Работа 1 строение атома. Основы строения атома

Ленточные черви, использующие человека

в качестве окончательного хозяина

Личная профилактика - термическая обработка мяса. Общественная профилактика - санитарный контроль мясопродуктов и санитарно-просветительная работа с населением.

Бычий цепень Taeniarrhynchus saginatus (рис. 20.8, Б ) - возбудитель тениаринхоза, достигает в длину 4-10 м. На головке имеет только четыре присоски. Гермафродитные членики квадратной формы, матка в них не разветвляется, а яичник состоит из двух долей. Зрелые членики сильно вытянуты. Матка очень разветвлена, число ее боковых ветвей достигает 17-34 пар. Яйца содержат онкосферы, расположенные под тонкой прозрачной оболочкой, которая быстро разрушается. Онкосферы имеют три пары крючьев и толстую, радиально исчерченную оболочку. Диаметр онкосфер около 10 мкм. Тениаринхоз распространен повсеместно, где население употребляет в пищу сырое или недостаточно обработанное говяжье мясо.

Диагностика проводится несложно - при обнаружении зрелых члеников в фекалиях, так как членики имеют характерное строение.

Профилактика тениаринхоза заключается в охране пастбищ от заражения фекалиями человека.

Промежуточными хозяевами этого гельминта кроме домашних и диких свиней могут быть кошки, собаки и человек: В этом случае у них, так же как и у свиней, развивается цистицеркоз. Человек может проглотить яйца свиного цепня случайно, но более часто цистицеркоз возникает как осложнение тениоза. При этом заболевании особенно часто возникает обратная перистальтика кишечника и рвота. Зрелые членики могут таким образом попасть в желудок, перевариться там, а освободившиеся онкосферы проникают в сосуды кишечника, разносятся кровью и лимфой по организму, где в печени, мышцах, легких, мозге и других органах формируются цистицерки. Это может привести к быстрому смертельному исходу.

Лабораторная диагностика тениоза основана на обнаружении характерных зрелых члеников в фекалиях; диагностика цистицеркоза сложнее - путем рентгенологического обследования и постановки иммунологических реакций.

Для личной профилактики тениоза необходимо термически обрабатывать свинину, а цистицеркоза - соблюдать правила личной гигиены. Общественная профилактика - закрытое содержание свиней.

Таблица 20.1. Ленточные черви, случайно использующие человека

как окончательного хозяина

доз диминут-ный

Dipilidium саптит

Дипилидиоз

Inermicap-sifera sp. Инермика-псифероз

Bertiella sp. Бертиеллез

Ленточные черви,

использующие человека в качестве промежуточного хозяина

Лабораторная диагностика ларвальных цестодозов осложнена тем, что финны не имеют связи с окружающей средой и кроме продуктов диссимиляции ничего не выделяют. Диагноз ставят на основании рентгенологических, биохимических и иммунологических исследований.

Эхинококк Echinococcus granulosus (рис. 20.9, А ) - возбудитель эхинококкоза. Половозрелая форма имеет головку с крючьями и 3-4 членика разной степени зрелости. Последний из них зрелый, он содержит около 800 яиц. Общая длина тела до 5 мм. Яйца по форме и размерам сходны с яйцами свиного и бычьего цепней. Эхинококкоз у человека распространен во всех географических и климатических зонах, преимущественно в регионах с развитым отгонным животноводством.

Жизненный цикл эхинококка связан с хищными животными семейства Псовые (волками, шакалами, собаками), которые являются его окончательными хозяевами. Взрослые членики способны активно ползать, распространяя яйца по шерсти хозяина и в окружающей среде. Их могут проглотить травоядные животные - коровы, овцы, олени или человек, становясь промежуточными хозяевами. Финна эхинококка - пузырь, нередко достигающий 20 см в диаметре. Он заполнен жидкостью с огромным количеством молодых сколексов, постоянно почкующихся от внутренней поверхности стенки финны. Окончательный хозяин заражается, поедая пораженные органы промежуточного.

Растущая финна сдавливает органы, вызывает их атрофию. Постоянное поступление продуктов диссимиляции в организм хозяина вызывает его истощение. Очень опасен разрыв эхинококкового пузыря: жидкость, заключенная в нем, может вызвать токсический шок. При этом мелкие зародышевые сколексы могут распространяться по организму, поражая другие органы. Множественный эхинококкоз обычно заканчивается смертью хозяина.

Рис. 20.9. Ленточные черви, использующие человека как промежуточного хозяина. А - эхинококк; Б - альвеококк: а - половозрелые стадии,

б - финны

Личная профилактика заражения - мытье рук после контактов с пастушьими собаками. Общественная профилактика - обследование и дегельминтизация собак, недопущение скармливания им органов больных животных.

Альвеококкоз - более тяжелое заболевание, чем эхинококкоз, в связи с инвазивным характером роста финны.

Личная профилактика - как при эхинококкозе, общественная - соблюдение правил гигиены при обработке шкур промысловых животных, а также запрещение скармливания собакам тушек грызунов.

