одинаковыми

Е Н 1  Е Н 2  Е Н, получим ( = 20 0):

Боковой зазор j n 1 учитывает отклонения межосевого расстояния f a , шага зацепления f p в двух колес, отклонения направления F  двух колес, отклонения от параллельности f x и перекоса осей f у, j n 1 равен при квадратичном суммировании:

Наибольший боковой зазор является замыкающим звеном сборочной размерной цепи, составляющими звеньями которой будут отклонения межосевого расстояния и смещения исходных контуров:

j n max = j n min + (Т Н 1 + Т Н 2 + 2f a) 2sin. (3.164)

Учитывая производственные потребности, для характеристики бокового зазора применяют следующие показатели:

    наименьшее смещение исходного контура Е Н (допуск Т Н );

    наименьшее отклонение толщины зуба Е С (допуск Т С = 0,73 Т Н );

    наименьшее отклонение средней длины общей нормали Е wm (допуск Т wm );

    наименьшее отклонение длины общей нормали Е w (допуск Т w );

    предельные отклонения измерительного межосевого расстояния Е а`` (+ E a `` s и -Е а`` I ).

Нормаль W – расстояние между разноименными боковыми поверхностями группы (2, 3 и т.д.) зубьев.

Измерительное межосевое расстояние – расстояние беззазорного сопряжения зубьев контролируемого колеса и измерительного колеса; E a `` s =
(колебание измерительного расстояния на одном зубе); E a `` I = -Т Н.

При разработке чертежей зубчатых колес, корпусов редукторов, приводов и т.д. применяются показатели w (E w , T w), S c (E c , T c), f a (рисунок 36).

При контроле зубчатых колес используют комплексы показателей, которые установлены для различных степеней точности. Комплексы контроля являются равноправными, но не равноценными. Первый из них (для каждой нормы, образованный одним комплексным показателем, дает наиболее полную оценку точности колеса). Каждый последующий характеризует значительную долю основной погрешности или отдельные ее части.

Выбор того или иного комплекса контроля зависит от назначения и точности зубчатых колес и передач (принцип инверсии), их размеров, практики контроля, объема и условий производства и др. Для выбранного комплекса на чертеже зубчатого колеса с нестандартным исходным контуром указывают необходимые допуски и отклонения и колесо контролируют по всем параметрам.

В чертежах зубчатых колес со стандартным исходным контуром (рисунок 37), показатели комплекса конструктор не указывает; эти показатели назначаются технологическими службами.

Контроль зубчатых колес может быть приемочный, профилактический и технологический.

Приемочный контроль – контролируют показатели комплекса.

Профилактический – отладка технологических процессов и выявление причин брака.

Для контроля кинематической точности используют приборы для измерения кинематической погрешности колес, измерительного межосевого расстояния, накопленной погрешности шагов, радиального биения, колебания длины общей нормали, погрешности обката.

При контроле плавности работы применяют приборы для измерения местной кинематической и циклических погрешностей, шага зацепления, погрешности профиля, отклонений углового шага.

При контроле полноты контакта применяют приборы для измерения суммарного пятна контакта, осевого шага, направления зуба, погрешности формы и расположения контактной линии.

При контроле бокового зазора измеряют приборами смещение исходного контура, отклонение измерительного межосевого расстояния, отклонение средней длины общей нормали, толщину зуба (в том числе штангензубомерами).

Рисунок 37 – Зубчатое колесо

Поделиться