Толщина земной атмосферы составляет примерно. Атмосфера и мир атмосферных явлений

Атмосфера Земли

Атмосфе́ра (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера ), окружающая планету Земля . Внутренняя её поверхность покрывает гидросферу и частично кору , внешняя граничит с околоземной частью космического пространства.

Совокупность разделов физики и химии, изучающих атмосферу, принято называть физикой атмосферы . Атмосфера определяет погоду на поверхности Земли, изучением погоды занимается метеорология , а длительными вариациями климата - климатология .

Строение атмосферы

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы. Содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция , возникают облака , развиваются циклоны и антициклоны . Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии ). Достигнув на высоте около 40 км значения около 273 К (почти 0° С), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой .

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Атмосфера Земли

Мезосфера начинается на высоте 50 км и простирается до 80-90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25-0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов , колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около -90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

Термосфера

Основная статья : Термосфера

Верхний предел - около 800 км. Температура растёт до высот 200-300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния ») - основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород.

Атмосферные слои до высоты 120 км

Экзосфера (сфера рассеяния)

Экзосфера - зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежен, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация ).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200-250 км соответствует температуре ~1500 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000-3000 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум , который заполнен сильно разреженными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные час­тицы кометного и метеорного происхождения. Кроме чрезвычайно разреженных пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы - около 20 %; масса мезосферы - не более 0,3 %, термосферы - менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000-3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу . Гетеросфера - это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера . Граница между этими слоями называется турбопаузой , она лежит на высоте около 120 км.

Физические свойства

Толщина атмосферы - примерно 2000 - 3000 км от поверхности Земли. Суммарная масса воздуха - (5,1-5,3)×10 18 кг. Молярная масса чистого сухого воздуха составляет 28,966. Давление при 0 °C на уровне моря 101,325 кПа ; критическая температура ?140,7 °C; критическое давление 3,7 МПа; C p 1,0048×10 3 Дж/(кг·К)(при 0 °C), C v 0,7159×10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде при 0 °C - 0,036 %, при 25 °C - 0,22 %.

Физиологические и другие свойства атмосферы

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 15 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа - 40 мм рт. ст., а паров воды - 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным - около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19-20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15-19 км.

Плотные слои воздуха - тропосфера и стратосфера - защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация - первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли, постепенно ослабляются, а затем и полностью исчезают, такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60-90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100-130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл, там проходит условная Линия Кармана за которой начинается сфера чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства - способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, - с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение .

Состав атмосферы

Состав сухого воздуха

Атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H 2 O) и углекислого газа (CO 2).

Состав сухого воздуха

Азот

Кислород

Аргон

Вода

Углекислый газ

Неон

Гелий

Метан

Криптон

Водород

Ксенон

Закись азота

Кроме указанных в таблице газов, в атмосфере содержатся SO 2 , NH 3 , СО, озон , углеводороды , HCl , HF , пары Hg , I 2 , а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль ).

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в четырёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия ), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком , водяным паром ). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

    утечка легких газов (водорода и гелия) в межпланетное пространство ;

    химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы , характеризующейся гораздо меньшим содержанием водорода и гораздо большим - азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества N 2 обусловлено окислением аммиачно-водородной атмосферы молекулярным О 2 , который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также N 2 выделяется в атмосферу в результате денитрификации нитратов и др. азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N 2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зеленые водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов , в результате фотосинтеза , сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений - аммиака, углеводородов, закисной формы железа , содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьезные и резкие изменения многих процессов, протекающих в атмосфере , литосфере и биосфере , это событие получило название Кислородная катастрофа .

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО 2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего - от интенсивности биосинтеза и разложения органики в биосфере Земли . Практически вся текущая биомасса планеты (около 2,4×10 12 тонн ) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане , в болотах и в лесах органика превращается в уголь , нефть и природный газ . (см.Геохимический цикл углерода )

Благородные газы

Источник инертных газов - аргона , гелия и криптона - вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек . Результатом его деятельности стал постоянный значительный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО 2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО 2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 50 - 60 лет количество СО 2 в атмосфере удвоится и может привести к глобальным изменениям климата .

Сжигание топлива - основной источник и загрязняющих газов (СО , NO , SO 2 ). Диоксид серы окисляется кислородом воздуха до SO 3 в верхних слоях атмосферы, который в свою очередь взаимодействует с парами воды и аммиака, а образующиеся при этом серная кислота (Н 2 SO 4 ) и сульфат аммония ((NH 4 ) 2 SO 4 ) возвращаются на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH 3 CH 2 ) 4 ) ).

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу - одна из возможных причин изменений климата планеты.

Атмосфера Земли — это газовая оболочка нашей планеты. Кстати, подобные оболочки есть практически у всех небесных тел, начиная от планет Солнечной системы и заканчивая крупными астероидами. зависит от многих факторов — размера его скорости, массы и множества других параметров. Но только оболочка нашей планеты содержит в себе компоненты, которые позволяют нам жить.

Атмосфера Земли: краткая история возникновения

Считается, что в начале своего существования наша планета вообще не имела газовой оболочки. Но молодое, новообразованное небесное тело постоянно развивалось. Первичная атмосфера Земли образовалась в результате постоянных извержений вулканов. Именно так за много тысяч лет вокруг Земли образовалась оболочка из водяного пара, азота, углерода и других элементов (кроме кислорода).

Поскольку количество влаги в атмосфере ограничено, то ее избыток превращался в осадки — так формировались моря, океаны и прочие водоемы. В водной среде появлялись и развивались первые организмы, заселившие планету. Большинство из них относилось к растительным организмам, вырабатывающим кислород путем фотосинтеза. Таким образом, атмосфера Земли начала наполняться этим жизненно необходимым газом. А в результате скопления оксигена образовался и озоновый слой, которые защищал планету от губительного влияния ультрафиолетовых излучений. Именно эти факторы и создали все условия для нашего существования.

Строение атмосферы Земли

Как известно, газовая оболочка нашей планеты состоит из нескольких слоев — это тропосфера, стратосфера, мезосфера, термосфера. Нельзя провести четкие границы между этими слоями — все зависит от времени года и широты участка планеты.

Тропосфера — нижняя часть газовой оболочки, высота которой составляет в среднем от 10 до 15 километров. Именно здесь сосредоточенная большая часть Кстати, именно тут находится вся влага и формируются облака. За счет содержания кислорода тропосфера поддерживает жизнедеятельность всех организмов. Кроме того, она имеет решающее значение в формировании погоды и климатических особенностей местности — здесь образуются не только облака, но и ветра. Температура падает с высотой.

Стратосфера — начинается от тропосферы и заканчивается на высоте от 50 до 55 километров. Здесь температура с высотой растет. Эта часть атмосферы практически не содержит водяного пара, но зато имеет озоновый слой. Иногда здесь можно заметить образование «перламутровых» облаков, которые можно увидеть только ночью — считается, что они представлены сильно конденсированными водяными каплями.

Мезосфера — тянется до 80 километров ввысь. В этом слое можно заметить резкое падение температуры по мере продвижения вверх. Здесь также сильно развита турбулентность. Кстати, в мезосфере образовываются так называемые «серебристые облака», которые состоят из небольших кристаллов льда — увидеть их можно только ночью. Интересно, что у верхней границы мезосферы воздуха практически нет — его в 200 раз меньше, чем возле земной поверхности.

