Физиология дыхательной системы. Эластические свойства легких и грудной клетки Эластичность легочной ткани

По определению растяжимость легких равна изменению их объема на единицу изменения давления. Для ее оценки необходимо измерить внутриплевральное давление.

На практике при этом регистрируют давление в пищеводе: обследуемый заглатывает катетер с маленьким баллончиком на конце. Пищеводное давление не равно в точности внутриплевральному, однако хорошо отражает динамику его изменений. Если обследуемый лежит на спине, то этот метод не даст точных данных, так как на результаты будет влиять тяжесть органов средостения.

Растяжимость легких можно измерить очень просто: обследуемого просят сделать максимально глубокий вдох, а затем выдыхать воздух в спирометр порциями, скажем по 500 мл. При этом определяют давление в пищеводе. После выдоха каждой порции обследуемый должен раскрыть голосовую щель и выждать несколько секунд, пока дыхательная система придет в стационарное состояние. Так строят график давление—объем. Этот метод позволяет получить наибольшую информацию об упругости легких. Важно отметить, что растяжимость, соответствующая крутизне наклона кривой, зависит от исходного легочного объема. Обычно этот наклон определяют во время выдоха, начиная с объема, превышающего ФОЕ на 1 л. Однако даже в этих условиях воспроизводимость результатов оставляет желать лучшего.

Растяжимость легких можно также измерить при спокойном дыхании. Этот способ основан на том, что в отсутствие потока воздуха (в конце вдоха и выдоха) внутриплевральное давление отражает только эластическую тягу легких и не зависит от сил, возникающих при движении воздушной струи. Таким образом, растяжимость будет равна отношению разности легочных объемов в конце вдоха и выдоха к разности внутриплевральных давлений в эти же моменты.

Такой метод нельзя применять в случае больных с поражениями воздухоносных путей, так как у них различны постоянные времени заполнения разных участков легких и. поток воздуха в них сохраняется даже при отсутствии его в центральных дыхательных путях.

Воздухоносные пути участка 2 легких частично закупорены, поэтому постоянная времени его заполнения больше. Во время вдоха (А) воздух медленнее поступает в этот участок, и поэтому он продолжает заполняться даже после достижения равновесия (Б) остальными отделами легких (1). Более того, заполнение аномального участка может идти даже после начала общего выдоха (В). При увеличении частоты дыхания объем вентиляции этого участка становится все меньше.

Из рисунка видно, что при частичном перекрытии воздухоносных путей заполнение соответствующего им участка легких всегда будет происходить медленнее, чем заполнение остальных участков. Более того, он может продолжать заполняться даже тогда, когда из остальных отделов легких воздух уже выходит. В результате воздух перемещается в пораженный участок из соседних (так называемый эффект «воздушного маятника»). С увеличением частоты дыхания объем воздуха, поступающего в такой участок, становится все меньше и меньше. Иными словами, дыхательный объем при этом распределяется по все меньшей массе легочной ткани и создается впечатление, что растяжимость легких понижается.

«Физиология дыхания», Дж. Уэст

Существуют четыре причины понижения РO2 в артериальной крови (гипоксемии): гиповентиляция; нарушение диффузии; наличие шунтов; неравномерность вентиляционно-перфузионных отношений. Для того чтобы различать эти четыре причины, необходимо помнить, что гиповентиляция всегда приводит к повышению РCO2 в артериальной крови и что РO2 в этой крови при дыхании чистым кислородом не возрастает до должной величины лишь в том случае,…

Сопротивление воздухоносных путей равно отношению разности давлений между альвеолами и ротовой полостью к расходу воздуха. Его можно измерить методом общей плетизмографии. Перед тем как обследуемый делает вдох (Л), давление в плетизмографической камере равно атмосферному. Во время вдоха давление в альвеолах снижается, а объем альвеолярного воздуха увеличивается на величину ∆V. При этом воздух в камере сжимается,…

Выше мы убедились в том, что оценка растяжимости легких по внутриплевральному давлению в конце вдоха или выдоха при спокойном дыхании не дает надежных результатов у больных с поражениями дыхательных путей из-за различий в постоянной времени заполнения разных участков легких. Такая кажущаяся или «динамическая» растяжимость легких уменьшается при увеличении частоты дыхания: когда время, затрачиваемое на вдох,…


