Дайте определение степени с отрицательным показателем. Может ли степень быть отрицательной

Степень с отрицательным показателем определение

Пусть число a есть любое действительное число, отличное от нуля. Число m - отрицательное целое число.

Степень с отрицательным показателем определение:

Действительное, отличное от нуля число a, возведенное в отрицательную целую степень -m, равно дроби, в числителе которой 1 и в знаменателе a, возведенное в положительную целую степень m.

Отрицательная степень формула

Для вычислений отрицательных степеней используем формулу:

Эта формула применяется, если имеется отрицательное значение степени.

Положительная и отрицательная степень

Чтоб лучше понять сравним положительные и отрицательные степени.

Пусть число a есть любое действительное число, отличное от нуля. Число m - любое целое число.

Тогда a в положительной степени m равно:

A m = a * a * a * ... (m раз)

Теперь a в отрицательной степени -m:

Степень с целым отрицательным показателем

Обратите внимание, что в этой статье речь идет именно о целом отрицательном показателе. Здесь существенным является то, что показатель целый.

Пример степени с целым отрицательным показателем:

Отрицательное основание степени

Отрицательная степень числа и отрицательное основание степени - это разные вещи.

Возведение в отрицательную степень – один из основных элементов математики, который часто встречается при решении алгебраических задач. Ниже приведена подробная инструкция.

Как возводить в отрицательную степень – теория

Когда мы число в обычную степень, мы умножаем его значение несколько раз. Например, 3 3 = 3×3×3 = 27. С отрицательной дробью все наоборот. Общий вид по формуле будет иметь следующий вид: a -n = 1/a n . Таким образом, чтобы возвести число в отрицательную степень, нужно единицу поделить на данное число, но уже в положительной степени.

Как возводить в отрицательную степень – примеры на обычных числах

Держа вышеприведенное правило на уме, решим несколько примеров.

4 -2 = 1/4 2 = 1/16
Ответ: 4 -2 = 1/16

4 -2 = 1/-4 2 = 1/16.
Ответ -4 -2 = 1/16.

Но почему ответ в первом и втором примерах одинаковый? Дело в том, что при возведении отрицательного числа в четную степень (2, 4, 6 и т.д.), знак становится положительным. Если бы степень была четной, то минус сохранился:

4 -3 = 1/(-4) 3 = 1/(-64)


Как возводить в отрицательную степень – числа от 0 до 1

Вспомним, что при возведении числа в промежутке от 0 до 1 в положительную степень, значение уменьшается с возрастанием степени. Так например, 0,5 2 = 0,25. 0,25< 0,5. В случае с отрицательной степенью все обстоит наоборот. При возведении десятичного (дробного) числа в отрицательную степень, значение увеличивается.

Пример 3: Вычислить 0,5 -2
Решение: 0,5 -2 = 1/1/2 -2 = 1/1/4 = 1×4/1 = 4.
Ответ: 0,5 -2 = 4

Разбор (последовательность действий):

  • Переводим десятичную дробь 0,5 в дробную 1/2. Так легче.
    Возводим 1/2 в отрицательную степень. 1/(2) -2 . Делим 1 на 1/(2) 2 , получаем 1/(1/2) 2 => 1/1/4 = 4


Пример 4: Вычислить 0,5 -3
Решение: 0,5 -3 = (1/2) -3 = 1/(1/2) 3 = 1/(1/8) = 8

Пример 5: Вычислить -0,5 -3
Решение: -0,5 -3 = (-1/2) -3 = 1/(-1/2) 3 = 1/(-1/8) = -8
Ответ: -0,5 -3 = -8


Исходя из 4-го и 5-ого примеров, сделаем несколько выводов:

  • Для положительного числа в промежутке от 0 до 1 (пример 4), возводимого в отрицательную степень, четность или нечетность степени не важна, значение выражения будет положительным. При этом, чем больше степень, тем больше значение.
  • Для отрицательного числа в промежутке от 0 до 1 (пример 5), возводимого в отрицательную степень, четность или нечетность степени неважна, значение выражения будет отрицательным. При этом, чем больше степень, тем меньше значение.