Термосфера — это верхний слой земной газовой оболочки, в котором принято различать ионосферу и экзосферу. Интересно, что с высотой температура здесь очень резко поднимается — на высоте 800 километров от земной поверхности она составляет более 1000 градусов Цельсия. Ионосфера характеризируется сильно разжиженным воздухом и огромным содержанием активных ионов. Что же касается экзосферы, то эта часть атмосферы плавно переходит в межпланетное пространство. Стоит отметить, что термосфера не содержит в себе воздуха.

Можно заметить, что атмосфера Земли — это очень важная часть нашей планеты, которая остается решающим фактором в появлении жизни. Она обеспечивает жизнедеятельность, поддерживает существование гидросферы (водной оболочки планеты) и защищает от ультрафиолетовых излучений.

Атмосфера представляет собой смесь различных газов. Она простирается от поверхности Земли на высоту до 900 км, защищая планету от вредного спектра солнечного излучения, и содержит газы, необходимые для всего живого на планете. Атмосфера задерживает солнечное тепло, нагревая около земной поверхности и создавая благоприятный климат.

Состав атмосферы

Атмосфера Земли состоит в основном из двух газов - азота (78%) и кислорода (21%). Кроме того, она содержит примеси углекислого и других газов. в атмосфере существует в виде пара, капель влаги в облаках и кристалликов льда.

Слои атмосферы

Атмосфера состоит из многих слоев, между которыми нет четких границ. Температуры разных слоев заметно отличаются друг от друга.

Безвоздушная магнитосфера. Здесь летает большинство спутников Земли за пределами земной атмосферы. Экзосфера (450-500 км от поверхности). Почти не содержит газов. Некоторые спутники погоды совершают полеты в экзосфере. Термосфера (80-450 км) характеризуется высокими температурами, достигающими в верхнем слое 1700°С. Мезосфера (50-80 км). В этой сфере температура падает по мере увеличения высоты. Именно здесь сгорает большинство метеоритов (осколков космических пород), попадающих в атмосферу. Стратосфера (15-50 км). Содержит озоновый спой, т. е. слой озона, поглощающего ультрафиолетовое излучение Солнца. Это приводит к повышению температуры около поверхности Земли. Здесь обычно летают реактивные самолеты, так как видимость в этом слое очень хорошая и почти нет помех, вызванных погодными условиями. Тропосфера. Высота варьируется от 8 до 15 км от земной поверхности. Именно здесь формируется погода планеты, так как в этом слое содержится больше всего водяных паров, пыли и возникают ветры. Температура понижается по мере удаления от земной поверхности.

Атмосферное давление

Хотя мы и не ощущаем этого, слои атмосферы оказывают давление на поверхность Земли. Наиболее высокое около поверхности, а при удалении от неё оно постепенно снижается. Оно зависит от перепада температур суши и океана, и поэтому в районах, находящихся на одинаковой высоте над уровнем моря нередко бывает разное давление. Низкое давление приносит сырую погоду, а при высоком обычно устанавливаете ясная погода.

Движение воздушных масс в атмосфере

И давления заставляют в нижних слоях атмосферы перемешаться. Так возникают ветры, дующие из областей высокого давления в области низкого. Во многих регионах возникают и местные ветры, вызванные перепадами температур суши и моря. Горы также оказывают существенное влияние на направление ветров.

Парниковый эффект

Углекислый газ и другие газы, входящие в состав земной атмосферы, задерживают солнечное тепло. Этот процесс принято называть парниковым эффектом, так как он во многом напоминает циркуляцию тепла в парниках. Парниковый эффект влечет за собой глобальное потепление на планете. В областях высокого давления - антициклонах - устанавливается ясная солнечная . В областях низкого давления - циклонах - обычно стоит неустойчивая погода. Тепло и световая , поступающие в атмосферу. Газы задерживают тепло, отражающееся от земной поверхности, вызывая тем самым повышение температуры на Земле.

В стратосфере существует особый озоновый слой. Озон задерживает большую часть ультрафиолетового излучения Солнца, защищая от него Землю и все живое на ней. Ученые установили, что причиной разрушения озонового слоя являются особые хлорофторуглекислые газы, содержащиеся в некоторых аэрозолях и холодильном оборудовании. Над Арктикой и Антарктидой в озоновом слое были обнаружены огромные дыры, способствующие увеличению количества ультрафиолетового излучения, воздействующего на поверхность Земли.

Озон образуется в нижних слоях атмосферы в результате между солнечным излучением и различными выхлопными дымами и газами. Обычно он рассеивается по атмосфере, но, если под слоем теплого воздуха образуется замкнутый слой холодного, озон концентрируется и возникает смог. К сожалению, это не может восполнять потери озона в озоновых дырах.

На фотоснимке со спутника хорошо видна дыра в озоновом слое над Антарктикой. Размеры дыры меняются, но ученые считают, что она постоянно увеличивается. Предпринимаются попытки снизить уровень выхлопных газов в атмосфере. Следует уменьшать загрязнение воздуха и применять в городах бездымные виды топлива. Смог вызывает раздражение глаз и удушье у многих людей.

Возникновение и эволюция атмосферы Земли

Современная атмосфера Земли представляет собой результат длительного эволюционного развития. Она возникла в результате совместных действий геологических факторов и жизнедеятельности организмов. В течение всей геологической истории земная атмосфера пережила несколько глубоких перестроек. На основе геологических данных и теоретических (предпосылок первозданная атмосфера молодой Земли, существовавшая около 4 млрд. лет тому назад, могла состоять из смеси инертных и благородных газов с небольшим добавлением пассивного азота (Н. А. Ясаманов, 1985; А. С. Монин, 1987; О. Г. Сорохтин, С. А. Ушаков, 1991, 1993). В настоящее время взгляд на состав и строение ранней атмосферы несколько видоизменился. Первичная атмосфера (протоатмосфера) на самой ранней протопланетной стадии., т.е. старше чем 4,2 млрд. лет, могла состоять из смеси метана, аммиака и углекислого газа. В результате дегазации мантии и протекающих на земной поверхности активных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СO 2 и СО, серы и ее соединений, а также сильных галогенных кислот - НСI, НF, НI и борной кислоты, которые дополнялись находившимися в атмосфере метаном, аммиаком, водородом, аргоном и некоторыми другими благородными газами. Эта первичная атмосфера была чрезвычайно тонкой. Поэтому температура у земной поверхности была близкой к температуре лучистого равновесия (А. С. Монин, 1977).

С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнечных лучей стал трансформироваться. Привело это к разложению метана на и углекислоту, аммиака - на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, который медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности сине-зеленых водорослей в процессе фотосинтеза стал вырабатываться кислород, который, однако, в начале в основном расходовался на «окисление атмосферных газов, а затем и горных пород. При этом аммиак, окислившийся до молекулярного азота, стал интенсивно накапливаться в атмосфере. Как предполагается, значительная чаешь азота современной атмосферы является реликтовой. Метан и оксид углерода окислялись до углекислоты. Сера и сероводород окислялись до SO 2 и SO 3 , которые вследствие своей высокой подвижности и легкости быстро удалились из атмосферы. Таким образом, атмосфера из восстановительной, какой она была в архее и раннем протерозое, постепенно превращалась в окислительную.