В нормальных условиях вентиляции дыхательные мышцы развивают усилия, которые направлены на преодоление эластических, или упругих, и вязких сопротивлений. Упругие и вязкие сопротивления в дыхательной системе постоянно формируют различные соотношения между давлением воздуха в воздухоносных путях и объемом легких, а также между давлением воздуха в воздухоносных путях и скоростью воздушного потока во время вдоха и выдоха.
Растяжимость легких (compliance, С) служит показателем эластических свойств системы внешнего дыхания. Величину растяжимости легких измеряют в виде зависимости давление - объем и рассчитывают по формуле: С - F/л Р, где С - растяжимость легких.
Нормальная величина растяжимости легких взрослого человека составляет около 200 мл* см вод. ст.-1. У детей показатель растяжимости легких значительно меньше, чем у взрослого человека.
Снижение растяжимости легких вызывают следующие факторы: повышение давления в сосудах легких или переполнение сосудов легких кровью; длительное отсутствие вентиляции легких или их отделов; нетренированность дыхательной функции; снижение упругих свойств ткани легких с возрастом.
Поверхностным натяжением жидкости называется сила, действующая в поперечном направлении на границу жидкости. Величина поверхностного натяжения определяется отношением этой силы к длине границы жидкости, единицей измерения в системе СИ является н/м. Поверхность альвеол покрыта тонким слоем воды. Молекулы поверхностного слоя воды с большой силой притягиваются друг к другу. Сила поверхностного натяжения тонкого слоя воды на поверхности альвеол всегда направлена на сжатие и спадение альвеол. Следовательно, поверхностное натяжение жидкости в альвеолах является еще одним очень важным фактором, влияющим на растяжимость легких. Причем сила поверхностного натяжения альвеол очень значительная и может вызвать их полное спадение, что исключило бы всякую возможность вентиляции легких. Спадению альвеол препятствует антиателектатический фактор, или сурфактант. В легких альвеолярные секреторные клетки, входящие в состав аэрогематического барьера, содержат осмиофильные пластинчатые тельца, которые выбрасываются в альвеолы и превращаются в поверхностно-активное вещество - сурфактант. Синтез и замена сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких может снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах, что ведет к их ателектазу, или спадению. Недостаточная функция сурфактанта приводит к расстройствам дыхания, нередко вызывающим смерть.
В легких сурфактант выполняет следующие функции: снижает поверхностное натяжение альвеол; увеличивает растяжимость легких; обеспечивает стабильность легочных альвеол, препятствуя их спадению и появлению ателектаза; препятствует транссудации (выходу) жидкости на поверхность альвеол из плазмы капилляров легкого.

Легкие и грудную клетку можно рассматривать как эластические образования, которые подобно пружине способны до определенного предела растягиваться и сжиматься, а при прекращении действия внешней силы самопроизвольно восстанавливать исходную форму, отдавая аккумулированную при растяжении энергию. Полное расслабление эластических элементов легких происходит при их полном спадении, а грудной клетки - в положении субмаксимального вдоха. Именно такое положение легких и грудной клетки наблюдается при тотальном пневмотораксе (рис. 23,а).

Благодаря герметичности плевральной полости легкие и грудная клетка находятся во взаимодействии. При этом грудная клетка подвергается сжатию, а легкие - растяжению. Равновесие между ними достигается на уровне спокойного выдоха (рис. 23,6). Сокращение дыхательных мышц нарушает указанное равновесие. При неглубоком вдохе сила мышечной тяги совместно с эластической отдачей грудной клетки преодолевает эластическое сопротивление легких (рис. 23,в). При более глубоком вдохе требуется значительно большее мышечное усилие, поскольку эластические силы грудной клетки перестают способствовать вдоху (рис. 23,г) или начинают противодействовать мышечной тяге, вследствие чего требуются усилия для растяжения не только легких, но и грудной клетки (рис. 23,5).

Из положения максимального вдоха грудная клетка и легкие возвращаются к положению равновесия за счет потенциальной энергии, накопленной при вдохе. Более глубокий выдох происходит только при активном участии мышц выдоха, которые вынуждены преодолевать все возрастающее сопротивление грудной клетки дальнейшему сжатию (рис. 23,е). Полное спадение легких все же не происходит, и в них остается некоторый объем воздуха (остаточный объем легких).

Понятно, что максимально глубокое дыхание невыгодно с энергетической точки зрения. Поэтому дыхательные экскурсии происходят обычно в пределах, где усилия дыхательной мускулатуры минимальны: вдох не превышает положения полного расслабления грудной клетки, выдох ограничивается положением, при котором» эластические силы легких и грудной клетки уравновешены.

Рис. 23

Представляется вполне обоснованным выделить несколько уровней, фиксирующих определенные отношения между взаимодействующими эластическими силами системы легкие - грудная клетка: уровень максимального вдоха, спокойного вдоха, спокойного выдоха и максимального выдоха. Эти уровни разделяют максимальный объем (общую емкость легких, ОЕЛ) на несколько объемов и емкостей: объем дыхания (ОД), резервный объем вдоха (РОВд), резервный объем выдоха (РОвыд), жизненную емкость легких (ЖЕЛ), емкость вдоха (Евд), функциональную остаточную емкость (ФОЕ) и остаточный объем легких (ООЛ) (рис. 24).

