Звуковой анализатор человека. Слуховой анализатор, строение, функции

Введение

1. Слуховой анализатор

1.1. Рецепция звуковых раздражений

1.2.Функция звукопроводящего аппарата уха

1.3.Внутреннее ухо

2. Резонансная теория слуха

3. Проводящие пути слухового анализатора

4. Корковый отдел слухового анализатора

5. Анализ и синтез звуковых раздражений

6. Факторы, определяющие чувствительность слухового анализатора

Заключение

Список литературы


Введение

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. слуховой анализатор ухо

Показания органов чувств являются источниками представлений об окружающем нас мире.

Процесс чувственного познания совершается у человека и животного по шести каналам: осязание, слух, зрение, вкус, обоняние, земное тяготение. Шесть органов чувств дают многообразную информацию об окружающем объективном мире, которая отражается в сознании в виде субъективных образов - ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно развивается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздражения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обладающие повышенной возбудимостью, образуют скопления, из которых возникают простейшие органы чувств. В дальнейшем в зависимости от положения этих клеток происходит их специализация по отношению к раздражителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела - к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего усложнением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Энгельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений.

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором. «Анализатор - это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы».


1. СЛУХОВОЙ АНАЛИЗАТОР

В процессе эволюции у животных образовался сложный по структуре и функции слуховой анализатор. Слух - это способность животных воспринимать и анализировать звуковые волны.

К периферическому отделу слухового анализатора относятся: 1. Звукоулавливающий аппарат - наружное ухо, 2. Звукопередающий - среднее ухо, 3. Звуковоспринимающий аппарат - внутреннее ухо (улитка с кортиевым органом).

1.1 Рецепция звуковых раздражений

Орган слуха. У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты до 40 и даже до 90 тысяч колебаний в секунду.

У низших позвоночных периферический слуховой орган вместе с вестибулярным аппаратом дифференцируется из переднего конца органа боковой линии, рецепторы которого воспринимают колебания водной среды. Ослепленная щука при условии сохранения органа боковой линии схватывает проплывающую мимо рыбу и передвигается, не натыкаясь на встречные предметы, которые отражают колебания воды, производимые движениями щуки. Колебания боль частоты воспринимаются только развившимся из переднего конца органа боковой линии мешочком и его слепым выростом, получившим название лагены (lagena). У амфибий (и особенно у рептилий) ближе к основанию лагены появляется особый слуховой участок- натянутая перепонка, состоящая из параллельно расположенных соединительнотканных волоконец. У млекопитающих за счет разрастания этого участка слепой вырост резко удлиняется. Изгибаясь, он принимает форму раковины улитки с различным у разных животных числом витков. Отсюда и название этого органа- улитка. Ухо как периферический орган слухового анализатора состоит не только из рецепторного аппарата, скрытого в толще височной кости и образующего вместе с вестибулярным аппаратом, так называемое внутреннее ухо. Существенное значение имеют те части уха, которые связаны с улавливанием звуков и их проведением к рецепторному аппарату.

Звукопроводящий аппарат всех наземных животных - это среднее ухо, или барабанная полость, которая образовалась за счет передней жаберной щели. Уже у рептилий в этой полости находится слуховая косточка, облегчающая передачу звуковых колебаний. У млекопитающих имеются три сочлененные между собой косточки, способствующие увеличению силы звуковых колебаний. Звукоулавливающий аппарат, или наружное ухо, состоит из наружного слухового прохода и ушной раковины, которая впервые появляется у млекопитающих. У многих из них она подвижна, что позволяет направлять ее в сторону появления звуков и тем самым лучше их улавливать.

1.2 Функция звукопроводящего аппарата уха

Барабанная полость (рис. 1) сообщается с наружным воздухом через особый канал - слуховую, или евстахиеву трубу, наружное отверстие которой находится в стенке носоглотки. Обычно оно закрыто, но в момент глотания раскрывается. При резком изменении атмосфер давления, например при спуске в глубокую шахту, при подъёме или приземлении самолета, может возникнуть значительная разница между давлением наружного воздуха и давлением воздуха в барабанной полости, что вызывает неприятные ощущения, а иногда и повреждение барабанной перепонки. Раскрытие отверстия слуховой трубы

способствует выравниванию давления, а потому при изменении давления наружного воздуха рекомендуют производить частые глотательные движения.

Рис. 1. Полусхематическое изображение среднего уха:

1- наружный слуховой проход; 2- барабанная полость; 3 - слуховая труба; 4 - барабанная перепонка; 5 - молоточек; 6 - наковальня; 7 - стремя; 8 - окно преддверия (овальное); Я - окно улитки (круглое); 10- костная ткань.

Внутри барабанной полости находятся три слуховые косточки - молоточек, наковальня и стремя, соединенные между собой суставами. Среднее ухо отделено от наружного барабанной перепонкой, а от внутреннего - костной перегородкой с двумя отверстиями. Одно из них называется овальным окном или окном преддверия. К его краям при помощи эластично кольцевой связки прикреплено основание стремени. Другое отверстие - круглое окно, или окно улитки- затянуто тонкой

соединительнотканной мембраной. Воздушные звуковые волны, попадая в слуховой проход, вызывают колебания барабанной перепонки, которое через систему слуховых косточек, а также через воздух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочлененные между собой слуховые косточки можно рассматривать как рычаг первого рода, длинное плечо которого соединено с барабанной перепонкой, а короткое укрепление в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счет увеличения развиваемой силы. Значительное увеличение силы звуковых колебаний происходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается, по крайней мере, в 30-40 раз. При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и уменьшается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Полное удаление барабанной перепонки лишь снижает слух, но не ведет к его потере. Это объясняется тем, что существенную роль в передаче звуковых колебаний играет мембрана круглого окна, которая воспринимает колебания воздуха, находящегося в полости среднего уха.

1.3 Внутреннее ухо

Внутреннее ухо представляет собой сложную систему каналов, находящихся в пирамиде височной кости и получивших название костного лабиринта. Расположенные в нем улитка и вестибулярный аппарат образуют перепончатый лабиринт (рис. 2). Пространство между стенками костного и перепончатого

лабиринтов заполнено жидкостью - перилимфой. К слуховому анализатору относится только передняя часть перепончатого лабиринта, которая расположена внутри костного канала улитки и вместе с ним образует два с половиной оборота вокруг костного стержня (рис. 3). От костного стержня внутрь канала отходит отросток в виде винтообразной спиральной пластинки, широкой у основания улитки и постепенно суживающейся к ее вершине. Эта пластинка не доходит до противоположной, наружной стенки канала. Между пластинкой и наружной стенкой расположена улитковая часть перепончатого лабиринта, вследствие чего весь канал оказывается раз на два этажа, или прохода.

Один из них сообщается с преддверием костного лабиринта и называется лестницей преддверия, другой начинается от окна улитки, граничащего с барабанной полостью, и называется лестницей барабана. Оба прохода сообщаются только в верхнем, узком конце улитки.

На поперечном разрезе улитковая часть перепончатого лабиринта имеет форму вытянутого треугольника. Его нижняя сторона, граничащая с лестницей барабана, образована основной пластинкой, которая состоит из погруженных в гомогенную массу тончайших эластических соединительнотканных волокон, натянутых между свободным краем спиральной костной пластинки и наружной стенкой канала улитки. Верхняя сторона треугольника граничит с лестницей преддверия, отходя под острым углом от верхней поверхности спиральной костной пластинки и направляясь, как и основная пластинка, к наружной стенке канала улитки. Третья, самая короткая сторона треугольника состоит из соединительной ткани, плотно сращенной с наружной стенкой костного канала.

Рис. 2. Общая схема костного и находящегося в нем перепончатого лабиринта:

1 - кость; 2 - полость среднего уха; 3 -стремя;4 - окно преддверия; 5- окно улитки; 6 - улит; 7 и 8 - отолитовый аппарат (7 - саккулус или круглый мешочек; 8 - утрикулус, или овальный мешочек); 9, 10 и 11 - полукружные каналы 12 - пространство между костным и перепончатым лабиринтами, заполненное перилимфой.