Углекислый газ поступал в атмосферу как вследствие окисления метана, так и в результате дегазации мантии и выветривания горных пород. В том случае, если бы весь углекислый газ, выделившийся за всю историю Земли, сохранился в атмосфере, его парциальное давление в настоящее время могло стать таким же, как на Венере (О. Сорохтин, С. А. Ушаков, 1991). Но на Земле действовал обратный процесс. Значительная часть углекислого газа из атмосферы растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформированы мощнейшие толщи хемогенных и органогенных карбонатов.

Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходовался на окислительные процессы, Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Появлений; свободного кислорода в атмосфере привело к гибели большинства прокариот, которые обитали в восстановительных условиях. Прокариотные организмы сменили места своего обитания. Они ушли с поверхности Земли в ее глубины и области, где еще сохранялись восстановительные условия. Им на смену пришли эукариоты, которые стали энергично перерабатывать углекислоту в кислород.

В течение архея и значительной части протерозоя практически весь кислород, возникающий как: абиогенным, так и биогенным путем, в основном расходовался на окисление железа и серы. Уже к концу протерозоя все металлическое двухвалентное железо, находившееся на земной поверхностей или окислилось, или переместилось в земное ядро. Это привело к тому, что парциальное давление кислорода в раннепротерозойской атмосфере изменилось.

В середине протерозоя концентрация кислорода в атмосфере достигала точки Юри и составляла 0,01% современного уровня. Начиная с этого времени кислород стал накапливаться в атмосфере и, вероятно, уже в конце рифея его содержание достигло точки Пастера (0,1% современного уровня). Возможно, в вендском периоде возник озоновый слой и Ь этого времени уже никогда не исчезал.

Появление свободного кислорода в земной атмосфере стимулировало эволюцию жизни и привело к возникновению новых форм с более совершенным метаболизмом. Если ранее эукариотные одноклеточные водоросли и цианеи, появившиеся в начале протерозоя, требовали содержания кислорода в воде всего 10 -3 его современной концентрации, то с возникновением бесскелетных Metazoa в конце раннего венда, т. е. около 650 млн. лет тому назад, концентрация кислорода в атмосфере должна была бы быть значительно выше. Ведь Metazoa использовали кислородное дыхание и для этого требовалось, чтобы парциальное давление кислорода достигло критического уровня - точки Пастера. В этом случае анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом.

После этого дальнейшее накопление кислорода в земной атмосфере происходило довольно быстро. Прогрессивное увеличение объема сине-зеленых водорослей способствовало достижению в атмосфере необходимого для жизнеобеспечения животного мира уровня кислорода. Определенная стабилизация содержания кислорода в атмосфере произошла с того момента, когда растения вышли на сушу, - примерно 450 млн. лет назад. Выход растений на сушу, происшедший в силурийском периоде, привел к окончательной стабилизации уровня кислорода в атмосфере. Начиная с этого времени его концентрация стала колебаться в довольно узких пределах, никогда не всходивших за рамки существования жизни. Полностью концентрация кислорода в атмосфере стабилизировалась со времени появления цветковых растений. Это событие произошло в середине мелового периода, т.е. около 100 млн. лет тому назад.

Основная масса азота сформировалась на ранних стадиях развития Земли, главным образом за счет разложения аммиака. С появлением организмов начался процесс связывания атмосферного азота в органическое вещество и захоронения его в морских осадках. После выхода организмов на сушу азот стал захоронятся и в континентальных осадках. Особенно усилились процессы переработки свободного азота с появлением наземных растений.

На рубеже криптозоя и фанерозоя, т. е. около 650 млн. лет тому назад, содержание углекислого газа в атмосфере снизилось до десятых долей процентов, а содержания, близкого к современному уровню, он достиг лишь совсем недавно, примерно 10-20 млн. лет тому назад.

Таким образом, газовый состав атмосферы не только предоставлял организмам жизненное пространство, но и определял особенности их жизнедеятельности, способствовал расселению и эволюции. Возникающие сбои в распределении благоприятного для организмов газового состава атмосферы как из-за космических, так и планетарных причин приводили к массовым вымираниям органического мира, которые неоднократно происходили в течение криптозоя и на определенных рубежах фанерозойской истории.

Этносферные функции атмосферы

Атмосфера Земли обеспечивает необходимым веществом, энергией и определяет направленность и скорость метаболических процессов. Газовый состав современной атмосферы является оптимальным для существования и развития жизни. Будучи областью формирования погоды и климата, атмосфера должна создавать комфортные условия для жизнедеятельности людей, животных и растительности. Отклонения в ту или другую сторону в качестве атмосферного воздуха и погодных условиях создают экстремальные условия для жизнедеятельности животного и растительного мира, в том числе и для человека.

Атмосфера Земли не только обеспечивает условия существования человечества, являясь основным фактором эволюции этносферы. Она в то же время оказывается энергетическим и сырьевым ресурсом производства. В целом атмосфера - это фактор, сохраняющий здоровье человека, а некоторые области в силу физико-географических условий и качества атмосферного воздуха служат рекреационными территориями и являются областями, предназначенными для санаторно-курортного лечения и отдыха людей. Таким образом, атмосфера является фактором эстетического и эмоционального воздействия.

Этносферные и техносферные функции атмосферы, определенные совсем недавно (Е. Д. Никитин, Н. А. Ясаманов, 2001), нуждаются в самостоятельном и углубленном исследовании. Так, весьма актуальным является изучение энергетических атмосферных функций как с точки зрения возникновения и действия процессов, наносящих ущерб окружающей среде, так и с точки зрения воздействия на здоровье и благосостояние людей. В данном случае речь идет об энергии циклонов и антициклонов, атмосферных вихрей, атмосферном давлении и других экстремальных атмосферных явлениях, эффективное использование которых будет способствовать успешному решению проблемы получения не загрязняющих окружающую среду альтернативных источников энергии. Ведь воздушная среда, особенно та ее часть, которая располагается над Мировым океаном, является областью выделения колоссального объема свободной энергии.

Например, установлено, что тропические циклоны средней силы только за сутки выделяют энергию, эквивалентную энергии 500 тыс. атомных бомб, сброшенных на Хиросиму и Нагасаки. За 10 дней существования такого циклона высвобождается энергия, достаточная для удовлетворения всех энергетических потребностей такой страны, как США, в течение 600 лет.

В последние годы было опубликовано большое количество работ ученых естественнонаучного профиля, в той или иной мере касающихся разных сторон деятельности и влияния атмосферы на земные процессы, что свидетельствует об активизации междисциплинарных взаимодействий в современном естествознании. При этом проявляется интегрирующая роль определенных его направлений, среди которых надо отметить функционально-экологическое направление в геоэкологии.

Данное направление стимулирует анализ и теоретическое обобщение по экологическим функциям и планетарной роли различных геосфер, а это, в свою очередь, является важной предпосылкой для разработки методологии и научных основ целостного изучения нашей планеты, рационального использования и охраны ее природных ресурсов.