В норме в положении сидя у мужчин молодого возраста (25 лет) при росте 170 см ЖЕЛ составляет около 5,0 л, ОЕЛ - 6,5 л, отношение ООЛ/ОЕЛ - 25%. У женщин 25 лет при росте 160 см те же показатели равны 3,6 л, 4,9 л и 27%. С возрастом ЖЕЛ заметно уменьшается, ОЕЛ изменяется мало, а ООЛ значительно увеличивается. Независимо от возраста ФОЕ составляет примерно 50% ОЕЛ.

В условиях патологии при нарушении нормальных отношений между силами, взаимодействующими в акте дыхания, происходят изменения как абсолютных величин легочных объемов, так и отношений между ними. Уменьшение ЖЕЛ и ОЕЛ происходит при ригидности легких (пневмосклероз) и грудной клетки (кифосколиоз, болезнь Бехтерева), наличии массивных плевральных сращений, а также при патологии дыхательной мускулатуры и уменьшении ее способности развивать большое усилие. Естественно, что снижение ЖЕЛ можно наблюдать при сдавлении легких (пневмоторакс, плеврит), при наличии ателектазов, опухолей, кист, после оперативных вмешательств на легких. Все это приводит к ограничительным изменениям аппарата вентиляции.

При неспецифической патологии легких причиной ограничительных нарушений являются главным образом пневмосклероз и плевральные сращения, которые иногда приводят к уменьшению

Рис. 24.

ЖЕЛ и ОЕЛ до 70-80% должной. Однако значительного уменьшения ФОЕ и ООЛ при этом не происходит, поскольку от величины ФОЕ зависит поверхность газообмена. Компенсаторные реакции направлены на то, чтобы не допустить уменьшения ФОЕ, иначе неизбежны глубокие расстройства газообмена. Так обстоит дело и при оперативных вмешательствах на легких. После пульмонэктомии, например, ОЕЛ и ЖЕЛ снижаются резко, тогда как ФОЕ и ООЛ почти не претерпевают изменений.

Большое влияние на структуру общей емкости легких оказывают изменения, связанные с утратой легкими эластических свойств. Происходит увеличение OOJI и соответствующее уменьшение ЖЕЛ. Наиболее просто эти сдвиги можно было бы объяснить смещением уровня спокойного дыхания в инспираторную сторону из-за уменьшения эластической тяги легких (см. рис. 23). Однако складывающиеся отношения фактически сложнее. Их удается пояснить на механической модели, которая рассматривает легкие как систему эластических трубок (бронхов) в эластическом каркасе.

Поскольку стенки мелких бронхов обладают большой податливостью, их просвет поддерживается напряжением эластических структур стромы легких, радиально растягивающих бронхи. При максимальном вдохе эластические структуры легких предельно напряжены. По мере выдоха их напряжение постепенно ослабевает, в результате чего в определенный момент выдоха происходит сдавление бронхов и перекрытие их просвета. ООЛ и представляет собою тот объем легких, при котором экспираторное усилие перекрывает мелкие бронхи и препятствует дальнейшему опорожнению легких. Чем беднее эластический каркас легких, тем при меньшем объеме выдоха спадаются бронхи. Этим и объясняется закономерное увеличение ООЛ у лиц пожилого возраста и особенно заметное его увеличение при эмфиземе легких.

Увеличение ООЛ свойственно также и больным с нарушением бронхиальной проходимости. Этому способствует увеличение внутригрудного давления на выдохе, необходимое для продвижения воздуха по суженному бронхиальному дереву. Одновременно увеличивается и ФОЕ, что в известной мере является компенсаторной реакцией, так как чем больше уровень спокойного дыхания смещен в инспираторную сторону, тем сильнее растягиваются бронхи и тем больше силы эластической отдачи легких, направленные на преодоление повышенного бронхиального сопротивления.

Как показали специальные исследования, некоторые бронхи спадаются раньше, чем будет достигнут уровень максимального выдоха. Объем легких, при котором начинают спадаться бронхи, так называемый объем закрытия, и в норме больше ООЛ, у больных он может быть больше ФОЕ. В этих случаях даже при спокойном дыхании в некоторых зонах легких вентиляция нарушается. Смещение уровня дыхания в инспираторную сторону, т. е. увеличение ФОЕ, в такой ситуации оказывается еще более целесообразным.