Как возводить в отрицательную степень – степень в виде дробного числа

Выражения данного типа имеют следующий вид: a -m/n , где a – обычное число, m – числитель степени, n – знаменатель степени.

Рассмотрим пример:
Вычислить: 8 -1/3

Решение (последовательность действий):

  • Вспоминаем правило возведения числа в отрицательную степень. Получим: 8 -1/3 = 1/(8) 1/3 .
  • Заметьте, в знаменателе число 8 в дробной степени. Общий вид вычисления дробной степени таков: a m/n = n √8 m .
  • Таким образом, 1/(8) 1/3 = 1/(3 √8 1). Получаем кубический корень из восьми, который равен 2. Исходя отсюда, 1/(8) 1/3 = 1/(1/2) = 2.
  • Ответ: 8 -1/3 = 2



В продолжение разговора про степень числа логично разобраться с нахождением значения степени. Этот процесс получил название возведение в степень . В этой статье мы как раз изучим, как выполняется возведение в степень, при этом затронем все возможные показатели степени – натуральный, целый, рациональный и иррациональный. И по традиции подробно рассмотрим решения примеров возведения чисел в различные степени.

Навигация по странице.

Что значит «возведение в степень»?

Начать следует с объяснения, что называют возведением в степень. Вот соответствующее определение.

Определение.

Возведение в степень – это нахождение значения степени числа.

Таким образом, нахождение значение степени числа a с показателем r и возведение числа a в степень r – это одно и то же. Например, если поставлена задача «вычислите значение степени (0,5) 5 », то ее можно переформулировать так: «Возведите число 0,5 в степень 5 ».

Теперь можно переходить непосредственно к правилам, по которым выполняется возведение в степень.

Возведение числа в натуральную степень

На практике равенство на основании обычно применяется в виде . То есть, при возведении числа a в дробную степень m/n сначала извлекается корень n -ой степени из числа a , после чего полученный результат возводится в целую степень m .

Рассмотрим решения примеров возведения в дробную степень.

Пример.

Вычислите значение степени .

Решение.

Покажем два способа решения.

Первый способ. По определению степени с дробным показателем . Вычисляем значение степени под знаком корня, после чего извлекаем кубический корень: .

Второй способ. По определению степени с дробным показателем и на основании свойств корней справедливы равенства . Теперь извлекаем корень , наконец, возводим в целую степень .

Очевидно, что полученные результаты возведения в дробную степень совпадают.

Ответ:

Отметим, что дробный показатель степени может быть записан в виде десятичной дроби или смешанного числа, в этих случаях его следует заменить соответствующей обыкновенной дробью, после чего выполнять возведение в степень.

Пример.

Вычислите (44,89) 2,5 .

Решение.

Запишем показатель степени в виде обыкновенной дроби (при необходимости смотрите статью ): . Теперь выполняем возведение в дробную степень:

Ответ:

(44,89) 2,5 =13 501,25107 .

Следует также сказать, что возведение чисел в рациональные степени является достаточно трудоемким процессом (особенно когда в числителе и знаменателе дробного показателя степени находятся достаточно большие числа), который обычно проводится с использованием вычислительной техники.

В заключение этого пункта остановимся на возведении числа нуль в дробную степень. Дробной степени нуля вида мы придали следующий смысл: при имеем , а при нуль в степени m/n не определен. Итак, нуль в дробной положительной степени равен нулю, например, . А нуль в дробной отрицательной степени не имеет смысла, к примеру, не имеют смысла выражения и 0 -4,3 .

Возведение в иррациональную степень

Иногда возникает необходимость узнать значение степени числа с иррациональным показателем . При этом в практических целях обычно достаточно получить значение степени с точностью до некоторого знака. Сразу отметим, что это значение на практике вычисляется с помощью электронной вычислительной техники, так как возведение в иррациональную степень вручную требует большого количества громоздких вычислений. Но все же опишем в общих чертах суть действий.