Атмосфера Земли состоит из нескольких слоев: тропосферы, стратосферы, мезосферы, термосферы, ионосферы и экзосферы. В верхней части тропосферы и нижней части стратосферы располагается слой, обогащенный озоном, именуемый озоновым экраном. Установлены определенные (суточные, сезонные, годовые и т. д.) закономерности в распределении озона. Со времени своего возникновения атмосфера влияет на течение планетарных процессов. Первичный состав атмосферы был совершенно иным, чем в настоящее время, но с течением времени неуклонно росли доля и роль молекулярного азота, около 650 млн. лет назад появился свободный кислород, количество которого непрерывно повышалось, но соответственно снижалась концентрация углекислого газа. Высокая подвижность атмосферы, ее газовый состав и наличие аэрозолей обусловливают ее выдающуюся роль и активное участие в разнообразных геологических и биосферных процессах. Велика роль атмосферы в перераспределении солнечной энергии и развитии катастрофических стихийных явлений и бедствий. Негативное воздействие на органический мир и природные системы оказывают атмосферные вихри - смерчи (торнадо), ураганы, тайфуны, циклоны и другие явления. Основными источниками загрязнений наряду с природными факторами выступают различные формы хозяйственной деятельности человека. Антропогенные воздействия на атмосферу выражаются не только в появлении различных аэрозолей и парниковых газов, но ив увеличении количества водяных паров, и проявляются в виде смогов и кислотных дождей. Парниковые газы меняют температурный режим земной поверхности, выбросы некоторых газов уменьшают объем озонового экрана и способствуют возникновению озоновых дыр. Велика этносферная роль атмосферы Земли.

Роль атмосферы в природных процессах

Приземная атмосфера в своего промежуточного состояния между литосферой и космическим пространством и своего газового состава создает условия для жизнедеятельности организмов. Вместе с тем от количества, характера и периодичности атмосферных осадков, от частот и силы ветров и особенно от температуры воздуха зависят выветривание и интенсивность разрушения горных пород, перенос и аккумуляция обломочного материала. Атмосфера выступает центральным компонентом климатической системы. Температура и влажность воздуха, облачность и осадки, ветер - все это характеризует погоду, т. е. непрерывно меняющееся состояние атмосферы. Одновременно эти же компоненты характеризуют и климат, т. е. усредненный многолетний режим погоды.

Состав газов, наличие облачности и различных примесей, которые называются аэрозольными частицами (пепел, пыль, частички водяного пара), определяют особенности прохождения солнечной радиации сквозь атмосферу и препятствуют уходу теплового излучения Земли в космическое пространство.

Атмосфера Земли очень подвижна. Возникающие в ней процессы и изменения ее газового состава, толщины, облачности, прозрачности и наличие в ней тех или иных аэрозольных частиц воздействуют как на погоду, так и на климат.

Действие и направленность природных, процессов, а также жизнь и деятельность на Земле определяются солнечной радиацией. Она дает 99,98% теплоты, поступающей на земную поверхность. Ежегодно это составляет 134*1019 ккал. Такое количество теплоты можно получить при сжигании 200 млрд. т. каменного угля. Запасов водорода, создающего этот поток термоядерной энергии в массе Солнца, хватит, по крайней мере, еще на 10 млрд. лет, т. е. на период в два раза больший, чем существуют само и наша планета.

Около 1/3 общего количества солнечной энергии, поступающей на верхнюю границу атмосферы, отражается обратно в мировое пространство, 13% поглощается озоновым слоем (в том числе почти вся ультрафиолетовая радиация),. 7% - остальной атмосферой и лишь 44% достигает земной поверхности. Суммарная солнечная радиация, достигающая Земли за сутки, равна энергии, которую человечество получило в результате сжигания всех видов топлива за последнее тысячелетие.

Количество и характер распределения солнечной радиации на земной поверхности находятся в тесной зависимости от облачности и прозрачности атмосферы. На величину рассеянной радиации влияют высота Солнца над горизонтом, прозрачность атмосферы, содержание в ней водяных паров, пыли, общее количество углекислоты и т. д.

Максимальное количество рассеянной радиации попадает в полярные районы. Чем ниже Солнце над горизонтом, тем меньше теплоты поступает на данный участок местности.

Большое значение имеют прозрачность атмосферы и облачность. В пасмурный летний день обычно холоднее, чем в ясный, так как дневная облачность препятствует нагреванию земной поверхности.

Большую роль в распределении теплоты играет запыленность атмосферы. Находящиеся в ней тонкодисперсные твердые частицы пыли и пепла, влияющие на ее прозрачность, отрицательно сказываются на распределении солнечной радиации, большая часть которой отражается. Тонкодисперсные частицы попадают в атмосферу двумя путями: это или пепел, выбрасываемый во время вулканических извержений, или пыль пустынь, переносимая ветрами из аридных тропических и субтропических областей. Особенно много такой пыли образуется в период засух, когда потоками теплого воздуха она выносится в верхние слои атмосферы и способна находиться там продолжительное время. После извержения вулкана Кракатау в 1883 г. пыль, выброшенная на десятки километров в атмосферу, находилась в стратосфере около 3 лет. В результате извержения в 1985 г. вулкана Эль-Чичон (Мексика) пыль достигла Европы, и поэтому произошло некоторое понижение приземных температур.

Атмосфера Земли содержит переменное количество водяного пара. В абсолютном исчислении по массе или объему его количество составляет от 2 до 5%.

Водяной пар, как и углекислота, усиливает парниковый эффект. В возникающих в атмосфере облаках и туманах протекают своеобразные физико-химические процессы.

Первоисточником водяного пара в атмосферу является поверхность Мирового океана. С него ежегодно испаряется слой воды толщиной от 95 до 110 см. Часть влаги возвращается в океан после конденсации, а другая воздушными потоками направляется в сторону материков. В областях переменно-влажного климата осадки увлажняют почву, а во влажных создают запасы грунтовых вод. Таким образом, атмосфера является аккумулятором влажности и резервуаром осадков. и туманы, формирующиеся в атмосфере, обеспечивают влагой почвенный покров и тем самым играют определяющую роль в развитии животного и растительного мира.

Атмосферная влага распределяется по земной поверхности благодаря подвижности атмосферы. Ей присуща весьма сложная система ветров и распределения давления. В связи с тем что атмосфера находится в непрерывном движении, характер и масштабы распределения ветровых потоков и давления все время меняются. Масштабы циркуляции изменяются от микрометеорологических, размером всего в несколько сотен метров, до глобального - в несколько десятков тысяч километров. Огромные атмосферные вихри участвуют в создании систем крупномасштабных воздушных течений и определяют общую циркуляцию атмосферы. Кроме того, они являются источниками катастрофических атмосферных явлений.

От атмосферного давления зависит распределение погодных и климатических условий и функционирование живого вещества. В том случае, если атмосферное давление колеблется в небольших пределах, оно не играет решающей роли в самочувствии людей и поведении животных и не отражается на физиологических функциях растений. С изменением давления, как правило, связаны фронтальные явления и изменения погоды.

Фундаментальное значение имеет атмосферное давление для формирования ветра, который, являясь рельефообразующим фактором, сильнейшим образом воздействует на животный и растительный мир.

Ветер способен подавить рост растений и в то же время способствует переносу семян. Велика роль ветра в формировании погодных и климатических условий. Выступает он и в качестве регулятора морских течений. Ветер как один из экзогенных факторов способствует эрозии и дефляции выветрелого материала на большие расстояния.

Эколого-геологическая роль атмосферных процессов

Уменьшение прозрачности атмосферы за счет появления в ней аэрозольных частиц и твердой пыли влияет на распределение солнечной радиации, увеличивая альбедо или отражательную способность. К такому же результату приводят и разнообразные химические реакции, вызывающие разложение озона и генерацию «перламутровых» облаков, состоящих из водяного пара. Глобальное изменение отражательной способности, так же как изменения газового состава атмосферы, главным образом парниковых газов, являются причиной климатических изменений.