Сравнение воздухонаполненности легких, определяемой методом общей плетизмографии, и вентилируемого объема легких, измеряемого смешением или вымыванием инертных газов, выявляет при обструктивной патологии легких, особенно при эмфиземе, наличие плохо вентилируемых зон, куда инертный газ при длительном дыхании практически не поступает. Зоны, не участвующие в газообмене, достигают иногда объема 2,0-3,0 л, в результате чего приходится наблюдать увеличение ФОЕ примерно в 1,5-2 раза, ООЛ - в 2-3 раза против нормы, а отношение ООЛ/ОЕЛ - до 70-80%. Своеобразной компенсаторной реакцией при этом является увеличение ОЕЛ, иногда значительное, до 140- 150% нормы. Механизм столь резкого увеличения ОЕЛ не ясен. Уменьшение эластической тяги легких, свойственное эмфиземе, объясняет его лишь отчасти.

Перестройка структуры ОЕЛ отражает сложный комплекс патологических изменений и компенсаторно-приспособительных реакций, направленных, с одной стороны, на обеспечение оптимальных условий газообмена, с другой - на создание возможно более экономной энергетики дыхательного акта.

Указанные легочные объемы, названные статическими (в противовес динамическим: минутному объему дыхания - МОД, объему альвеолярной вентиляции и др.), на самом деле подвержены значительным изменениям даже на протяжении короткого срока наблюдения. Нередко приходится видеть, как после ликвидации бронхоспазма воздухонаполненность легких уменьшается на несколько литров. Даже значительное увеличение ОЕЛ и перераспределение ее структуры оказываются подчас обратимыми. Поэтому несостоятельным является мнение, что по величине отношения

ООЛ/ОЕЛ можно судить о наличии и выраженности эмфиземы легких. Только динамическое наблюдение позволяет дифференцировать острое вздутие легких от эмфиземы.

Тем не менее отношение ООЛ/ОЕЛ следует считать важным диагностическим признаком. Уже небольшое его увеличение говорит о нарушении механических свойств легких, что иногда приходится наблюдать даже при отсутствии нарушений бронхиальной проходимости. Увеличение ООЛ оказывается одним из ранних признаков патологии легких, а возвращение его к норме - критерием полноты выздоровления или ремиссии.

Влияние состояния бронхиальной проходимости на структуру ОЕЛ не позволяет рассматривать легочные объемы и их отношения лишь как прямую меру эластических свойств легких. Последние более четко характеризует величина растяжимости (С), которая указывает, на какой объем изменяются легкие при изменении плеврального давления на 1 см вод. ст. В норме С составляет 0,20 л/см вод. ст. у мужчин и 0,16 л/см вод. ст. у женщин. При утрате легкими эластических свойств, что в наибольшей мере свойственно эмфиземе, С увеличивается иногда в несколько раз против нормы. При ригидности легких, обусловленной пневмосклерозом, С, напротив, уменьшается в 2-3-4 раза.

Растяжимость легких зависит не только от состояния эластических и коллагеновых волокон стромы легких, но и от ряда других факторов, из которых большое значение принадлежит силам внутриальвеолярного поверхностного натяжения. Последнее зависит от наличия на поверхности альвеол специальных веществ, сурфактантов, которые препятствуют их спадению, уменьшая силу поверхностного натяжения. На величину растяжимости легких влияют также эластические свойства бронхиального дерева, тонус его мускулатуры, кровенаполнение легких.

Измерение С возможно лишь в статических условиях при прекращении движения воздуха по трахео-бронхиальному дереву, когда величина плеврального давления определяется исключительно силой эластической тяги легких. Этого удается достичь при медленном дыхании пациента с периодическим прерыванием воздушного потока или при спокойном дыхании в момент смены дыхательных фаз. Последний прием у больных часто дает более низкие значения С, так как при нарушениях бронхиальной проходимости и изменении эластических свойств легких равновесие между альвеолярным и атмосферным давлением при смене дыхательных фаз не успевает произойти. Уменьшение растяжимости легких по мере увеличения частоты дыхания является доказательством механической неоднородности легких вследствие поражения мелких бронхов, от состояния которых зависит распределение воздуха в легких. Это удается обнаружить уже на доклиническом этапе, когда другие методы инструментального исследования не выявляют отклонений от нормы, а пациент не предъявляет жалоб.

Пластические свойства грудной клетки при неспецифической патологии легких не претерпевают существенных изменений. В норме растяжимость грудной клетки составляет 0,2 л/см вод. ст., по может значительно снижаться при патологических изменениях скелета грудной клетки и ожирении, что необходимо учитывать при оценке состояния больного.