Рис. 3. Схематическое изображение улитки внутреннего уха:

А - костный канал улитки;

В - схема поперечного разреза части улитки; - костный стержень;2 - спиральная костная пластинка; 3 - волокна улиткового нерва;4 - скопление тел первого нейрона слухового проводящего пути; 5 - лестница преддверия; 6-лестница барабана; 7- улитковая часть перепончатого лабиринта;8 - кортиев орган; 9 - основная пластинка.

Функция кортиева органа.

Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки (рис. 4). Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верх концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям смеховые, или волосковые, клетки, каждая из которых на своей верхней свободной поверхности имеет 15-20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены кнутри от тоннеля в один ряд, а кнаружи-в три ряда. От основной пластинки они отделены опорными клетками.

К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположено в центральном канале костного стержня улитки, где они об так называемый спиральный узел, гомологичный межпозвоночный узлу спинномозговых нервов. Каждая из трех с пол тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волокна клетки, количество которых достигает 15-20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к воз возбуждения в волосковых клетках, которое передает на конечные разветвления нервных волокон.

Рис. 4. Схема строения кортиева органа:

1 - основная пластинка; 2 - костная спиральная пластинка; 3 - спиральный канал; 4 - нервные волокна; 5 - столбовые клетки, образующие тоннель(6); 7 - слуховые, или волосковые, клетки; 8 - опорные клетки; 9- покровная пластинка.


2. РЕЗОНАНСНАЯ ТЕОРИЯ СЛУХА

Среди различных теорий, объясняющих механизм периферического анализа звуков, наиболее обоснованной следует считать резонансную теорию, предложенную Гельмгольцем в 1863 году. Если около открытого рояля воспроизвести музыкальным инструментом или голосом звук определенной высоты, то начнет резонировать, т. е. звучать в ответ, струна, настроенная на тот же самый тон. Изучая структурные особенности основной пластинки улитки, Гельмгольц пришел к выводу, что звуковые волны, приходящие из окружающей среды, вызывают колебания поперечных волокон пластинки по принципу резонанса.

Всего насчитывают в основной пластинке около 24 000 поперечных эластических волокон. Они различны по длине и степени натянутости: самые короткие и сильнее натянутые расположены у основания улитки; чем ближе к ее вершине, тем они длиннее и слабее натянуты. Согласно резонансной теории, различные участки основ пластинки реагируют колебанием своих волокон на звуки разной высоты. Такое представление подтвердилось опытами Л.А. Анд. После выработки у собак условных рефлексов на чистые тоны различной высоты улитку одного уха он полностью удалял, а улитку другого подвергал частичному повреждению. В зависимости от того, какой участок кортиева органа второго уха был поврежден, наблюдалось исчезновение ранее выработанных положительных и отрицательных условных рефлексов на звуки определенной частоты колебаний.

При разрушении кортиева органа ближе к основанию улитки исчезали условные рефлексы на высокие тоны. Чем ближе к верхушке локализовалось повреждение, тем ниже были тоны, утратившие значение условных раздражителей.


3. ПРОВОДЯЩИЕ ПУТИ СЛУХОВОГО АНАЛИЗАТОРА

Первый нейрон проводящих путей слухового анализатора - упомянутые выше клетки, аксоны которых образуют улитковый нерв. Волокна этого нерва входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5). Помимо основного, проводящего пути, связывающего периферический отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуществляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий.

Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм, которые идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Рис. 5. Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (нижняя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.


4. КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

У человека ядро коркового отдела слухового анализатора расположено в височной, области коры больших, полушарий. В той части поверхности височной области, которая представляет собой нижнюю стенку поперечной, или сильвиевой щели, расположено поле 41. К нему, а возможно и к соседнему полю 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осуществляются корковые двигательные рефлексы на звуковые раздражители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.).


5. АНАЛИЗ И СИНТЕЗ ЗВУКОВЫХ РАЗДРАЖЕНИЙ

Анализ звуковых раздражений начинается в периферическом отделе слухового анализатора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражений, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспринимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными клеточными группами, которые повторно приходили в состояние возбуждения под влиянием определённого звукового раздражения или комплекса последовательных звуковых раздражений, устанавливая все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражителей, действующих на другие анализаторы. Так образуются все новые и новые условные связи, обогащающие анализ и синтез звуковых раздражений.

В основе анализа и синтеза звуковых речевых раздражений лежит установление условных связей между очагами возбуждения, которые возникают под влиянием непосредственных раздражителей, действующих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обозначающими эти раздражители. Так называемый слуховой центр речи, т. е. тот участок слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражений, иными словами, с пониманием слышимой речи, расположен в основном в левом поле и занимает задний конец поля и прилегающий участок поля.


6. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЧУВСТВИТЕЛЬНОСТЬ СЛУХОВОГО АНАЛИЗАТОРА

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 4000 в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 000 раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низким же (до 1000 колебаний в секунду) остается почти неизменным вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение громкости снижается сначала быстро, а потом все более медленно. Однако, хотя и в меньшей степени, понижается чувствительность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звука, вследствие адаптации к тишине уже через 10-15 секунд восстанавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анализатора, а именно от изменения, как усиливающей функции звукового аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствительности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в результате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов.

Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, возникает в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Длительное воздействие сильных звуков может вызвать запретное торможение корковых клеток. В результате чувствительность слухового анализатора резко понижается. Такое состояние сохраняется некоторое время после того, как прекратилось раздражение.


ЗАКЛЮЧЕНИЕ

Слуховой анализатор, совокупность механических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний.

У высших животных, в том числе у большинства млекопитающих, слуховой анализатор состоит из наружного, среднего и внутреннего уха, слухового нерва и центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга). Верхняя олива - первое образование головного мозга, где конвергирует информация от обоих ушей. Волокна от правого и левого кохлеарных ядер идут на обе стороны. В слуховой анализатор имеются также нисходящие (эфферентные) проводящие пути, идущие от вышележащих отделов к нижележащим (вплоть до рецепторных клеток). В частотном анализе звуков существенное значение имеет улитковая перегородка- своеобразный механический спектральный анализатор, функционирующий как ряд взаимно рассогласованных фильтров. Её амплитудно-частотные характеристики (АЧХ), т. е. зависимость амплитуды колебаний отдельных точек улитковой перегородки от частоты звука, впервые экспериментально измерены венгерским физиком Д. Бекеши и позднее уточнены с помощью Мёссбауэра эффекта.

К наружному уху относится ушная раковина и наружный слуховой проход. Ушная раковина рупообразной формы, подвижна, что дает возможность улавливать и сосредотачивать звук в слуховом проходе.

Наружный слуховой проход представляет собой слегка изогнутый, узкий канал. Железы слухового прохода выделяют секрет -"ушную серу”, предохраняющую барабанную перепонку от высыхания.

Барабанная перепонка отделяет наружное ухо от среднего. Она неправильной формы и неодинаково равномерно натянута, поэтому не имеет собственного периода колебаний, а колеблется в соответствии с длиной поступающей звуковой волны.

Среднее ухо включает слуховые косточку - молоточек, наковальню, чечевицеобразную косточку и стремечко. Эти косточки передают колебания барабанной перепонки на перепонку овального окна, расположенного на границе между средним и внутренним ухом.

Барабанная полость через слуховую (евстахиеву) трубу в носоглотке сообщается с наружным воздухом во время глотания. В результате чего выравнивается давление по обе стороны барабанной перепонки. При резком изменении внешнего давления в любую сторону изменяется натяжение перепонки и развивается состояние временной глухоты, которое устраняется глотательными движениями.

Внутреннее ухо состоит из костного и перепончатого лабиринтов. Перепончатый лабиринт располагается в костном. Имеющееся между ними пространство заполнено перилимфой, а перепончатый лабиринт заполнен эндолимфой. В лабиринте расположены два органа. Один из них, состоящий из преддверия и улитки выполняет слуховую функцию, а второй, состоящий из двух мешочков и трех полукружных каналов - функцию равновесия (вестибулярный аппарат).