Описанный вид гельминта расселен в Восточной и Юго-Восточной Азии, в Австралии, Америке и Африке.

Диагностика осложнена. Обычно диагноз ставится во время хирургического вмешательства.

Профилактика - фильтрование воды, употребляемой для питья, и термическая обработка экзотических продуктов питания - мяса лягушек и змей.

Рис. 20.10. Возбудители спарганоза.

А - Spiromeira erinacei;Б - Sparganum proliferum

Sparganum protiferum (рис. 20.10, Б ) - плероцеркоид неизвестного вида ленточного червя, вероятно, также из р. Spiromeira. Он характеризуется оригинальной особенностью - способностью почковаться наподобие альвеококка, но образует не более нескольких дочерних особей, морфологически связанных с материнской. В связи с этим и получил название proliferum - разрастающийся. Размеры его совпадают с размерами предыдущего вида. Жизненный цикл этого вида изучен слабо, вероятно, он соответствует развитию предыдущего вида; гельминт чаще всего встречается в Корее, Вьетнаме и Японии. Кроме способов заражения, характерных для предыдущего вида, Sparganum может проникать в организм человека через изъязвленные кожные покровы и слизистые оболочки при прикладывании к ним в качестве народного восточного лечебного средства мяса змей и лягушек, содержащего плероцеркоиды.

Тип плоские черви – Plathelminthes :

    Ресничные черви - Turbellaria

    Сосальщики – Trematoda

    Ленточные черви – Cestoda

цестоды :

    Свиной солитер (вооруженный) – Taenia solium

ТЕНИОЗ

    Бычий солитер (невооруженный) – Taeniarhinchus saginatus

ТЕНИАРИНХОЗ

    Карликовый цепень – Hymenolepis nana

ГИМЕНОЛЕПИДОЗ

    Эхинококк – Echinococcus granulosus

ЭХИНОКОККОЗ

    Альвеококк – Alveococcus multilocularis

АЛЬВЕОКОККОЗ

    Широкий лентец – Dyphillobotrium latum

ДИФИЛЛОБОТРИОЗ

Класс ленточные черви (CESTOIDEA) цестоды :

Кожно-мускульный мешок так же как у трематод состоит из тегумента и двух слоев мышц. Тегумент – эпителий погруженного типа с цитоплазматическим поверхностным слоем. В отличие от сосальщиков поверхность тегумента образует огромное количество мелких волосковых складочек (микротрихий), увеличивающих площадь всасывания питательных веществ.

Пищеварительная система отсутствует.

Нервная система развита слабо, представлена головными парными нервными ганглиями и отходящими от них нервными стволами. Нервные стволы соединены между собой поперечными нервными перемычками.

Выделительная система – протонефридиального типа.

Ленточные черви – гермафродиты. Мужская половая система включает в себя семенники, семяпровод, семяизвергательный канал, совокупительный орган. Семенники – пузырьковидные, многочисленные, от них отходят семявыносящие канальца, впадающие в семяпровод. Семяпровод переходит в семяизвергательный канал, который пронзает совокупительный орган. Последний открывается в половую клоаку, расположенную на боковой поверхности членика. Женская половая система включает в себя яичник, яйцевод, желточник, влагалище, скорлуповые железки и оотип. В оотип впадают яйцевод, протоки желточника и скорлуповых железок. Влагалище одним концом открывается также в оотип, другим – в половую клоаку. Комплект мужских и женских половых органов повторяется в каждом членике.

Жизненный цикл – сложный, со сменой хозяев и несколькими личиночными стадиями. В цикле развития цестод обязательно присутствуют личиночные стадии – онкосфера и финна. Онкосфера, или первая личиночная стадия, развивается в яйце, имеет микроскопические размеры, шаровидную форму и шесть крючочков. В кишечнике промежуточного хозяина онкосфера освобождается от яйцевых оболочек, крючочками разрезает стенку кишечника, проникает в кровеносные сосуды и током крови разносится в различные части тела. Осев в каком-либо внутреннем органе, онкосфера преобразуется в финну. У цепней выделяют следующие типы финн: цистицерк, цистицеркоид, ценур и эхинококк. Цистицерк – округлая пузырьковидная структура, заполненная жидкостью, с одной ввернутой внутрь головкой. Цистицеркоид – цистицерк с хвостовым придатком. Ценур – округлая структура, заполненная жидкостью, с несколькими ввернутыми внутрь головками. Эхинококк – крупное округлое образование, заполненное жидкостью, с дочерними «пузырями» внутри, каждый из них имеет несколько головок. У лентецов финна называется плероцеркоидом. Плероцеркоид имеетлентовидную форму и одну ввернутую головку с ботриями.

Класс Ленточные черви подразделяется на отряды: 1) Псевдофиллидеи (Pseudophyllidea), 2) Цепни (Cyclophyllidea) и др.