Легкие обладают рядом особенностей структурной организации, обеспечивающих их эластические свойства. Опорный каркас легких, начиная от главных бронхов и заканчивая альвеолами, состоит из соединительной ткани, включающей коллагеновые, ретикулярные и эластические волокна. Пучки этих волокон, подобно пружине, могут растягиваться и сжиматься . Механические свойства коллагеновых и эластических волокон не одинаковы: длина коллагеновых волокон при растяжении увеличивается всего на 2%, но зато очень велика их прочность на разрыв. Эластические волокна, наоборот, обладают очень высокой растяжимостью - до 130 %. В паренхиме легких соотношение коллаген /эластин равно 2.5/1, а в париетальной плевре - 10/1, следовательно, растяжимость легких значительно выше.

Вторым компонентом, способным сокращаться и расслабляться являются клетки гладкой мускулатуры, которые расположены по ходу дыхательных путей, в основании у входа в альвеолы, в плевре.

Третьим компонентом, вносящим свой вклад в эластичность легких, служат клетки фибробластического ряда, содержащие пучки фибрилл, богатые сократительными белками и способные к сокращению.

Соединительнотканный каркас, или строма, легких выполняет несколько функций: опорную, амортизационную, трофическую, коммуникационную. Основной принцип организации опорного каркаса - его непрерывность и структурная взаимосвязанность, от воздухоносных путей до висцеральной плевры. В связи с этим, при изменении внутриплеврального давления силы тяги передаются с париетальной на висцеральную плевру и далее на легкие, в воротах которых соединительнотканные образования плевры зафиксированы.

Таким образом, легкие содержат структуры, которые, с одной стороны, эластичны и могут растягиваться, а с другой - обладают ярко выраженной способностью к ретракции (будем называть это свойство ретракцией, для того, чтобы отличать этот пассивный процесс от активного сокращения). Во время вдоха легкие подвергаются растяжению под действием сил сокращения дыхательной мускулатуры (размер грудной клетки увеличивается). Когда эти силы прекращают действовать, легкие благодаря своим упругим свойствам возвращаются в первоначальное состояние. Чем больше увеличивается объем легких во время вдоха, тем сильнее они растягиваются и тем больше накапливается механической энергии для последующей ретракции. Эластические свойства легких характеризуются двумя основными параметрами: 1) растяжимостью и 2) эластическим сопротивлением - это та сила, которая препятствует растяжению.

Легочный сурфактант

Если полностью удалить из легких воздух и заменить его физиологическим раствором, то окажется, что способность к растяжению у легких значительно повышается. Это объясняется тем, что растяжению легких в норме препятствуют силы поверхностного натяжения, возникающие в легком на границе жидкость - газ.

Пленка жидкости, выстилающая внутреннюю поверхность альвеол, содержит высокомолекулярное вещество, понижающее поверхностное натяжение . Это вещество называется сурфактант и синтезируется альвеолоцитами II типа. Сурфактант имеет сложную белково-липидную структуру и представляет собой межфазную пленку на границе воздух - жидкий слой. Физиологическая роль легочного сурфактанта обусловлена тем, что эта пленка значительно снижает поверхностное натяжение, вызванное жидкостью. Поэтому сурфактант обеспечивает во-первых, повышение растяжимости легких и уменьшении работы, совершаемой во время вдоха и, во-вторых, обеспечивает стабильности альвеол препятствуя их слипанию. Регулирующее действие сурфактанта в обеспечении стабильности размеров альвеол состоит в том, что чем меньше становятся размеры альвеол, тем больше снижается поверхностное натяжение под влиянием сурфактанта. Без этого эффекта при уменьшении объема легких самые мелкие альвеолы должны были бы спадаться (ателектаз).

Синтез и замена поверхностно-активного вещества - сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, острая кислородная недостаточность (гипоксия) или избыток кислорода (гипероксия), а также различные токсические вещества, в том числе некоторые фармакологические препараты (жирорастворимые анестетики), могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Потеря сурфактанта приводит к «жестким» (малоподвижным, плохо растяжимым) легким с наличием зон ателектазов.

Кроме действия сурфактанта стабильность альвеол в значительной степени обусловлена и структурными особенностями паренхимы легких. Каждая альвеола (кроме прилежащих к висцеральной плевре) окружена другими альвеолами. В такой эластической системе при уменьшении объема какой-то группы альвеол, окружающая их паренхима будет подвергаться растяжению, и препятствовать спадению соседних альвеол. Эту поддержку окружающей паренхимы называют «взаимосвязью». Взаимосвязь наряду с сурфактантом играет большую роль в предотвращении ателектазов и открытии ранее закрытых, по каким то причинам, участков легких. Кроме того, такая «взаимосвязь» поддерживает низкое сопротивление внутрилегочных сосудов и стабильность их просвета, просто растягивая их снаружи.