Чтобы получить приближенное значение степени числа a с иррациональным показателем , берется некоторое десятичное приближение показателя степени , и вычисляется значение степени . Это значение и является приближенным значением степени числа a с иррациональным показателем . Чем более точное десятичное приближение числа будет взято изначально, тем более точное значение степени будет получено в итоге.

В качестве примера вычислим приближенное значение степени 2 1,174367... . Возьмем следующее десятичное приближение иррационального показателя: . Теперь возведем 2 в рациональную степень 1,17 (суть этого процесса мы описали в предыдущем пункте), получаем 2 1,17 ≈2,250116 . Таким образом, 2 1,174367... ≈2 1,17 ≈2,250116 . Если взять более точное десятичное приближение иррационального показателя степени, например, , то получим более точное значение исходной степени: 2 1,174367... ≈2 1,1743 ≈2,256833 .

Список литературы.

  • Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. МатематикаЖ учебник для 5 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 7 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 8 кл. общеобразовательных учреждений.
  • Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И., Суворова С.Б. Алгебра: учебник для 9 кл. общеобразовательных учреждений.
  • Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала анализа: Учебник для 10 - 11 классов общеобразовательных учреждений.
  • Гусев В.А., Мордкович А.Г. Математика (пособие для поступающих в техникумы).

В одной из предыдущих статей мы уже упоминали о степени числа. Сегодня мы постараемся сориентироваться в процессе нахождения ее значения. Научно говоря, мы будем выяснять, как правильно возводить в степень. Мы разберемся, как производится этот процесс, одновременно затронем все вероятные показатели степени: натуральный, иррациональный, рациональный, целый.

Итак, давайте подробно рассмотрим решения примеров и выясним, что значит:

  1. Определение понятия.
  2. Возведение в отрицательную ст.
  3. Целый показатель.
  4. Возведение числа в иррациональную степень.

Определение понятия

Вот точно отражающее смысл определение: «Возведением в степень называют определение значения степени числа».

Соответственно, возведение числа a в ст. r и процесс нахождения значения степени a с показателем r - это идентичные понятия. К примеру, если стоит задача вычислить значение степени (0,6)6″, то ее можно упростить до выражения «Возвести число 0,6 в степень 6».

После этого можно приступать напрямую к правилам возведения.

Возведение в отрицательную степень

Для наглядности следует обратить внимание на такую цепочку выражений:

110=0,1=1* 10 в минус 1 ст.,

1100=0,01=1*10 в минус 2 степ.,

11000=0,0001=1*10 в минус 3 ст.,

110000=0,00001=1*10 в минус 4 степeни.

Благодаря данным примерам можно четко просмотреть возможность моментально вычислить 10 в любой минусовой степени. Для этой цели достаточно банально сдвигать десятичную составляющую:

  • 10 в -1 степeни - перед единицей 1 ноль;
  • в -3 - три нуля перед единицей;
  • в -9 - это 9 нулей и проч.

Так же легко понять по данной схеме, сколько будет составлять 10 в минус 5 ст. -

1100000=0,000001=(1*10)-5.

Как возвести число в натуральную степeнь

Вспоминая определение, учитываем, что натуральное число a в ст. n равняется произведению из n множителей, при этом каждый из них равняется a. Проиллюстрируем: (а*а*…а)n, где n - это количество чисел, которые умножаются. Соответственно, чтобы a возвести в n, необходимо рассчитать произведение следующего вида: а*а*…а разделить на n раз.

Отсюда становится очевидно, что возведение в натуральную ст. опирается на умение осуществлять умножение (этот материал освещен в разделе про умножение действительных чисел). Давайте рассмотрим задачу:

Возведите -2 в 4-ю ст.

Мы имеем дело с натуральным показателем. Соответственно, ход решения будет следующим: (-2) в cт. 4 = (-2)*(-2)*(-2)*(-2). Теперь осталось только осуществить умножение целых численностей:(-2)*(-2)*(-2)*(-2). Получаем 16.