СПИСОК ЛИТЕРАТУРЫ

1. http://slovari.yandex.ru/dict/bse/article/00072/11500.htm

2. http://analizator.ucoz.ru/index/0-7

3. http://works.tarefer.ru/10/100119/index.html

4. http://liceum.secna.ru/bl/projects/barnaul2007/borovkov/s_sens_sluh.html

5. http://meduniver.com/Medical/Anatom/513.html

6. http://www.analizator.ru/anatomy.php

7. http://ru.wikipedia.org/wiki/sens_sluh

8. Акаевский А.И. \ Анатомия домашних животных. Изд. 3-е, испр. И доп. М., «Колос», 1975. 592с. С ил. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

9. Анатомия домашних животных\ И.В. Хрусталёва, Н.В. Михайлов, Я.И. Шнейберг и др.; Под. ред. И.В. Хрусталёвой. – 3-е изд., испр. – М.: КолосС, 2002. – 704с.:ил. – (Учебники и учеб. пособия для студентов высш. учеб. заведений).

10. Климов А.Ф., Акаевский А.Е. Анатомия домашних животных: Учебное пособие. 7-е изд., стер.- СПб.: Издательство «Лань», 2003.- 1040с.- (Учебники для вузов. Специальная литература).


Введение

Заключение

Список литературы


Введение


Общество, в котором мы живём, представляет собой информационное общество, где основным фактором производства являются знания, основным продуктом производства являются услуги, а характерными чертами общества являются компьютеризация, а также резкое повышение творческого начала в труде. Возрастает роль связей с другими странами, происходит процесс глобализации во всех сферах общества.

Ключевую роль в коммуникации между государствами играют профессии, связанные с иностранными языками, лингвистикой, социальными науками. Возрастает потребность в изучении систем распознавания речи для осуществления автоматизированного перевода, что будет способствовать увеличению производительности труда в сферах экономики, связанных с межкультурной коммуникацией. Поэтому важно изучить физиологию и механизмы функционирования слухового анализатора как средства восприятия и передачи речи в соответствующий отдел мозга для последующей обработки и синтеза новых речевых единиц.

Слуховой анализатор - это совокупность механических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний. С анатомической точки зрения слуховую систему можно разделить на наружное, среднее и внутреннее ухо, слуховой нерв и центральные слуховые пути. С точки зрения процессов, приводящих в конечном итоге к восприятию слуха, слуховую систему разделяют на звукопроводящую и звуковоспринимающую.

В разных условиях окружающей среды под влиянием многих факторов чувствительность слухового анализатора может изменяться. Для изучения этих факторов существуют различные методы исследования слуха.

слуховой анализатор физиология чувствительность

1. Значение изучения анализаторов человека с точки зрения современных информационных технологий


Уже несколько десятков лет назад люди предпринимали попытки создания систем синтеза и распознавания речи в современных информационных технологиях. Разумеется, все эти попытки начинались с исследования анатомии и принципов работы речевых, а также слуховых органов человека, в надежде смоделировать их при помощи компьютера и специальных электронных устройств.

Каковы особенности слухового анализатора человека? Слуховой анализатор улавливает форму звуковой волны, частотный спектр чистых тонов и шумов, осуществляет в определенных пределах анализ и синтез частотных компонентов звуковых раздражений, обнаруживает и опознает звуки в большом диапазоне интенсивности и частот. Слуховой анализатор позволяет дифференцировать звуковые раздражения и определять направление звука, а также удаленность его источника. Уши воспринимают колебания воздуха и превращают их в электрические сигналы, поступающие в мозг. В результате обработки мозгом человека эти сигналы превращаются в образы. Создание таких алгоритмов обработки информации для компьютерных технологий и есть научная задача, решение которой необходимо для разработки максимально безошибочно работающих систем распознавания речи.

С помощью программ распознавания речи многие пользователи надиктовывают тексты документов. Такая возможность актуальна, например, для медиков, проводящих обследование (в ходе которого руки обычно заняты) и одновременно протоколирующих его результаты. Пользователи ПК могут использовать программы распознавания речи для ввода команд, то есть проговариваемое слово будет восприниматься системой как щелчок клавиши мыши. Пользователь командует: "Открыть файл", "Отправить почту" или "Новое окно", а компьютер выполняет соответствующие действия. Это особенно актуально для людей с ограниченными физическими возможностями - вместо мыши и клавиатуры они смогут управлять компьютером при помощи голоса.

Изучение внутреннего уха помогает исследователям понять механизмы, с помощью которых человек способен распознавать речь, хотя это и не так просто. Многие изобретения человек "подсматривает" у природы, и такие попытки предпринимаются и специалистами в области синтеза и распознавания речи.


2. Виды анализаторов человека и их краткая характеристика


Анализаторы (от греч. analysis - разложение, расчленение) - система чувствительных нервных образований, осуществляющих анализ и синтез явлений внешней и внутренней среды организма. Термин введен в неврологическую литературу И.П. Павловым, согласно представлениям которого каждый анализатор состоит из специфических воспринимающих образований (рецепторы, органы чувств), составляющих периферический отдел анализатора, соответствующих нервов, связывающих эти рецепторы с различными этажами ЦНС (проводниковая часть), и мозгового конца, представленного у высших животных в коре больших полушарий головного мозга.

В зависимости от рецепторной функции различают анализаторы внешней и внутренней среды. Первые рецепторами обращены к внешней среде и приспособлены анализировать явления, происходящие в окружающем мире. К таким анализаторам относятся зрительный анализатор, анализатор слуха, кожный, обонятельный, вкусовой. Анализаторы внутренней среды - афферентные нервные приборы, рецепторные аппараты которых находятся во внутренних органах и приспособлены к анализированию того, что происходит в самом организме. К таким анализаторам относится также двигательный анализатор (рецепторный аппарат его представлен мышечными веретенами и рецепторами Гольджи), обеспечивающий возможность точного управления опорно-двигательным аппаратом. Существенную роль в механизмах статокинетической координации играет и другой внутренний анализатор - вестибулярный, тесно взаимодействующий с анализатором движения. Двигательный анализатор человека включает и специальный отдел, обеспечивающий передачу сигналов с рецепторов органов речи в высшие этажи ЦНС. В связи с важным значением этого отдела в деятельности мозга человека его иногда рассматривают как "речедвигательный анализатор".

Рецепторный аппарат каждого анализатора приспособлен к трансформации определенного вида энергии в нервное возбуждение. Так, рецепторы звука избирательно реагируют на звуковые раздражения, света - на световые, вкуса - на химические, кожи - на тактильно-температурные и т.д. Специализация рецепторов обеспечивает анализ явлений внешнего мира на их отдельные элементы уже на уровне периферического отдела анализатора.

Биологическая роль анализаторов заключается в том, что они являются специализированными следящими системами, информирующими организм обо всех событиях, происходящих в окружающей среде и внутри него. Из огромного потока сигналов, непрерывно поступающих в мозг по внешним и внутренним анализаторам, отбирается та полезная информация, которая оказывается существенной в процессах саморегулирования (поддержания оптимального, константного уровня функционирования организма) и активного поведения животных в окружающей среде. Эксперименты показывают, что сложная аналитико-синтетическая деятельность мозга, детерминированная факторами внешней и внутренней среды, осуществляется по полианализаторному принципу. Это означает, что вся сложная нейродинамика корковых процессов, формирующая целостную деятельность мозга, складывается из сложного взаимодействия анализаторов. Но это касается уже другой темы. Перейдём непосредственно к слуховому анализатору и рассмотрим его подробнее.