Транспульмональное давление

Стенки грудной клетки и поверхность легких покрыты тонкой серозной оболочкой. Между листками висцеральной и париетальной плевры имеется узкая (5 - 10 мкм) и герметичная щель, заполненная серозной жидкостью, по составу сходной с лимфой. В момент первого вдоха новорожденного легкие расправляются и остаются в таком состоянии всю оставшуюся жизнь. Если вспомнить о свойствах эластического каркаса легких, то становится ясно, что растянутые легкие постоянно стремятся уменьшить свой размер за счет способности эластических волокон к ретракции. Эта сила эластической тяги легких постоянно «оттягивает» легкие от грудной клетки, поэтому давление в плевральной полости всегда немного ниже, чем давление в альвеолах. Эту разницу давлений можно выявить, если, как видно на рисунке 3, ввести в плевральную полость канюлю, так чтобы ее кончик находился в плевральной полости. Соединив эту канюлю с манометром, мы можем убедиться в том, что у человека в состоянии покоя в конце выдоха внутриплевральное давление примерно на 3-4 мм рт. столба (5см. водного столба) ниже атмосферного.

Внутриплевральное давление ниже давления в альвеолах на величину эластической тяги легких:

Р плевральное = Р альвеолярное - Р эластической тяги легких

Следовательно, между внутренней поверхностью альвеол и плевральной полостью существует разность давлений, причем эта разность всегда в пользу альвеолярного пространства. Разницу между давлением в альвеолах и давлением в плевральной полости называют транспульмональным давлением.

Р транспульмональное = Р альвеолярное - Р плевральное.

Транспульмональное давление это тот градиент давлений, который поддерживает легкие в расправленном состоянии (давление «изнутри» выше давления «снаружи»). Таким образом, сила транспульмонального давления направлена в одну сторону с влиянием сурфактанта и противодействует эластической тяге легкого и поверхностному натяжению водной пленки. На схеме представлено взаимодействие сил, которые обеспечивают расправленное состояние легких, следовательно возможность легких растягиваться и обеспечивать поступление воздуха в альвеолярное пространство.

Плевральное давление часто называют отрицательным лишь потому, что оно ниже атмосферного. Плевральное давление можно считать отрицательным, если атмосферное давление принять за 0. На самом деле это давление положительное и зависит от атмосферного давления.

Если атмосферное давление сегодня равно 747 мм рт. ст., то плевральное давление к концу спокойного выдоха будет равно 747 - 3 = 744 мм рт. ст. Таким образом, транспульмональное давление равно 747 – 744 = 3 мм рт. ст.

Рассмотрим, каким образом изменяется альвеолярное и плевральное давление во время дыхания. Схема и рисунки 3А и Б иллюстрируют изменения давления во время вдоха и выдоха.

Перед вдохом давление в альвеолах равно атмосферному, движения воздуха нет. Стрелка - это эластическая тяга легкого, которая создает в плевральной полости давление ниже атмосферного. Транспульмональное давление поддерживает легкие в расправленном состоянии.
Во время вдоха объем грудной клетки увеличивается, легочная ткань растягивается. Объем легких увеличивается, давление в альвеолах становится ниже атмосферного, и воздух поступает в легкие. Увеличение размеров грудной клетки приводит к еще большему уменьшению плеврального давления, потому что плевральная полость растягивается в двух направлениях - две стрелки - увеличение размеров грудной клетки и более сильная тяга эластики легких во время их растяжения. Таким образом, транспульмональная разница давлений не только сохраняется, ни и немного увеличивается, облегчает растяжение легких.
Во время пассивного выдоха (расслабление межреберных мышц и диафрагмы) увеличение плеврального давления и ретракция эластики легких обеспечивают движение воздуха из альвеол в атмосферу.
На этой схеме приведены давления в альвеолах и плевральной полости во время активноговыдоха. При сокращении внутренних межреберных мышц уменьшаются размеры грудной клетки и объем легких, происходит повышение альвеолярного давления и осуществляется выдох. Давление в плевральной полости может стать даже выше атмосферного, благодаря сокращению экспираторных мышц, кроме того, уменьшается эластическая тяга легких.

Легко убедиться в том, что транспульмональная разница давлений совершенно необходима для нормального дыхания: стоит только нарушить герметичность плевральной полости. Если атмосферный воздух попадет в плевральную полость, то давление внутри легких и плевральной полости окажутся одинаковыми, легкие при этом спадаются. Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки носит название пневмоторакса . При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы. Если при одностороннем пневмотораксе пациент может существовать за счет воздухообмена через сохранившееся легкое, то при двустороннем пневмотораксе неминуемо наступает смерть. Кроме травматического пневмоторакса существует лечебный пневмоторакс, при котором в плевральную полость вводится строго определенное количество воздуха. Лечебный пневмоторакс применяется с целью ограничения функции больного легкого, например при туберкулезе легкого, абсцессах в легком и т.д.