Неравномерное нагревание, вызывающее различия в атмосферном давлении над разными участками земной поверхности, приводит к атмосферной циркуляции, которая является отличительной чертой тропосферы. При возникновении разности в давлении воздух устремляется из областей повышенного давления в область пониженных давлений. Эти перемещения воздушных масс вместе с влажностью и температурой определяют основные эколого-геологические особенности атмосферных процессов.

В зависимости от скорости ветер производит на земной поверхности различную геологическую работу. При скорости 10 м/с он качает толстые ветви деревьев, поднимает и переносит пыль и мелкий песок; со скоростью 20 м/с ломает ветви деревьев, переносит песок и гравий; со скоростью 30 м/с (буря) срывает крыши домов, вырывает с корнем деревья, ломает столбы, передвигает гальку и переносит мелкий щебень, а ураганный ветер со скоростью 40 м/с разрушает дома, ломает и сносит столбы линий электропередач, вырывает с корнем крупные деревья.

Большое негативное экологическое воздействие с катастрофическими последствиями оказывают шквальные бури и смерчи (торнадо) - атмосферные вихри, возникающие в теплое время года на мощных атмосферных фронтах, имеющие скорость до 100 м/с. Шквалы - это горизонтальные вихри с ураганной скоростью ветра (до 60-80 м/с). Они часто сопровождаются мощными ливнями и грозами продолжительностью от нескольких минут до получаса. Шквалы охватывают территории шириной до 50 км и проходят расстояние в 200-250 км. Шквальная буря в Москве и Подмосковье в 1998 г. повредила крыши многих домов и повалила деревья.

Смерчи, называемые в Северной Америке торнадо, представляют собой мощные воронкообразные атмосферные вихри, часто связанные с грозовыми облаками. Это суживающиеся в середине столбы воздуха диаметром от нескольких десятков до сотен метров. Смерч имеет вид воронки, очень похожей на хобот слона, спускающейся с облаков или поднимающейся с поверхности земли. Обладая сильной разреженностью и высокой скоростью вращения, смерч проходит путь до нескольких сотен километров, втягивая в себя пыль, воду из водоемов и различные предметы. Мощные смерчи сопровождаются грозой, дождем и обладают большой разрушительной силой.

Смерчи редко возникают в приполярных или экваториальных областях, где постоянно холодно или жарко. Мало смерчей в открытом океане. Смерчи происходят в Европе, Японии, Австралии, США, а в России особенно часты в Центрально-Черноземном районе, в Московской, Ярославской, Нижегородской и Ивановской областях.

Смерчи поднимают и перемещают автомобили, дома, вагоны, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США. Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек. Смерчи относятся к быстродействующим катастрофическим атмосферным процессам. Они формируются всего за 20-30 мин, а время их существования 30 мин. Поэтому предсказать время и место возникновения смерчей практически невозможно.

Другими разрушительными, но действующими продолжительное время атмосферными вихрями являются циклоны. Они образуются из-за перепада давления, которое в определенных условиях способствует возникновению кругового движения воздушных потоков. Атмосферные вихри зарождаются вокруг мощных восходящих потоков влажного теплого воздуха и с большой скоростью вращаются по часовой стрелке в южном полушарии и против часовой - в северном. Циклоны в отличие от смерчей зарождаются над океанами и производят свои разрушительные действия над материками. Основными разрушительными факторами являются сильные ветры, интенсивные осадки в виде снегопада, ливней, града и нагонные наводнения. Ветры со скоростями 19 - 30 м/с образуют бурю, 30 - 35 м/с - шторм, а более 35 м/с - ураган.

Тропические циклоны - ураганы и тайфуны - имеют среднюю ширину в несколько сот километров. Скорость ветра внутри циклона достигает ураганной силы. Длятся тропические циклоны от нескольких дней до нескольких недель, перемещаясь со скоростью от 50 до 200 км/ч. Циклоны средних широт имеют больший диаметр. Поперечные размеры их составляют от тысячи до нескольких тысяч километров, скорость ветра штормовая. Движутся в северном полушарии с запада и сопровождаются градом и снегопадом, имеющими катастрофический характер. По числу жертв и наносимому ущербу циклоны и связанные с ними ураганы и тайфуны являются самыми крупными после наводнений атмосферными стихийными явлениями. В густонаселенных районах Азии число жертв во время ураганов измеряется тысячами. В 1991 г. в Бангладеш во время урагана, который вызвал образование морских волн высотой 6 м, погибло 125 тыс. человек. Большой ущерб наносят тайфуны территории США. При этом гибнут десятки и сотни людей. В Западной Европе ураганы приносят меньший ущерб.

Катастрофическим атмосферным явлением считаются грозы. Они возникают при очень быстром поднятии теплого влажного воздуха. На границе тропического и субтропического поясов грозы происходят по 90-100 дней в году, в умеренном поясе по 10-30 дней. В нашей стране наибольшее количество гроз случается на Северном Кавказе.

Грозы обычно продолжаются менее часа. Особую опасность представляют интенсивные ливни, градобития, удары молнии, порывы ветра, вертикальные потоки воздуха. Опасность градобития определяется размерами градин. На Северном Кавказе масса градин однажды достигала 0,5 кг, а в Индии отмечены градины массой 7 кг. Наиболее градоопасные районы у нас в стране находятся на Северном Кавказе. В июле 1992 г. град повредил в аэропорту «Минеральные Воды» 18 самолетов.

К опасным атмосферным явлениям относятся молнии. Они убивают людей, скот, вызывают пожары, повреждают электросеть. От гроз и их последствий ежегодно в мире гибнет около 10 000 человек. Причем в некоторых районах Африки, во Франции и США число жертв от молний больше, чем от других стихийных явлений. Ежегодный экономический ущерб от гроз в США составляет не менее 700 млн. долларов.

Засухи характерны для пустынных, степных и лесостепных регионов. Недостаток атмосферных осадков вызывает иссушение почвы, понижение уровня подземных вод и в водоемах до полного их высыхания. Дефицит влаги приводит к гибели растительности и посевов. Особенно сильными бывают засухи в Африке, на Ближнем и Среднем Востоке, в Центральной Азии и на юге Северной Америки.

Засухи изменяют условия жизнедеятельности человека, оказывают неблагоприятное воздействие на природную среду через такие процессы, как осолонение почвы, суховеи, пыльные бури, эрозия почвы и лесные пожары. Особенно сильными пожары бывают во время засухи в таежных районах, тропических и субтропических лесах и саваннах.

Засухи относятся к кратковременным процессам, которые продолжаются в течение одного сезона. В том случае, когда засухи длятся более двух сезонов, возникает угроза голода и массовой смертности. Обычно действие засухи распространяется на территорию одной или нескольких стран. Особенно часто продолжительные засухи с трагическими последствиями возникают в Сахельской области Африки.

Большой ущерб приносят такие атмосферные явления, как снегопады, кратковременные ливневые дожди и продолжительные затяжные дожди. Снегопады вызывают массовые сходы лавин в горах, а быстрое таяние выпавшего снега и ливневые продолжительные дожди приводят к наводнениям. Огромная масса воды, падающая на земную поверхность, особенно в безлесных районах, вызывает сильную эрозию почвенного покрова. Происходит интенсивный рост овражно-балочных систем. Наводнения возникают в результате крупных паводков в период обильного выпадения атмосферных осадков или половодья после внезапно наступившего потепления или весеннего таяния снега и, следовательно, по происхождению относятся к атмосферным явлениям (они рассматриваются в главе, посвященной экологической роли гидросферы).