3. Слуховой анализатор как средство восприятия звуковой информации человеком


3.1 Физиология слухового анализатора


Периферический отдел слухового анализатора (слуховой анализатор с органом равновесия - ухо (auris)) является весьма сложным органом чувств. Окончания его нерва заложены в глубине уха, благодаря чему они предохраняются от действия всякого рода посторонних раздражителей, но в то же время легко доступны для звуковых раздражений. В органе слуха заложены рецепторы трех видов:

а) рецепторы, воспринимающие звуковые колебания (колебания воздушных волн), которые мы ощущаем как звук;

б) рецепторы, дающие нам возможность определить положение нашего тела в пространстве;

в) рецепторы, воспринимающие изменения направления и быстроты движения.

Ухо принято разделять на три отдела: наружное, среднее и внутреннее ухо.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина построена из упругого эластического хряща, покрытого тонким, малоподвижным слоем кожи. Она является собирателем звуковых волн; у человека она неподвижна и важной роли не играет, в отличии от животных; даже при ее полном отсутствии заметного расстройства слуха не наблюдается.

Наружный слуховой проход представляет собой несколько изогнутый канал около 2,5 см длины. Этот канал выстлан кожей с мелкими волосками и содержит особые железки, похожие на крупные апокриновые железы кожи, выделяющие ушную серу, которая вместе с волосками предохраняет наружное ухо от засорения пылью. Он состоит из наружного отдела - хрящевого наружного слухового прохода и внутреннего - костного слухового прохода, залегающего в височной кости. Внутренний конец его закрыт тонкой эластичной барабанной перепонкой, которая является продолжением кожного покрова наружного слухового прохода и отделяет его от полости среднего уха. Наружное ухо в органе слуха играет лишь вспомогательную роль, участвуя в собирании и проведении звуков.

Среднее ухо , или барабанная полость (рис. 1), располагается внутри височной кости между наружным слуховым проходом, от которого она отделена барабанной перепонкой, и внутренним ухом; она представляет собой совсем небольшую неправильной формы полость емкостью до 0,75 мл, которая сообщается с придаточными полостями - ячейками сосцевидного отростка и с полостью глотки (см. ниже).


Рис. 1. Орган слуха в разрезе. 1 - коленчатый узел лицевого нерва; 2 - лицевой нерв; 3 - молоточек; 4 - верхний полукружный канал; 5 - задний полукружный канал; 6 - наковальня; 7 - костная часть наружного слухового прохода; 8 - хрящевая часть наружного слухового прохода; 9 - барабанная перепонка; 10 - костная часть слуховой трубы; 11 - хрящевая часть слуховой трубы; 12 - большой поверхностный каменистый нерв; 13 - верхушка пирамиды.


На медиальной стенке барабанной полости, обращенной к внутреннему уху, находится два отверстия: овальное окно преддверия и круглое окно улитки; первое закрыто пластинкой стремени. Барабанная полость посредством небольшой (длиной в 4 см) слуховой (евстахиевой) тpубы (tuba auditiva) сообщается с верхним отделом глотки - носоглоткой. Отверстие трубы открывается на боковой стенке глотки и таким путем сообщается с наружным воздухом. Всякий раз, когда слуховая труба открывается (что происходит при каждом глотательном движении), воздух барабанной полости обновляется. Благодаря ей давление на барабанную перепонку со стороны барабанной полости поддерживается всегда на уровне давления наружного воздуха, и таким образом, снаружи и изнутри барабанная перепонка подвергается одинаковому атмосферному давлению.

Это уравновешивание давления по обе стороны барабанной перепонки имеет очень важное значение, так как нормальные колебания ее возможны только в том случае, когда давление наружного воздуха равно давлению в полости среднего уха. Когда между давлением атмосферного воздуха и давлением барабанной полости имеется разница, острота слуха нарушается. Таким образом, слуховая труба является как бы своего рода предохранительным клапаном, выравнивающим давление в среднем ухе.

Стенки барабанной полости и особенно слуховой трубы выстланы эпителием, а слизистые трубы - мерцательным эпителием; колебание его волосков направлено в сторону глотки.

Глоточный конец слуховой трубы богат слизистыми железами и лимфатическими узелками.

С латеральной стороны полости находится барабанная перепонка. Барабанная перепонкa (membrana tympani) (рис. 2) воспринимает звуковые колебания воздуха и передает их на звукопроводящую систему среднего уха. Она имеет форму круга или эллипса диаметром 9 и 11 мм и состоит из эластической соединительной ткани, волокна которой на наружной поверхности располагаются радиально, а на внутренней - циркулярно; ее толщина составляет всего лишь 0,1 мм; она натянута несколько косо: сверху вниз и сзади наперед, немного вогнута внутрь, так как от стенок барабанной полости к рукоятке молоточка идет упомянутая мышца, натягивающая барабанную перепонку (она оттягивает перепонку внутрь). Цепь же слуховых косточек служит для передачи колебаний воздуха от барабанной перепонки на жидкость, заполняющую внутреннее ухо. Барабанная перепонка натянута не сильно и собственного тона не издает, а передает лишь получаемые ею звуковые волны. Благодаря тому, что колебания барабанной перепонки очень быстро затухают, она является прекрасным передатчикам давления и почти не искажает форму звуковой волны. Снаружи барабанная перепонка покрыта истонченной кожей, а с поверхности, обращенной к барабанной полости, - слизистой оболочкой, выстланной плоским многослойным эпителием.

Между барабанной перепонкой и овальным окном расположена система маленьких слуховых косточек, передающих колебания барабанной перепонки во внутреннее ухо: молоточек (malleus), наковальня (incus) и стремечко (stapes), соединенных между собой суставами и связками, которые приводятся в движение двумя маленькими мышцами. Молоточек приращен к внутренней поверхности барабанной перепонки своей рукояткой, а головкой сочленен с наковальней. Наковальня же одним из своих отростков соединена со стременем, которое расположено горизонтально и своим широким основанием (пластинкой) вставлено в овальное окошко, плотно прилегая к его перепонке.


Рис. 2. Барабанная перепонка и слуховые косточки с внутренней стороны. 1 - головка молоточка; 2 - верхняя связка ее; 3 - пещера барабанной полости; 4 - наковальня; 5 - связка ее; 6 - барабанная струна; 7 - пирамидное возвышение; 8 - стремечко; 9 - рукоятка молоточка; 10 - барабанная перепонка; 11 - евстахиева труба; 12 - перегородка между полуканалами для трубы и для мышцы; 13 - мышца, напрягающая барабанную перепонку; 14 - передний отросток молоточка


Заслуживают большого внимания мышцы барабанной полости. Одна из них - m. tensor tympani - прикрепляется к шейке молоточка. При ее сокращении фиксируется сочленение между молоточком и наковальней и увеличивается напряжение барабанной перепонки, что имеет место при сильных звуковых колебаниях. В это же время основание стремени несколько вдавливается в овальное окно.

Вторая мышца - m. stapedius (самая маленькая из поперечнополосатых мышц в теле человека) - прикрепляется к головке стремени. При сокращении этой мышцы сочленение между наковальней и стремечком оттягивается книзу и ограничивает движение стремени в овальном окне.

Внутреннее ухо. Внутреннее ухо представлено наиболее важной и наиболее сложно устроенной частью слухового аппарата, носящей название лабиринта. Лабиринт внутреннего уха располагается глубоко в пирамидке височной кости, как бы в костном футляре между средним ухом и внутренним слуховым проходом. Размер костного ушного лабиринта по его длинной оси не превышает 2 см. От среднего уха он отделен овальным и круглым окнами. Отверстие внутреннего слухового прохода на поверхности пирамидки височной кости, через которое выходит из лабиринта слуховой нерв, закрыто тонкой костной пластинкой с мелкими отверстиями для выхождения из внутреннего уха волокон слухового нерва. Внутри костного лабиринта располагается замкнутый соединительнотканный перепончатый лабиринт, точно повторяющий форму костного, но несколько меньших размеров. Узкое пространство между костным и перепончатым лабиринтами заполнено жидкостью, сходной по своему составу с лимфой и носящей название пери ли мфы. Вся внутренняя полость перепончатого лабиринта также заполнена жидкостью, которая называется эндолимфой. Перепончатый лабиринт но многих местах соединен со стенками костного лабиринта плотными тяжами, идущими через перилимфатическое пространство. Благодаря такому расположению перепончатый лабиринт оказывается подвешенным внутри костного лабиринта, подобно тому как мозг подвешен (внутри черепной коробки на своих мозговых оболочках.