Рисунок 3А. Плевральное давление во время дыхания

Рисунок 3Б. Изменение внутрилегочного и внутриплеврального давления во время дыхания

Механизмы изменения объема легких при дыхании можно продемонстрировать с помощью модели Дондерса (рис. 4), на которой с помощью двух манометров можно проследить за изменением давления и в легких, и в плевральной полости.

Если отсосать воздух из колокола, то легкие расправятся, т.к. в плевральной полости давление станет ниже внутрилегочного, появится разница давлений между внутрилегочным пространством и плевральной полостью – транспульмональное давление.

Теперь можно попробовать снизить давление в легких, оттягивая эластическую мембрану вниз и имитируя сокращение диафрагмы и увеличение объема грудной клетки. При этом уменьшится и внутриплевральное давление, что будет видно по изменению уровня жидкости в манометре. Такие изменения внутрилегочного и плеврального давлений характерны для фазы вдоха.

Рисунок 4. Модель Дондерса

Легочные объемы и емкости

Для функциональной характеристики дыхания принято использовать различные легочные объемы и емкости. Легочные объемы подразделяются на статические и динамические. Первые измеряют при завершенных дыхательных движениях. Вторые измеряют при проведении дыхательных движений и с ограничением времени на их выполнение. Емкость включает в себя несколько объемов.

Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и строения дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) - объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания (рис. 5). У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РО вд) - максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РО вд составляет 1,5-1,8 л.

Резервный объем выдоха (РО выд )-максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха. Величина РО выдоха ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0-1,4 л.

Остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0-1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес, и их описание выходит за рамки курса нормальной физиологии,

Легочные емкости . Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Е вд ) равна сумме дыхательного объема и резервного объема вдоха. У человека Е вд составляет в среднем 2,0-2.3 л.

Рисунок 5. Легочные объемы и емкости

Функциональная остаточная емкость (ФОЕ) - объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или «разведения газов» и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки.

Общая емкость легких (ОЕЛ) - объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами:

ОЕЛ = 00 + ЖЕЛ или ОЕЛ = ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции системы внешнего дыхания у здоровых людей и при диагностике заболевания легких.

Минутный объем дыхания

Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД – это произведение дыхательного объема на частоту дыхательных циклов . В норме, в покое ДО равен 500 мл, частота дыхательных циклов – 12 – 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких – это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений.

Альвеолярная вентиляция

Итак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеолярный воздух – это внутренняя газовая среда организма млекопитающих и человека. Ее параметры – содержание кислорода и углекислого газа – постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких – количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эффективности легочного газообмена важна не
столько легочная, сколько альвеолярная вентиляция.

Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей – примерно 140 – 150 мл.

Кроме того, есть альвеолы, которые в данный момент вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств – альвеолярная вентиляция – представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД.

Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП) ´ ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания.

Рисунок 6. Соотношение МОД и альвеолярной вентиляции

Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол. Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе.В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7/1).