Антропогенные изменения атмосферы

В настоящее время имеется множество различных источников антропогенного характера, вызывающих загрязнение атмосферы и приводящих к серьезным нарушениям экологического равновесия. По своим масштабам наибольшее воздействие на атмосферу оказывают два источника: транспорт и промышленность. В среднем на долю транспорта приходится около 60% общего количества атмосферных загрязнений, промышленности - 15, тепловой энергетики - 15, технологий уничтожения бытовых и промышленных отходов - 10%.

Транспорт в зависимости от используемого топлива и типов окислителей выбрасывает в атмосферу оксиды азота, серы, оксиды и диоксиды углерода, свинца и его соединений, сажу, бензопирен (вещество из группы полициклических ароматических углеводородов, которое является сильным канцерогеном, вызывающим рак кожи).

Промышленность выбрасывает в атмосферу сернистый газ, оксиды и диоксиды углерода, углеводороды, аммиак, сероводород, серную кислоту, фенол, хлор, фтор и другие соединения и химические . Но главенствующее положение среди выбросов (до 85%) занимает пыль.

В результате загрязнения меняется прозрачность атмосферы, в ней возникают аэрозоли, смог и кислотные дожди.

Аэрозоли представляют собой дисперсные системы, состоящие из частиц твердого тела или капель жидкости, находящихся во взвешенном состоянии в газовой среде. Размер частиц дисперсной фазы обычно составляет 10 -3 -10 -7 см. В зависимости от состава дисперсной фазы аэрозоли подразделяют на две группы. К одной относят аэрозоли, состоящие из твердых частиц, диспергированных в газообразной среде, ко второй - аэрозоли, являющиеся смесью газообразных и жидких фаз. Первые называют дымами, а вторые - туманами. В процессе их образования большую роль играют центры конденсации. В качестве ядер конденсации выступают вулканический пепел, космическая пыль, продукты промышленных выбросов, различные бактерии и др. Число возможных источников ядер концентрации непрерывно растет. Так, например, при уничтожении огнем сухой травы на площади 4000 м 2 образуется в среднем 11*10 22 ядер аэрозолей.

Аэрозоли начали образовываться с момента возникновения нашей планеты и влияли на природные условия. Однако их количество и действия, уравновешиваясь с общим круговоротом веществ в природе, не вызывали глубоких экологических изменений. Антропогенные факторы их образования сдвинули это равновесие в сторону значительных биосферных перегрузок. Особенно сильно эта особенность проявляется с тех пор, как человечество стало использовать специально создаваемые аэрозоли как в виде отравляющих веществ, так и для защиты растений.

Наиболее опасными для растительного покрова являются аэрозоли сернистого газа, фтористого водорода и азота. При соприкосновении с влажной поверхностью листа они образуют кислоты, губительно воздействующие на живые . Кислотные туманы попадают вместе с вдыхаемым воздухом в дыхательные органы животных и человека, агрессивно воздействуют на слизистые оболочки. Одни из них разлагают живую ткань, а радиоактивные аэрозоли вызывают онкологические заболевания. Среди радиоактивных изотопов особую опасность представляет Sг 90 не только своей канцерогенностью, но и как аналог кальция, замещающий его в костях организмов, вызывая их разложение.

Во время ядерных взрывов в атмосфере образуются радиоактивные аэрозольные облака. Мелкие частицы радиусом 1 - 10 мкм попадают не только в верхние слои тропосферы, но и в стратосферу, в которой они способны находиться длительное время. Аэрозольные облака образуются также во время работы реакторов промышленных установок, производящих ядерное топливо, а также в результате аварий на АЭС.

Смог представляет собой смесь аэрозолей с жидкой и твердой дисперсными фазами, которые образуют туманную завесу над промышленными районами и крупными городами.

Различают три вида смога: ледяной, влажный и сухой. Ледяной смог назван аляскинским. Это сочетание газообразных загрязнителей с добавлением пылеватых частиц и кристалликов льда, которые возникают при замерзании капель тумана и пара отопительных систем.

Влажный смог, или смог лондонского типа, иногда называется зимним. Он представляет собой смесь газообразных загрязнителей (в основном сернистого ангидрита), пылеватых частиц и капель тумана. Метеорологической предпосылкой для появления зимнего смога является безветренная погода, при которой слой теплого воздуха располагается над приземным слоем холодного воздуха (ниже 700 м). При этом отсутствует не только горизонтальный, но и вертикальный обмен. Загрязняющие вещества, обычно рассеивающиеся в высоких слоях, в данном случае накапливаются в приземном слое.

Сухой смог возникает в летнее время, и его нередко называют смогом лос-анджелесского типа. Он представляет собой смесь озона, угарного газа, оксидов азота и паров кислот. Образуется такой смог в результате разложения загрязняющих веществ солнечной радиацией, особенно ультрафиолетовой ее частью. Метеорологической предпосылкой является атмосферная инверсия, выражающаяся в появлении слоя холодного воздуха над теплым. Обычно поднимаемые теплыми потоками воздуха газы и твердые частицы затем рассеиваются в верхних холодных слоях, но в данном случае накапливаются в инверсионном слое. В процессе фотолиза диоксиды азота, образованные при сгорании топлива в двигателях автомобилей, распадаются:

NO 2 → NO + О

Затем происходит синтез озона:

O + O 2 + M → O 3 + M

NO + О → NO 2

Процессы фотодиссоциации сопровождаются желто-зеленым свечением.

Кроме того, происходят реакции по типу: SO 3 + Н 2 0 -> Н 2 SO 4 , т. е. образуется сильная серная кислота.

С изменением метеорологических условий (появление ветра или изменение влажности) холодный воздух рассеивается и смог исчезает.

Наличие канцерогенных веществ в смоге приводит к нарушению дыхания, раздражению слизистых оболочек, расстройству кровообращения, возникновению астматических удуший и нередко к смерти. Особенно опасен смог для малолетних детей.

Кислотные дожди представляют собой атмосферные осадки, подкисленные растворенными в них промышленными выбросами оксидов серы, азота и паров хлорной кислоты и хлора. В процессе сжигания угля, и газа большая часть находящейся в ней серы как в виде оксида, так в соединениях с железом, в частности в пирите, пирротине, халькопирите и т. д., превращается в оксид серы, который вместе с диоксидом углерода выбрасывается в атмосферу. При соединении атмосферного азота и технических выбросов с кислородом образуются различные оксиды азота, причем объем образовавшихся оксидов азота зависит от температуры горения. Основная масса оксидов азота возникает во время эксплуатации автотранспорта и тепловозов, а меньшая часть приходится на энергетику и промышленные предприятия. Оксиды серы и азота - главные кислотообразователи. При реакции с атмосферным кислородом и находящимися в нем парами воды образуются серная и азотная кислоты.

Известно, что щелочно-кислотный баланс среды определяется величиной рН. Нейтральная среда имеет величину рН, равную 7, кислая - 0, а щелочная - 14. В современную эпоху величина рН дождевой воды составляет 5,6, хотя в недавнем прошлом она была нейтральной. Уменьшение значения рН на единицу соответствует десятикратному повышению кислотности и, следовательно, в настоящее время практически повсеместно выпадают дожди с повышенной кислотностью. Максимальная кислотность дождей, зарегистрированная в Западной Европе, составляла 4-3,5 рН. При этом надо учесть, что величина рН, равная 4-4,5, смертельна для большинства рыб.