Лабиринт (рис. 3 и 4) состоит из трех отделов: преддверия лабиринта, полукружных каналов и улитки.


Рис. 3. Схема отношений перепончатого лабиринта к костному. 1 - проток, связывающий маточку с мешочком; 2 - верхняя перепончатая ампула; 3 - эндолимфатический проток; 4 - эндолимфатический мешочек; 5 - перелимфатическое пространство; 6 - пирамида височной кости: 7 - верхушка перепончатого улиткового протока; 8 - сообщение между обеими лестницами (геликотрема); 9 - улитковый перепончатый ход; 10 - лестница преддверия; 11 - лестница барабанная; 12 - мешочек; 13 - соединительный ход; 14 - перилимфатический проток; 15 - круглое окно улитки; 16 - овальное окно преддверия; 17 - барабанная полость; 18 - слепой конец улиткового хода; 19 - задняя перепончатая ампула; 20 - маточка; 21 - полукружный канал; 22 - верхний полукружный ход


Рис. 4. Поперечный разрез через ход улитки. 1 - лестница преддверия; 2 - рейсснерова перепонка; 3 - покровная перепонка; 4 - улитковый канал, в котором находится кортиев орган (между покровной и основной перепонками); 5 и 16 - слуховые клетки с ресничками; 6 - опорные клетки; 7 - спиральная связка; 8 и 14 - костная ткань улитки; 9 - опорная клетка; 10 и 15 - особые опорные клетки (так называемые кортиевы клетки - столбы); 11 - барабанная лестница; 12 - основная перепонка; 13 - нервные клетки спирального улиткового узла


Перепончатое преддверие (vestibulum) представляет собой небольшую овальную полость, занимающую среднюю часть лабиринта и состоящую из двух пузырьков-мешочков, соединенных между собой узким канальцем; один из них - задний, так называемый маточка (utriculus), сообщается с перепончатыми полукружными каналами пятью отверстиями, а передний мешочек (sacculus) - с перепончатой улиткой. Каждый из мешочков аппарата преддверия наполнен эндолимфой. Стенки мешочков выстланы плоским эпителием, за исключением одного участка - так называемого пятнышка (macula), где имеется цилиндрический эпителий, содержащий опорные и волосковые клетки, несущие на своей поверхности тонкие отростки, обращенные в полость мешочка. У высших животных имеются мелкие кристаллы извести (отолиты), склеенные в один комочек вместе с волосками невроэпителиальных клеток, в которых оканчиваются нервные волоконца вестибулярного нерва (ramus vestibularis - ветвь слухового нерва).

Сзади от преддверия расположены три взаимно перпендикулярных полукружных канала (canales semicirculares) - один в горизонтальной плоскости и два в вертикальной. Полукружные каналы представляют собой очень узкие трубки, наполненные эндолимфой. Каждый из каналов образует на одном из своих концов расширение - ампулу, где расположены окончания вестибулярного нерва, распределяющиеся в клетках чувствительного эпителия, сосредоточенных в так называемом слуховом гребешке (crista acustica). Клетки чувствительного эпителия слухового гребешка очень похожи на те, которые имеются в пятнышке - на поверхности, обращенной в полость ампулы, они несут волоски, которые склеены между собой и образуют подобие кисточки (cupula). Свободная поверхность кисточки достигает противоположной (верхней) стенки канала, оставляя свободным ничтожный просвет его полости, препятствуя передвижению эндолимфы.

Спереди от преддверия располагается улитка (cochlea), представляющая собой перепончатый спирально извитой канал, также расположенный внутри кости. Спираль улитки у человека делает 23/4 оборота вокруг центральной костной оси и заканчивается слепой. Костная ось улитки верхушкой обращена к среднему уху, а своим основанием закрывает внутренний слуховой проход.

В полость спирального канала улитки по всей его длине от костной оси отходит и вдается тоже спиральная костная пластинка - перегородка, разделяющая спиральную полость улитки на два хода: верхний, сообщающийся с преддверием лабиринта, так называемую лестницу преддверия (scala vestibuli), и нижний, упирающийся одним концом в перепонку круглого окна барабанной полости и поэтому носящий название барабанной лестницы (scala tympani). Лестницами эти ходы называются потому, что, завиваясь спирально, они напоминают лестницу с наклонно поднимающейся полоской, но только без ступеней. В конце улитки оба хода сообщаются отверстием около 0,03 мм в диаметре.

Эта перегораживающая полость улитки продольная костная пластинка, отходящая от вогнутой стенки, не доходит до противоположной стороны, а ее продолжением служит соединительнотканная перепончатая спиральная пластинка, носящая название основной перепонки, или основной мембраны (membrana basilaris), которая уже вплотную примыкает к выпуклой противоположной стенке по всей длине общей полости улитки.

От края костной пластинки отходит еще одна перепонка (рейснерова) под углом над основной, которая ограничивает собой небольшой средний ход между двумя первыми ходами (лестницами). Этот ход называется каналом улитки (ductus cochlearis) и сообщается с мешочком преддверия; он-то и является органом слуха в собственном смысле слова. Канал улитки на поперечном разрезе имеет форму треугольника и в свою очередь разделен (но не вполне) на два этажа третьей перепонкой - покровной (membrana tectoria), играющей, по-видимому, большую роль в процессе восприятия ощущений. В нижнем этаже этого последнего канала на основной мембране в виде выступа нейроэпителия расположен весьма сложного устройства собственно воспринимающий аппарат слухового анализатора - спиральный (кортиев) орган (organon spirale Cortii) (рис. 5), омываемый вместе с основной мембраной внутрилабиринтовой жидкостью и играющий по отношению к слуху ту же роль, какую сетчатка по отношению к зрению.


Рис. 5. Микроскопическое строение кортиева органа. 1 - основная мембрана; 2 - покровная мембрана; 3 - слуховые клетки; 4 - клетки слухового ганглия

Спиральный орган состоит из многочисленных разнообразных опорных и эпителиальных клеток, расположенных на основной мембране. Клетки удлиненной формы располагаются в два ряда и носят название столбов Корти. Клетки обоих рядов несколько наклонены друг к другу и образуют кортиевы дуги числом до 4000 по всей улитке. При этом в улитковом канале образуется так называемый внутренний тоннель, заполненный межклеточным веществом. На внутренней поверхности кортиевых столбов имеется ряд цилиндрических эпителиальных клеток, на свободной поверхности которых имеется по 15-20 волосков, - это чувствительные, воспринимающие, так называемые волосковые клетки. Тонкие и длинные волоконца - слуховые волоски, склеиваясь между собой,образуют на каждой такой клетке нежные щеточки. К наружной стороне этих слуховых клеток примыкают опорные клетки Дейтерса. Таким образом, волосковые клетки закреплены на основной мембране. К ним подходят тоненькие нервные безмякотные волоконца и образуют в них чрезвычайно нежную фибриллярную сеть. Слуховой нерв (его ветвь - ramus cochlearis) проникает в середину улитки и идет по ее оси, отдавая многочисленные веточки. Здесь каждое мякотное нервное волокно теряет свой миелин и переходит в нервную клетку, обладающую, подобно клеткам спиральных ганглиев, соединительнотканной оболочкой и глиозными оболочковыми клетками. Вся сумма этих нервных клеток в целом и образует спиральный ганглий (ganglion spirale), занимающий всю периферию оси улитки. Из этого нервного ганглия уже направляются нервные волокна к воспринимающему аппарату - спиральному органу.