Коллагеновые и эластичные волокна стенок альвеол осуществляют эластичный сопротивление, направленный на уменьшение объема альвеол. Кроме того, в области раздела воздуха с жидкостью возникают силы, которые также направлены на уменьшение поверхности - это силы поверхностного натяжения. К тому же, чем меньше диаметр альвеол, тем больше поверхностное натяжение. Если бы эти силы действовали без помех, то благодаря сочетанию между отдельными альвеолами воздух малых альвеол переходило бы в большие, а маленькие альвеолы должны были бы исчезнуть.
Однако в организме существует биологическое приспособление, противодействует этим силам. Цесурфактанты (поверхностно-активные вещества - ПАВ), содержащихся в поверхностном слое жидкости. Они производятся пневмоцитами II типа. Чем меньше диаметр альвеол и большая сила поверхностного натяжения, то активны сурфактанты. В присутствии ПАВ поверхностное натяжение снижается почти в 10 раз. Если смыть водой жидкость, содержащая сурфактанты и покрывает тонким слоем эпителий альвеол, то альвеолы спадуться.
Функции сурфактантов.
1. Сохранение размеров и формы альвеол. Главным элементом ЮАР является дипальмітилфосфатидилхолін (ДПФХ), который синтезируется из жирных кислот. Эти кислоты приносит в легких кровь. Считают, что поверхностное натяжение снижается благодаря особенностям молекулы ДПФХ. Она с одного края гидрофобная, а с другой - гидрофильная, благодаря этому молекула растекается по поверхности воды тонким слоем. За счет способности отталкивания сурфактанты противодействуют притяжения молекул воды, которые обеспечивают поверхностное натяжение. Рост активности ПАВ при уменьшении площади поверхности альвеол обеспечивается тесным прилеганием
молекул ДПФХ друг к другу, что и увеличивает силу взаимного отталкивания.
2. Гистерезис легких. ЮАР синтезируются пневмоцитами постоянно и сначала поступают в так называемую гипофазу. Это своеобразное депо сурфактантов находится под поверхностным монослоем. Разрушение участков верхнего активного слоя, состарились, сопровождается поступлением готовых молекул сурфактантов с гипофазу. ЮАР поступают монослоя также при растяжении легких в фазу вдоха. Растущая во время выдоха концентрация их способствует начальной задержке спадиння альвеол. В этот момент, несмотря на уменьшение силы внутреннего растяжение альвеол, диаметр их остается сравнительно большим, чем при вдохе. То есть наблюдается несоответствие объема внешнего давления. Это несоответствие изображена на графике в виде петли гистерезиса (от греч. Hysteresis - отставание, запаздывание. При нормальной глубине дыхания объем альвеол изменяется мало (до 3-5%). Благодаря этому гистерезис не имеет существенного значения. В отличие от этого при глубоком дыхании гистерезис начинает играть важную роль в облегчении дыхательных движений. Кроме того, задержка спадиння альвеол в свою очередь способствует длительному хранению воздуха в альвеолах, что улучшает условия газообмена.
3. ЮАР принимают участие в периодическом исключении части альвеол из процесса дыхания. Хотя синтез сурфактантов в пневмоцитах происходит постоянно, «выстреливаются» они в окружающую гипофазу периодически. Благодаря этому те ЮАР, состарились, исчезая с поверхности некоторых альвеол или и отдельных участков, могут на некоторое время обнажить поверхность. Увеличение поверхностного натяжения приводит к уменьшению входа альвеол.
4. Очистка альвеол. На поверхности альвеол ЮАР постепенно перемещаются в направлении градиента поверхностного напряжения. На месте секреции сурфактантов поверхностное натяжение маленький, а в части, прилегающей к бронхиол, где нет секреторных клеток, поверхностное натяжение выше. Поэтому сюда, к выходу из альвеол, и движутся сурфактанты. С поверхности альвеол вместе с ЮАР могут выводиться пылевые частицы, разрушенный эпителий. В запыленной атмосфере эти процессы усиливаются, следовательно активизируется и синтез сурфактантов. Из-за высокой активности этих процессов может постепенно истощаться биосинтез ЮАР. Это является одной из причин развития ателектаза - исчезновение части мелких альвеол.
5. Бытует мнение, что Гиари способствуют сохранению сухости поверхности альвеол и примерно на 50% снижают испарение воды через легкие. Не исключено и участие их в переносе газов через легочную мембрану. Но, безусловно, важнейшей функцией ЮАР является сохранение стабильности альвеол.
Кроме сурфактантов, в поддержании структуры легких важную роль играет структурная взаимозависимость альвеол. Сращение их друг с другом способствует взаимному растяжению соседних альвеол.
Сурфактанты начинают синтезироваться в конце внутриутробного периода. их присутствие облегчает осуществление первого вдоха. Во время преждевременных родов легкие ребенка могут быть не подготовлены для дыхания, что может вызвать участков ателектаза.
Работа дыхательных мышц, выполняющих вдох, направлена, в первую очередь, на преодоление всех видов сопротивления. Кроме этого, дыхательные мышцы преодолевают гравитацию, которая препятствовала подъему грудной клетки и плечевого пояса при вдохе. Особо следует подчеркнуть важность преодоления аэродинамического сопротивления. Это сопротивление возрастает при сужении воздухоносных путей, а также при увеличении скорости вентиляции легких. Так, отек слизистой оболочки, возникающее даже при кратковременном вдохе дыма сигарет, на 20-30 мин увеличивает сопротивление движению воздуха в 2-3 раза. Еще больше возрастает сопротивление движению воздуха при сужении бронхов при бронхиальной астме. Вследствие этого у больного для выполнения даже спокойного дыхания должны подключаться вспомогательные мышцы. Увеличение скорости движения воздуха при форсированном дыхании приводит к значительному росту турбулентных завихрений и повышения сопротивления без изменения просвета дыхательных путей. Это настолько затрудняет работу дыхательных мышц, что для снижения аэродинамического сопротивления при форсированном дыхании человек невольно переходит на дыхание через рот. Установлено, что дыхание через рот на 30-40% снижает аэродинамическое сопротивление.

Поделиться