Кислотные дожди оказывают агрессивное воздействие на растительный покров Земли, на промышленные и жилые здания и способствуют существенному ускорению выветривания обнаженных горных пород. Повышение кислотности препятствует саморегуляции нейтрализации почв, в которых растворяются питательные вещества. В свою очередь, это приводит к резкому снижению урожайности и вызывает деградацию растительного покрова. Кислотность почв способствует освобождению находящихся в связанном состоянии тяжелых , которые постепенно усваиваются растениями, вызывая у них серьезные повреждения тканей и проникая в пищевые цепочки человека.

Изменение щелочно-кислотного потенциала морских вод, особенно в мелководьях, ведет к прекращению размножения многих беспозвоночных, вызывает гибель рыб и нарушает экологическое равновесие в океанах.

В результате кислотных дождей под угрозой гибели находятся лесные массивы Западной Европы, Прибалтики, Карелии, Урала, Сибири и Канады.

Атмосфера (от. греч. ατμός - «пар» и σφαῖρα - «сфера») - газовая оболочка небесного тела, удерживаемая около него гравитацией. Атмосфера - газообразная оболочка планеты, состоящая из смеси различных газов, водных паров и пыли. Через атмосферу осуществляется обмен вещества Земли с Космосом. Земля получает космическую пыль и метеоритный материал, теряет самые легкие газы: водород и гелий. Атмосфера Земли насквозь пронизывается мощной радиацией Солнца, определяющей тепловой режим поверхности планеты, вызывающей диссоциацию молекул атмосферных газов и ионизацию атомов.

Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями, водорослями и цианобактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного ультрафиолетового излучения.

Атмосфера есть у всех массивных тел - планет земного типа, газовых гигантов.

Состав атмосферы

Атмосфера - это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), 0,038 % двуокиси углерода, и небольшое количество водорода, гелия, других благородных газов и загрязнителей.

Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Начальный состав атмосферы планеты обычно зависит от химических и температурных свойств солнца в период формирования планет и последующего выхода внешних газов. Затем состав газовой оболочки эволюционирует под действием различных факторов.

Атмосфера Венеры и Марса в основном состоят из двуокиси углерода с небольшими добавлениями азота, аргона, кислорода и других газов. Земная атмосфера в большой степени является продуктом живущих в ней организмов. Низкотемпературные газовые гиганты - Юпитер, Сатурн, Уран и Нептун - могут удерживать в основном газы с низкой молекулярной массой - водород и гелий. Высокотемпературные газовые гиганты, такие как Осирис или 51 Пегаса b, наоборот, не могут её удержать и молекулы их атмосферы рассеиваются в пространстве. Этот процесс протекает медленно, постоянно.

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода - окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Структура атмосферы

Структура атмосферы складывается из двух частей: внутренней- тропосферы, стратосферы, мезосферы и термосферы, или ионосферы, и внешней - магнитосферы (экзосферы).

1)Тропосфера – это нижняя часть атмосферы, в которой сосредоточено 3\4 т.е. ~ 80% всей земной атмосферы. Её высота определяется интенсивностью вертикальных (восходящих или нисходящих) потоков воздуха, вызванных нагреванием земной поверхности и океана, поэтому толщина тропосферы на экваторе составляет 16 – 18 км, в умеренных широтах 10-11 км, а на полюсах – до 8 км. Температура воздуха в тропосфере на высоте понижается на 0,6ºС на каждые 100м и колеблется от +40 до - 50ºС.

2)Стратосфера находится выше тропосферы и имеет высоту до 50км от поверхности планеты. Температура на высоте до 30км постоянная -50ºС. Затем она начинает повышаться и на высоте 50 км достигает +10ºС.

Верхней границей биосферы являются озоновый экран.

Озоновый экран – это слой атмосферы в пределах стратосферы, расположенный на разной высоте от поверхности Земли и имеющей максимальную плотность озона на высоте 20-26 км.

Высота озонового слоя у полюсов оценивается в 7 - 8 км, у экватора в 17-18км, а максимальная высота присутствия озона – 45-50 км. Выше озонового экрана жизнь невозможна из-за жёсткого ультрафиолетового излучения Солнца. Если спрессовать все молекулы озона, то получится слой ~ 3мм вокруг планеты.

3)Мезосфера – верхняя граница этого слоя располагается до высоты 80км. Главная её особенность – резкое понижение температуры -90ºС у её верхней границы. Здесь фиксируется серебристые облака, состоящие из ледяных кристаллов.

4)Ионосфера (термосфера)- располагается до высоты 800 км и для неё характерно значительное повышение температуры:

150км температура +240ºС,

200км температура +500ºС,

600км температура +1500ºС.

Под действием ультрафиолетового излучения Солнца газы находятся в ионизированном состоянии. С ионизацией связано свечение газов и возникновение полярных сияний.

Ионосфера обладает способностью многократного отражения радиоволн, что обеспечивает дальнюю радиосвязь на планете.

5)Экзосфера – располагается выше 800км и простирается до 3000км. Здесь температура >2000ºС. Скорость движения газов приближается к критической ~ 11,2 км/сек. Господствуют атомы водорода и гелия, которые образуют вокруг Земли светящуюся корону, простирающуюся до высоты 20000км.

Функций атмосферы

1) Терморегулирующая – погода и климат на Земле зависит от распределения тепла, давления.

2) Жизнеобеспечивающая.

3) В тропосфере происходит глобальные вертикальные и горизонтальные перемещения воздушных масс определяющий круговорот воды, теплообмен.

4) Практически все поверхности геологические процессы обусловлены взаимодействием атмосферы, литосферы и гидросферы.

5) Защитная – атмосфера защищает землю от космоса, солнечной радиации и метеоритной пыли.

Функции атмосферы . Без атмосферы жизнь на Земле была бы невозможна. Человек ежедневно потребляет 12-15 кг. воздуха, вдыхая каждую минуту от 5 до 100л, что значительно превосходит среднесуточную потребность в пище и воде. Кроме того, атмосфера надежно оберегает человека от опасностей, угрожающих ему из космоса: не пропускает метеориты, космические излучения. Без пищи человек может прожить пять недель, без воды - пять дней, без воздуха - пять минут. Нормальная жизнедеятельность людей требует не только воздуха, но и определенной его чистоты. От качества воздуха воздуха зависят здоровье людей, состояние растительного и животного мира, прочность и долговечность конструкций зданий, сооружений. Загрязненный воздух губителен для вод, суши, морей, почв. Атмосфера определяет световой и регулирует тепловой режимы земли, способствует перераспределению тепла на земном шаре. Газовая оболочка предохраняет Землю от чрезмерного остывания и нагревания. Если бы наша планета не была бы окружена воздушной оболочкой, то в течение одних суток амплитуда колебаний температуры достигла бы 200 С. Атмосфера спасает все живущее на Земле от губительных ультрафиолетовых, рентгеновских и космических лучей. Велико значение атмосферы в распределении света. Ее воздух разбивает солнечные лучи на миллион мелких лучей, рассеивает их и создает равномерное освещение. Атмосфера служит проводником звуков.