Сама же основная мембрана, на которой расположен спиральный орган, состоит из тончайших, плотных и туго натянутых волоконец, ("струн") (около 30000), которые, начинаясь от основания улитки (около овального окна), постепенно удлиняются к верхнему завитку ее, доходя от 50 до 500 ? (точнее - от 0,04125 до 0,495 мм), т.е. короткие около овального окна, они становятся все более длинными по направлению к вершине улитки, увеличиваясь примерно в 10-12 раз. Длина основной перепонки от основания до вершины улитки равна примерно 33,5 мм.

Гельмгольц, создавший в конце прошлого века теорию слуха, основную мембрану улитки с ее волокнами разной длины сравнивал с музыкальным инструментом - арфой, только в этой живой арфе натянуто огромное количество "струн".

Воспринимающим аппаратом слуховых раздражений является спиральный (кортиев) орган улитки. Преддверие же и полукружные каналы играют роль органов равновесия. Правда, восприятие положения и движения тела в пространстве зависит от совместной функции многих органов чувств: зрения, осязания, мышечного чувства и др., т.е. рефлекторная деятельность, необходимая для сохранения равновесия, обеспечивается импульсами в различных органах. Но основная роль в этом принадлежит преддверию и полукружным каналам.


3.2 Чувствительность слухового анализатора


Ухо человека воспринимает в качестве звука колебания воздуха от 16 до 20000 Гц. Верхняя граница воспринимаемых звуков зависит от возраста: чем человек старше, тем она ниже; часто старики не слышат высоких тонов, например, издаваемого сверчком звука. У многих животных верхняя граница лежит выше; у собак, например, удается образовать целый ряд условных рефлексов на не слышимые человеком звуки.

При колебаниях до 300 Гц и выше 3000 Гц чувствительность резко уменьшается: например, при 20 Гц, а также при 20000 Гц. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низким же (до 1000 колебаний в секунду) остается почти неизменным вплоть до старческого возраста.

Сказанное означает, что для улучшения качества распознавания речи компьютерные системы могут исключить из анализа частоты, лежащие вне диапазона 300-3000 Гц или даже вне диапазона 300-2400 Гц.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение громкости снижается сначала быстро, а потом все более медленно. Однако, хотя и в меньшей степени, понижается чувствительность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звука, вследствие адаптации к тишине уже через 10-15 секунд восстанавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анализатора, а именно от изменения, как усиливающей функции звукового аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствительности наблюдаются в обоих ушах.

Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, возникает в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Длительное воздействие сильных звуков может вызвать запретное торможение корковых клеток. В результате чувствительность слухового анализатора резко понижается. Такое состояние сохраняется некоторое время после того, как прекратилось раздражение.

Заключение


Сложная структура системы слухового анализатора обусловлена многоступенчатым алгоритмом передачи сигнала в височный отдел мозга. Наружное и среднее ухо передают звуковые колебания в улитку, расположенную во внутреннем ухе. Чувствительные волоски, расположенные в улитке, преобразуют колебания в электрические сигналы, поступающие по нервам в слуховую зону головного мозга.

При рассмотрении вопроса о функционировании слухового анализатора для дальнейшего применения знаний при создании программ распознавания речи следует учитывать и границы чувствительности органа слуха. Частотный диапазон звуковых колебаний, воспринимаемых человеком, составляет 16-20 000 Гц. Однако частотный диапазон речи уже и составляет 300-4000 Гц. Речь остается разборчивой при дальнейшем сужении частотного диапазона до 300-2400 Гц. Этот факт можно использовать в системах распознавания речи для снижения влияния помех.


Список литературы


1.П.А. Баранов, А.В. Воронцов, С.В. Шевченко. Обществознание: полный справочник. Москва, 2013

2.Большая Советская Энциклопедия, 3-е издание (1969-1978), том 23.

.А.В. Фролов, Г.В. Фролов. Синтез и распознавание речи. Современные решения.

.Душков Б.А., Королев А.В., Смирнов Б.А. Энциклопедический словарь: Психология труда, управления, инженерная психология и эргономика. Москва, 2005

.Кучеров А.Г. Анатомия, физиология и методы исследования органа слуха и равновесия. Москва, 2002

.Станков А.Г. Анатомия человека. Москва, 1959

7.http://ioi-911. ucoz.ru/publ/1-1-0-47

.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

12600 0

Слуховая система является анализатором звуков. В ней различают звукопроводящий и звуковоспринимающий аппараты (рис. 1). Звукопроводящий аппарат включает наружное ухо, среднее ухо, лабиринтные окна, мембранозные образования и жидкостные среды внутреннего уха; звуковоспринимающий — волосковые клетки, слуховой нерв, нейронные образования ствола мозга и центры слуха (рис. 2).


Рис. 1. Схематическое строение уха (периферическое строение слухового анализатора): 1 — наружное ухо; 2 — среднее ухо; 3 — внутреннее ухо




Рис. 2. Схема звукопроводящего и звуковоспринимающего аппаратов: 1 — наружное ухо; 2 — среднее ухо; 3 — внутреннее ухо; 4 — проводящие пути; 5 — корковый центр


Звукопроводящий аппарат обеспечивает проведение акустических сигналов к чувствительным рецепторным клеткам, звуковоспринимающий — трансформирует звуковую энергию в нервное возбуждение и проводит ее в центральные отделы слухового анализатора.

Наружное ухо (amis externa) включает ушную раковину (auricula) и наружный слуховой проход (meatus acusticus extemus).

Ушная раковина представляет собой овальное образование неправильной формы возле начала наружного слухового прохода. Ее основу составляет эластический хрящ, покрытый кожей. В нижней части раковины, которая называется мочкой (lobulus auriculae), хрящ отсутствует. Вместо него под кожей находится слой клетчатки.

В ушной раковине различают ряд возвышений и ямок (рис. 3). Ее свободный, валикообразно загнутый край носит название завитка (helix). Завиток начинается от заднего края мочки, тянется по всему периметру раковины и заканчивается над входом в наружный слуховой проход. Эта часть ушной раковины получила название ножки завитка (cms helicis). В верхнезадней части завитка определяется овальное утолщение, которое называется утиным бугорком (tubercuhtm auriculae).


Рис. 3. Основные анатомические образования ушной раковины: 1 — завиток; 2 — ножка лрогивозавитка; 3 — ножка завитка; 4 — передняя вырезка; 5 — надкозелковый бугорок; 6 — козелок; 7 — наружный слуховой проход; 8 — межкозелковая вырезка; 9 — противокозелок: 10 — мочка (сережка); 11 — задняя ушная борозда; 12 — противозавиток; 13 — ушная раковина; 14 — ладьевидная ямка; 15 — ушной бугорок; 16 — треугольная ямка


Различают еще второй валик — противозавиток (anthelix). Между завитком и противозавитком находится треугольная ямка (fossa triangularis). Противозавиток заканчивается над мочкой уха возвышением, получившим название противокозелка (antitragus). Спереди противокозелка находится плотное хрящевое образование — козелок (tragus). Он частично защищает слуховой проход от проникновекия в него инородных тел. Глубокая ямка, размещенная между козелком, противозавитком и противокозелком, составляет собственно раковину уха (concha auriculae). Мышцы ушной раковины являются рудиментарными и практического значения не имеют.

Ушная раковина переходит во внешний слуховой проход (meatus (icusticus exterrms). Внешняя часть прохода (приблизительно 1/3 его длины) состоит из хряща, внутренняя часть (2/3 длины) — костная. Перепончато-хрящевая часть наружного слухового прохода подвижна, кожа содержит волосы, сальные и серные железы. Волосы защищают ухо от проникновения в него насекомых, инородных тел; сера и #ир смазывают и очищают слуховой проход от чешуек и инородных частиц. Кожа костной части наружного прохода тонкая, лишена волос \\ желез, плотно прилегает к височной кости.

В месте перехода хрящевой части в костную слуховой проход несколько суживается (isthmus). Костная часть прохода имеет неправильную S-образную форму, из-за чего передненижнис участки барабанной перепонки просматриваются недостаточно. Чтобы расширить пространство и лучше рассмотреть барабанную перепонку, необходимо оттянуть ушную раковину кверху Л назад. Такое строение наружного слухового прохода имеет практическое значение в клинике. В частности, наличие сальных желез и во-;юс только в хрящевой части предопределяет возникновение фурункулов, фолликулитов; сужение прохода на границе его перепончато-хрящевой и костной части представляет опасность, поскольку создает угрозу проталкивания инородного тела в глубину слухового прохода при неумелом его удалении.