Ответ на задачу:

(-2) в ст. 4=16.

Пример:

Вычислите значение: три целых две седьмых в квадрате.

Данный пример равняется следующему произведению: три целых две седьмых умножить на три целых две седьмых. Припомнив, как осуществляется умножение смешанных чисел, завершаем возведение:

  • 3 целых 2 седьмых умножить на самих себя;
  • равно 23 седьмых умножить на 23 седьмых;
  • равно 529 сорок девятых;
  • сокращаем и получаем 10 тридцать девять сорок девятых.

Ответ: 10 39/49

Касаемо вопроса возведения в иррациональный показатель, следует отметить что расчеты начинают проводить после завершения предварительного округления основы степени до какого-либо разряда, который позволил бы получить величину с заданной точностью. К примеру, нам необходимо возвести число П (пи) в квадрат.

Начинаем с того, что округляем П до сотых и получаем:

П в квадрате = (3,14)2=9,8596. Однако если сократить П до десятитысячных, получим П=3,14159. Тогда возведение в квадрат получает совсем другое чиcло: 9,8695877281.

Здесь следует отметить, что во многих задачах нет надобности возводить иррациональные числа в cтeпeнь. Как правило, ответ вписывается или в виде, собственно, степени, к примеру, корень из 6 в степени 3, либо, если позволит выражение, проводится его преобразование: корень из 5 в 7 cтепeни = 125 корень из 5.

Как возвести чиcло в целую степень

Эту алгебраическую манипуляцию уместно принимать во внимание для следующих случаев:

  • для целых чисел;
  • для нулевого показателя;
  • для целого положительного показателя.

Поскольку практически все целые положительные числа совпадают с массой чисел натуральных, то постановка в положительную целую степень - это тот же процесс, что и постановка в ст. натуральную. Данный процесс мы описали в предшествующем пункте.

Теперь поговорим о вычислении ст. нулевой. Мы уже выяснили выше, что нулевую степень числа a можно определить для любого отличного от нуля a (действительного), при этом a в ст. 0 будет равно 1.

Соответственно, возведение какого угодно действительного числа в нулевую ст. будет давать единицу.

К примеру, 10 в ст.0=1, (-3,65)0=1, а 0 в ст. 0 нельзя определить.

Для того чтобы завершить возведение в целую степень, остается определиться с вариантами целых отрицательных значений. Мы помним, что ст. от a с целым показателем -z будет определяться как дробь. В знаменателе дроби располагается ст. с целым положительным значением, значение которой мы уже научились находить. Теперь остается лишь рассмотреть пример возведения.

Пример:

Вычислить значение числа 2 в кубе с целым отрицательным показателем.

Процесс решения:

Согласно определению стeпeни с отрицательным показателем обозначаем: два в минус 3 ст. равняется один к двум в третьей cтепeни.

Знаменатель рассчитывается просто: два в кубе;

3 = 2*2*2=8.

Ответ: два в минус 3-й ст. = одна восьмая.

Видео

Из этого видео вы узнаете, что делать, если степень с отрицательным показателем.

Обращаем ваше внимание, что в данном разделе разбирается понятие степени только с натуральным показателем и нулём.

Понятие и свойства степеней с рациональными показателями (с отрицательным и дробным) будут рассмотрены в уроках для 8 класса.

Итак, разберёмся, что такое степень числа. Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.

Вместо произведения шести одинаковых множителей 4 · 4 · 4 · 4 · 4 · 4 пишут 4 6 и произносят «четыре в шестой степени».

4 · 4 · 4 · 4 · 4 · 4 = 4 6

Выражение 4 6 называют степенью числа, где:

  • 4 — основание степени ;
  • 6 — показатель степени .

В общем виде степень с основанием «a » и показателем «n » записывается с помощью выражения:


Запомните!

Степенью числа «a » с натуральным показателем «n », бóльшим 1 , называется произведение «n » одинаковых множителей, каждый из которых равен числу «a ».