Изменявшие земную поверхность. Не меньшее значение имела деятельность ветра , переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов , большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца , которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями , атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека . Особенно сильно зависит от климатических условий сельское хозяйство . В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.

Строение атмосферы

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Многочисленные наблюдения показывают, что А. имеет четко выраженное слоистое строение (см. рис.). Основные черты слоистой структуры А. определяются в первую очередь особенностями вертикального распределения температуры . В самой нижней части А. - тропосфере , где наблюдается интенсивное турбулентное перемешивание (см. Турбулентность в атмосфере и гидросфере), температура убывает с увеличением высоты, причём уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы А. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 , выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остаётся приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы , расположенной на высоте около 55 км. Слой А., находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы . Над ней находится переходный слой - мезопауза , выше которой располагается термосфера , где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Ещё выше (на высотах ~ 1000 км и более) находится экзосфера , откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству . Обычно все слои А., находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям А. относят также стратосферу или её нижняя часть.

Все структурные параметры А. (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. отражают лишь среднее состояние атмосферы.

Схема строения атмосферы:
1 - уровень моря ; 2 - высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт ; 9 - слой максимальной концентрации озона ; 10 - перламутровые облака ; 11 - стратостат ; 12 - радиозонд ; 1З - метеоры ; 14 - серебристые облака ; 15 - полярные сияния ; 16 - американский самолёт-ракета Х-15; 17, 18, 19 - радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22 - межконтинентальная баллистическая ракета ; 23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли «Союз-4» и «Союз-5»; 26 - космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 - траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны l > 2000 и l < 900).

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав А. Если на высотах до 90 км, где существует интенсивное перемешивание А., относительный состав постоянных компонент атмосферы остаётся практически неизменным (вся эта толща А. получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава А. с высотой. Типичные черты этой части А. - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в А. твёрдых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в А., что выражается в существовании D-, Е- и F-cлоёв ионосферы .

Состав атмосферы

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в А. с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса . Аэрозоль наблюдается как в тропосфере, так и в верхних слоях А. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Верхние слои атмосферы

Выше 20-30 км молекулы А. в результате диссоциации в той или иной степени распадаются на атомы и в А. появляются свободные атомы и новые более сложные молекулы. Несколько выше становятся существенными ионизационные процессы.

Наиболее неустойчива область гетеросферы , где процессы ионизации и диссоциации порождают многочисленные фотохимические реакции, определяющие изменение состава воздуха с высотой. Здесь происходит также и гравитационное разделение газов, выражающееся в постепенном обогащении А. более лёгкими газами по мере увеличения высоты. По данным ракетных измерений, гравитационное разделение нейтральных газов - аргона и азота - наблюдается выше 105-110 км . Основные компоненты А. в слое 100-210 км - молекулярный азот, молекулярный кислород и атомарный кислород (концентрация последнего на уровне 210 км достигает 77 ± 20% от концентрации молекулярного азота).

Верхняя часть термосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, но молекулярный азот, относительная концентрация которого сильно уменьшается, всё ещё доминирует над атомарным.

В термосфере важную роль играют приливные движения (см. Приливы и отливы), гравитационные волны, фотохимические процессы, увеличение длины свободного пробега частиц, а также другие факторы. Результаты наблюдений торможения спутников на высотах 200-700 км привели к выводу о наличии взаимосвязи между плотностью, температурой и солнечной активностью , с которой связано существование суточного, полугодового и годового хода структурных параметров. Возможно, что суточные вариации в значительной степени обусловлены атмосферными приливами. В периоды солнечных вспышек температура на высоте 200 км в низких широтах может достигать 1700-1900°C.

Выше 600 км преобладающей компонентой становится гелий , а ещё выше, на высотах 2-20 тыс. км, простирается водородная корона Земли. На этих высотах Земля окружена оболочкой из заряженных частиц, температура которых достигает нескольких десятков тысяч градусов. Здесь располагаются внутренний и внешний радиационные пояса Земли . Внутренний пояс, заполненный главным образом протонами с энергией в сотни Мэв, ограничен высотами 500-1600 км на широтах от экватора до 35-40°. Внешний пояс состоит из электронов с энергиями порядка сотен кэв. За внешним поясом существует «самый внешний пояс», в котором концентрация и потоки электронов значительно выше. Вторжение солнечного корпускулярного излучения (солнечного ветра) в верхние слои А. порождает полярные сияния. Под влиянием этой бомбардировки верхней А. электронами и протонами солнечной короны возбуждается также собственное свечение атмосферы, которое раньше называлось свечением ночного неба . При взаимодействии солнечного ветра с магнитным полем Земли создаётся зона, получившая назв. магнитосферы Земли , куда не проникают потоки солнечной плазмы .

Для верхних слоев А. характерно существование сильных ветров, скорость которых достигает 100-200 м/сек. Скорость и направление ветра в пределах тропосферы, мезосферы и нижней термосферы обладают большой пространственно-временной изменчивостью. Хотя масса верхних слоев А. незначительна по сравнению с массой нижних слоев и энергия атмосферных процессов в высоких слоях сравнительно невелика, по-видимому, существует некоторое влияние высоких слоев А. на погоду и климат в тропосфере.

Радиационный, тепловой и водный балансы атмосферы

Практически единственным источником энергии для всех физических процессов, развивающихся в А., является солнечная радиация. Главная особенность радиационного режима А. - т. н. парниковый эффект: А. слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в А. солнечная радиация частично поглощается в А. главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности А. Вследствие рассеяния лучистой энергии Солнца в А. наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо . За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к А. В свою очередь, А. также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение А.) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и А. определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением А. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом .

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в А. составляют тепловой баланс Земли. Главный источник тепла для атмосферы - земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в А. меньше потери тепла из А. в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к А. от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в А. Так как итоговая величина конденсации во всей А. равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в А. численно равен затрате тепла на испарение на поверхности Земли (см. также Водный баланс).

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции А. и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Движение воздуха

Вследствие большой подвижности атмосферного воздуха на всех высотах А. наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный - неравномерность нагрева А. в разных районах земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года . В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неравномерность нагревания атмосферы способствует развитию системы крупномасштабных воздушных течений - т. н. общей циркуляции атмосферы , которая создаёт горизонтальный перенос тепла в А., в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в А., в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли (см. Кориолиса сила). На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны - воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направления (с З. на В.). Эти течения включают крупные вихри - циклоны и антициклоны , обычно простирающиеся на сотни и тысячи км. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т. н. тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения , имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей - до 100-150 м/сек. Наблюдения показывают, что особенности атмосферные циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой - западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений - около 80 м/сек, а летнего восточного переноса - до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область А. подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 км может достигать 100-120 м/сек. Характерная черта атмосферных приливов - их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км т. н. турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз , бора , горно-долинные ветры и др.; см. Ветры местные). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Климат и погода

Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли (см. Климат).

Литература

  • Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
  • Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
  • Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
  • Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
  • Тверской П. Н., Курс метеорологии, Л., 1962;
  • Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
  • Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
  • Кондратьев К. Я., Актинометрия , Л., 1965;
  • Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
  • Мороз В. И., Физика планет, М., 1967;
  • Тверской П. Н., Атмосферное электричество, Л., 1949;
  • Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
  • Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
  • Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

М. И. Будыко, К. Я. Кондратьев.

Эта статья или раздел использует текст
Поделиться