Наружное ухо и близлежащие ткани снабжаются кровью из мелких сосудов наружной сонной артерии — a. auhcularis posterior, a. temporalis superfacialis, a. maxillaris interna и других. Иннервация наружного уха осуществляется ветвями V, VII и X черепных нервов. Участие в этом процессе, блуждающего нерва, в частности его ушной детви (г. auricularis), объясняет причину возникновения рефлекторного кашля у отдельных пациентов при механическом раздражении кожи наружного слухового прохода (удаление серы, туалет уха).

Среднее ухо (auris media) представляет собой систему воздухоносных полостей, включающих барабанную полость (cavum tympani), пещеру (antrum), воздухоносные ячейки сосцевидного отростка (cellulae $astoideas) и слуховую трубу (tuba auditiva). Наружной стенкой барабанной полости является барабанная перепонка, внутренней — латеральная стенка внутреннего уха, верхней — крыша барабанной полости (tegmen tympani), отделяющая барабанную полость от средней черепной ямки, нижней — костное образование, отделяющее луковицу яремной вены (bulbus venae jugularis).

На передней стенке имеется барабанное отверстие слуховой трубы и канал для мышцы, напрягающей барабанную перепонку (т. tensor tympani), на задней — вход в пещеру (aditus ad antrum), который соединяет барабанную полость через надбарабанное пространство (attic) с пещерой сосцевидного отростка (antrum mastoideum). Слуховая труба соединяет барабанную полость с носовой частью горла. Сзади и снизу отверстия слуховой трубы размещен костный канал, в котором проходит внутренняя сонная артерия, своими ветвями обеспечивающая кровоснабжение внутреннего уха. Анатомическое строение

Д.И. Заболотный, Ю.В. Митин, С.Б. Безшапочный, Ю.В. Деева

Воспринимающей частью слухового анализатора является ухо, проводящей - слуховой нерв, центральной - слуховая зона коры головного мозга. Орган слуха состоит их трех отделов: наружного, среднего и внутреннего уха. Ухо включает не только собственно орган слуха, с помощью которого воспринимаются слуховые ощущения, но и орган равновесия, благодаря чему тело удерживается в определенном положении.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Раковина образована хрящом, покрытым с обеих сторон кожей. С помощью раковины человек улавливает направление звука. Мышцы, приводящие в движение ушную раковину, у человека рудиментарны. Наружный слуховой проход имеет вид трубки длиной 30 мм, выстланной кожей, в которой имеются особые железы, выделяющие ушную серу. В глубине слуховой проход затянут тонкой барабанной перепонкой овальной формы. Со стороны среднего уха, в середине барабанной перепонки, укреплена рукоятка молоточка. Перепонка упруга, при ударе звуковых волн она без искажения повторяет эти колебания.

Среднее ухо представлено барабанной полостью, которая с помощью слуховой (евстахиевой) трубы сообщается с носоглоткой; от наружного уха оно отграничено барабанной перепонкой. Составные части этого отдела - молоточек, наковальня и стремечко. Своей рукояткой молоточек срастается с барабанной перепонкой, наковальня же сочленена и с молоточком, и со стремечком, которое прикрывает овальное отверстие, ведущее во внутреннее ухо. В стенке, отделяющей среднее ухо от внутреннего, кроме овального окна находится еще круглое окно, затянутое перепонкой.
Строение органа слуха:
1 - ушная раковина, 2 - наружный слуховой проход,
3 - барабанная перепонка, 4 - полость среднего уха, 5 - слуховая трубка, 6 - улитка, 7 - полукружные каналы, 8 - наковальня, 9 -молоточек, 10 - стремечко

Внутреннее ухо, или лабиринт, расположено в толще височной кости и имеет двойные стенки: лабиринт перепончатый как бы вставлен в костный, повторяя его форму. Щелевидное пространство между ними заполнено прозрачной жидкостью - перилимфой, полость перепончатого лабиринта - эндолимфой. Лабиринт представлен преддверием, кпереди от него находится улитка, кзади - полукружные каналы. Улитка сообщается с полостью среднего уха через круглое окно, затянутое перепонкой, а преддверие - через овальное окно.

Органом слуха является улитка, остальные его части составляют органы равновесия. Улитка - спирально закрученный канал в 2 3/4 оборота, разделенный тонкой перепончатой перегородкой. Эта перепонка спирально завита и называется основной. Она состоит из фиброзной ткани, включающей около 24 тыс. особых волокон (слуховые струны) разной длины и расположенных поперек вдоль всего хода улитки: самые длинные - у ее вершины, у основания - наиболее укороченные. Над этими волокнами нависают слуховые волосковые клетки - рецепторы. Это периферический конец слухового анализатора, или кортиев орган. Волоски рецепторных клеток обращены в полость улитки - эндолимфу, а от самих клеток берет начало слуховой нерв.

Восприятие звуковых раздражений. Звуковые волны, проходя через наружный слуховой проход, вызывают колебания барабанной перепонки и передаются слуховым косточкам, а с них - на перепонку овального окна, ведущего в преддверие улитки. Возникшее колебание приводит в движение перилимфу и эндолимфу внутреннего уха и воспринимается волокнами основной перепонки, несущей на себе клетки кортиева органа. Высокие звуки с большой частотой колебаний воспринимаются короткими волокнами, расположенными у основания улитки, и передаются волоскам клеток кортиева органа. При этом возбуждаются не все клетки, а только те, которые находятся на волокнах определенной длины. Следовательно, первичный анализ звуковых сигналов начинается уже в кортиевом органе, с которого возбуждение по волокнам слухового нерва передается в слуховой центр коры головного мозга в височной доле, где происходит их качественная оценка.

Вестибулярный аппарат. В определении положения тела в пространстве, его перемещении и скорости движения большую роль играет вестибулярный аппарат. Он расположен во внутреннем ухе и состоит из преддверия и трех полукружных каналов, размещенных в трех взаимно перпендикулярных плоскостях. Полукружные каналы наполнены эндолимфой. В эндолимфе преддверия находятся два мешочка - круглый и овальный со специальными известковыми камешками - статолитами, прилежащими к волосковым рецепторным клеткам мешочков.

При обычном положении тела статолиты своим давлением раздражают волоски нижних клеток, при изменении положения тела статолиты также перемещаются и своим давлением раздражают другие клетки; полученные импульсы передаются в кору больших полушарий. В ответ на раздражение вестибулярных рецепторов, связанных с мозжечком и двигательной зоной больших полушарий, рефлекторно изменяются тонус мышц и положение тела в пространстве.От овального мешочка отходят три полукружных канала, имеющих вначале расширения - ампулы, в которых находятся волосковые клетки - рецепторы. Так как каналы расположены в трех взаимно перпендикулярных плоскостях, то эндолимфа в них при изменениях положения тела раздражает те или иные рецепторы, и возбуждение передается в соответствующие отделы мозга. Организм рефлекторно отвечает необходимым изменением положения тела.

Гигиена слуха . В наружном слуховом проходе скопляется ушная сера, на ней задерживается пыль и микроорганизмы, поэтому необходимо регулярно мыть уши теплой мыльной водой; ни в коем случае нельзя удалять серу твердыми предметами. Переутомление нервной системы и перенапряжение слуха могут вызвать резкие звуки и шумы. Особенно вредно действует продолжительный шум, при этом наступает тугоухость и даже глухота. Сильный шум снижает производительность труда до 40-60%. Для борьбы с шумами в производственных условиях применяют облицовку стен и потолков специальными материалами, поглощающими звук, индивидуальные противошумные наушники. Моторы и станки устанавливают на фундаменты, которые глушат шум от сотрясения механизмов.