Запись «a n » читается так: «а в степени n » или «n -ая степень числа a ».

Исключение составляют записи:

  • a 2 — её можно произносить как «а в квадрате»;
  • a 3 — её можно произносить как «а в кубе».
  • a 2 — «а во второй степени»;
  • a 3 — «а в третьей степени».

Особые случаи возникают, если показатель степени равен единице или нулю (n = 1; n = 0) .

Запомните!

Степенью числа «а » с показателем n = 1 является само это число:
a 1 = a

Любое число в нулевой степени равно единице.
a 0 = 1

Ноль в любой натуральной степени равен нулю.
0 n = 0

Единица в любой степени равна 1.
1 n = 1

Выражение 0 0 (ноль в нулевой степени ) считают лишённым смыслом.

  • (−32) 0 = 1
  • 0 253 = 0
  • 1 4 = 1

При решении примеров нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.

Пример. Возвести в степень.

  • 5 3 = 5 · 5 · 5 = 125
  • 2,5 2 = 2,5 · 2,5 = 6,25
  • ( · = = 81
    256

Возведение в степень отрицательного числа

Основание степени (число, которое возводят в степень) может быть любым числом — положительным, отрицательным или нулём.

Запомните!

При возведении в степень положительного числа получается положительное число.

При возведении нуля в натуральную степень получается ноль.

При возведении в степень отрицательного числа в результате может получиться как положительное число, так и отрицательное число. Это зависит от того чётным или нечётным числом был показатель степени.

Рассмотрим примеры возведения в степень отрицательных чисел.


Из рассмотренных примеров видно, что если отрицательное число возводится в нечётную степень, то получается отрицательное число. Так как произведение нечётного количество отрицательных сомножителей отрицательно.

Если же отрицательное число возводится в чётную степень, то получается положительное число. Так как произведение чётного количество отрицательных сомножителей положительно.

Запомните!

Отрицательное число, возведённое в чётную степень, есть число положительное .

Отрицательное число, возведённое в нечётную степень, — число отрицательное .

Квадрат любого числа есть положительное число или нуль, то есть:

a 2 ≥ 0 при любом a .

  • 2 · (−3) 2 = 2 · (−3) · (−3) = 2 · 9 = 18
  • −5 · (−2) 3 = −5 · (−8) = 40

Обратите внимание!

При решении примеров на возведение в степень часто делают ошибки, забывая, что записи (−5) 4 и −5 4 это разные выражения. Результаты возведения в степень данных выражений будут разные.

Вычислить (−5) 4 означает найти значение четвёртой степени отрицательного числа.

(−5) 4 = (−5) · (−5) · (−5) · (−5) = 625

В то время как найти «−5 4 » означает, что пример нужно решать в 2 действия:

  1. Возвести в четвёртую степень положительное число 5 .
    5 4 = 5 · 5 · 5 · 5 = 625
  2. Поставить перед полученным результатом знак «минус» (то есть выполнить действие вычитание).
    −5 4 = −625

Пример. Вычислить: −6 2 − (−1) 4

−6 2 − (−1) 4 = −37
  1. 6 2 = 6 · 6 = 36
  2. −6 2 = −36
  3. (−1) 4 = (−1) · (−1) · (−1) · (−1) = 1
  4. −(−1) 4 = −1
  5. −36 − 1 = −37

Порядок действий в примерах со степенями

Вычисление значения называется действием возведения в степень. Это действие третьей ступени.

Запомните!

В выражениях со степенями, не содержащими скобки, сначала выполняют вовзведение в степень , затем умножение и деление , а в конце сложение и вычитание .

Если в выражении есть скобки, то сначала в указанном выше порядке выполняют действия в скобках, а потом оставшиеся действия в том же порядке слева направо.

Пример. Вычислить:


Для облегчения решения примеров полезно знать и пользоваться таблицей степеней , которую вы можете бесплатно скачать на нашем сайте.

Для проверки своих результатов вы можете воспользоваться на нашем сайте калькулятором «

Поделиться