Возрастная анатомия и физиология Антонова Ольга Александровна

5.5. Слуховой анализатор

5.5. Слуховой анализатор

Основной функцией органов слуха является восприятие колебаний воздушной среды. Органы слуха тесно связаны с органами равновесия. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе.

Филогенетически они имеют общее происхождение. Оба рецепторных аппарата иннервируются волокнами третьей пары черепных нервов, оба реагируют на физические показатели: вестибулярный аппарат воспринимает угловые ускорения, слуховой – воздушные колебания.

Слуховые восприятия очень тесно связаны с речью – ребенок, потерявший слух в раннем детстве, утрачивает речевую способность, хотя речевой аппарат у него абсолютно нормален.

У зародыша органы слуха развиваются из слухового пузырька, который вначале сообщается с наружной поверхностью тела, но по мере развития эмбриона отшнуровывается от кожных покровов и образует три полукружных канала, расположенных в трех взаимно перпендикулярных плоскостях. Часть первичного слухового пузырька, которая связывает эти каналы, называют преддверием. Оно состоит из двух камер – овальной (маточки) и круглой (мешочка).

В нижнем отделе преддверия из тонких перепончатых камер образуется полый выступ, или язычок, который у зародышей вытягивается, а затем скручивается в виде улитки. Язычок образует кортиев орган (воспринимающую часть органа слуха). Этот процесс происходит на 12-й неделе внутриутробного развития, а на 20-й неделе начинается миелинизация волокон слухового нерва. В последние месяцы внутриутробного развития начинается дифференцировка клеток в корковом отделе слухового анализатора, протекающая особенно интенсивно в первые два года жизни. Заканчивается формирование слухового анализатора к 12-13-летнему возрасту.

Орган слуха. Орган слуха человека состоит из наружного уха, среднего уха и внутреннего уха. Наружное ухо служит для улавливания звуков, его образуют ушная раковина и наружный слуховой проход. Ушная раковина образована эластическим хрящом, снаружи покрытым кожей. Внизу ушная раковина дополнена кожной складкой – мочкой, которая заполнена жировой тканью. Определение направления звука у человека связано с бинауральным слухом, т. е. со слышанием двумя ушами. Любой боковой звук поступает в одно ухо раньше, чем в другое. Разница во времени (несколько долей миллисекунды) прихода звуковых волн, воспринимаемых левым и правым ухом, дает возможность определить направление звука. При поражении одного уха человек определяет направление звука вращением головы.

Наружный слуховой проход у взрослого человека имеет длину 2,5 см, емкость – 1 куб. см. Кожа, выстилающая слуховой проход, имеет тонкие волоски и видоизмененные потовые железы, вырабатывающие ушную серу. Они выполняют защитную роль. Ушная сера состоит из жировых клеток, содержащих пигмент.

Наружное и среднее ухо разделяются барабанной перепонкой, представляющей собой тонкую соединительно-тканную пластинку. Толщина барабанной перепонки – около 0,1 мм, снаружи она покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка располагается наклонно и начинает колебаться при попадании на нее звуковых волн. Поскольку барабанная перепонка не имеет собственного периода колебаний, то она колеблется при любом звуке соответственно его длине волны.

Среднее ухо представляет собой барабанную полость, которая имеет форму маленького плоского барабана с туго натянутой колеблющейся перепонкой и слуховой трубой. В полости среднего уха находятся сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Рукоятка молоточка вплетена в барабанную перепонку; другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно сочленена со стремечком. К стремечку прикреплена стременная мышца, которая удерживает его у перепонки овального окна, отделяющего внутреннее ухо от среднего. Функцией слуховых косточек является обеспечение увеличения давления звуковой волны при передаче с барабанной перепонки на перепонку овального окна. Это увеличение (примерно в 30–40 раз) помогает слабым звуковым волнам, падающим на барабанную перепонку, преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо, трансформируясь там в колебания эндолимфы.

Барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см, очень узкой (2 мм), поддерживающей одинаковое давление снаружи и изнутри на барабанную перепонку, обеспечивая тем самым наиболее благоприятные условия для ее колебания. Отверстие трубы в глотке чаще всего находится в спавшемся состоянии, и воздух проходит в барабанную полость во время акта глотания и зевания.

Внутреннее ухо находится в каменистой части височной кости и представляет собой костный лабиринт, внутри которого есть перепончатый лабиринт из соединительной ткани, который как бы вставлен в костный лабиринт и повторяет его форму. Между костным и перепончатым лабиринтами имеется жидкость – перилимфа, а внутри перепончатого лабиринта – эндолимфа. Кроме овального окошка, в стенке, отделяющей среднее ухо от внутреннего, есть круглое окно, которое делает возможным колебание жидкости.

Костный лабиринт состоит из трех частей: в центре находится преддверие, спереди от него – улитка, а сзади – полукружные каналы. Костная улитка – спирально извивающийся канал, образующий два с половиной оборота вокруг стержня конической формы. Диаметр костного канала у основания улитки – 0,04 мм, на вершине – 0,5 мм. От стержня отходит костная спиральная пластинка, которая делит полость канала на две части – лестницы.

Внутри среднего канала улитки находится спиральный (кортиев) орган. Он имеет базилярную (основную) пластинку, состоящую примерно из 24 тыс. тонких фиброзных волоконец различной длины. Эти волоконца очень упругие и слабо связаны друг с другом. На основной пластинке вдоль нее в пять рядов располагаются опорные и волосковые чувствительные клетки – это и есть слуховые рецепторы.

Внутренние волосковые клетки расположены в один ряд, по всей длине перепончатого канала их насчитывается 3,5 тыс. Наружные волосковые клетки располагаются в три-четыре ряда, их насчитывается 12–20 тыс. Каждая рецепторная клетка имеет удлиненную форму, на ней имеется 60–70 мельчайших волосков (длиной 4–5 мкм). Волоски рецепторных клеток омываются эндолимфой и контактируют с покровной пластинкой, которая нависает над ними. Волосковые клетки охватываются нервными волокнами улитковой ветви слухового нерва. В продолговатом мозге находится второй нейрон слухового пути; потом путь идет, перекрещиваясь, к задним буграм четверохолмия, а от них – в височную область коры, где располагается центральная часть слухового анализатора.

В коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов. Другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку.

Механизм восприятия звука. Для слухового анализатора звук является адекватным раздражителем. Звуковые волны возникают как чередование сгущений и разрежений воздуха и распространяются во все стороны от источника звука. Все вибрации воздуха, воды или другой упругой среды распадаются на периодические (тоны) и непериодические (шумы).

Тоны бывают высокие и низкие. Низким тонам соответствует меньшее число колебаний в секунду. Каждый звуковой тон характеризуется длиной звуковой волны, которой соответствует определенное число колебаний в секунду: чем больше число колебаний, тем короче длина волны. У высоких звуков волна короткая, она измеряется в миллиметрах. Длина волны низких звуков измеряется метрами.

Верхний звуковой порог у взрослого человека составляет 20 000 Гц; самый низкий – 12–24 Гц. Дети имеют более высокую верхнюю границу слуха – 22 000 Гц; у пожилых людей она ниже – около 15 000 Гц. Наибольшей восприимчивостью обладает ухо к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость уха сильно понижается.

У новорожденных полость среднего уха заполнена амниотической жидкостью. Это затрудняет колебания слуховых косточек. Со временем жидкость рассасывается, и вместо нее из носоглотки через евстахиеву трубу проникает воздух. Новорожденный ребенок при громких звуках вздрагивает, у него изменяется дыхание, он перестает плакать. Более четким слух у детей становится к концу второго – началу третьего месяца. Через два месяца ребенок дифференцирует качественно различные звуки, в 3–4 месяца различает высоту звука, в 4–5 месяцев звуки для него становятся условно-рефлекторными раздражителями. К 1–2 годам дети различают звуки с разницей в один-два, а к четырем-пяти годам – даже 3/4 и 1/2 музыкального тона.

Поделиться