рис.1.Схема строения кожно- мускульного мешка цестод: 1 - микротрихии тегумента, 2 - базальная мембрана, 3 - поперечные мышцы, 4 - продольные мышцы, 5 - ядра клеток гиподермы, 6 - тегумент.

рис. 2. Строение гермафродитного членника бычьего цепня: 1 - семенники, 2 - семявыносящие канальца, 3 - семяпровод, 4 - совокупительный орган, 5 - половая клоака, 6 - влагалище, 7 - яичник, 8 - желточник, 9 - оотип, 10 - матка, 11 - продольный выделительный канал, 12 - поперечный выделительный канал.

Тип строения финны, свойственный свиному солитеру, называется цистицерком. Это небольшой полый пузырь с ввороченной в него одной головкой. Особый род финн, ценур, имеется в тех случаях, когда пузырь финны сильно разрастается и на стенках его вместо одного впячивания образуется множество их, т. е. в одном пузыре закладывается много головок, каждая из которых дает начало половозрелой ленточной особи.

Наконец, особенно сильного развития достигают финны - эхинококки. Пузырь эхинококка вырастает до огромных размеров и образует внутри себя и на стенках много вторичных пузырей меньшей величины - выводковых капсул. На внутренних стенках капсул формируются, в свою очередь, многочисленные впячивания головок; таким образом, каждая выводковая капсула эхинококка отвечает как бы одному ценуру, а единственный шестикрючный зародыш дает начало нескольким тысячам головок.

Несмотря на внешние различия, все формы финн являются разновидностями одного общего основного типа.

Цестоды имеют плоское лентовидное тело (стробилу), состоящее из члеников (проглоттид). Длина тела и число членников у разных видов значительно варьирует. Головка, или сколекс, вооружена присосками, а у некоторых видов и крючьями (отряд цепней) или присасывательными щелями – ботриями (отряд лентецов). Пищеварительная, кровеносная и дыхательная системы отсутствуют. Все цестоды гермафродиты, большинство из них биогельминты.

Строение.

Головка, или сколекс, размером 3–5 мм, продолговато-овальной формы, сплющена с боков и имеет на узких сторонах две продольные присасывательные щели (ботрии), которыми лентец прикрепляется к стенке кишки.

Яйца широкого лентеца сравнительно крупные – длиной до 75 мкм, серого или желтоватого цвета, с тонкой гладкой оболочкой, широкоовальной формы. На одном из полюсов имеется крышечка, на другом – небольшой бугорок. Внутри яйцо заполнено множеством желточных крупнозернистых клеток. Один лентец выделяет ежедневно несколько - миллионов яиц.

Следует иметь в виду, что яйца встречающегося на Дальнем Востоке гельминта нанофиета очень похожи на яйца широкого лентеца, что может привести к ошибке в лабораторной практике. При тщательной микроскопии выявляются определенные различия, приведенные в табл. и на рис.

Таблица: Отличительные признаки яиц нанофиета и широкого лентеца (по Л. В. Филимоновой)

Признаки

Нанофнет

Широкий лентец

Оболочка

Шероховатая

Крышечка

Более грубая

Более нежная

Отношение длины к ширине

Форма яиц

Более вытянутая

Более овальная

Толщина оболочки, мкм

Толще 2–3

Тоньше 1–2

Бугорок на полюсе

Более грубый и очень слабо выдается над поверхностью оболочки

Более выпуклый и у многих яиц один край его приподнят над поверхностью оболочки

Ширина бугорка, мкм

Различия в строении яиц широкого лентеца и нанофиета.

Строение бугорка яиц: а - нанофист; б - широкий лентец; 1 - оболочка; 2 - бугорок; 3 - желточная клетка (Л. В. Филимонова).

Гермафродитный членик широкого лентеца: 1 – половая клоака; 2 – матка; 3 – семенники и желточники; 4 – яичник.

Жизненный цикл.

Человек может заражаться лентецом чаек (Diphyllobotrium dendriticum), плероцеркоиды которого обнаруживаются у лососевых, хариусных, корюшковых рыб, в частности в Приамурье.

Жизненный цикл широкого лентеца.

1 - половозрелая особь в организме окончательного хозяина; 2 - яйцо и вылупившаяся из него личинка в водоеме; 3 - личинка в теле циклопа; 4 - инвазионная личинка (плероцеркоид) в теле рыбы.

Клиническая картина.

Широкий лентец – возбудитель болезни дифиллоботриоза. Болезнь обычно протекает с нерезко выраженной симптоматикой: слабостью, головокружением, тошнотой, расстройством стула, болями в животе. У некоторых больных развивается анемия, сходная со злокачественной анемией Аддисона–Бирмера.

Диагноз.

Основан на обнаружении яиц широкого лентеца в кале. Наиболее эффективны методы Като и Калантарян. Нередко у больных с калом выделяются фрагменты стробилы лентеца, осмотр которых или опрос об их выделении также способствуют выявлению инвазированных (зараженных) лиц.

Профилактика.

Лабораторно обследуются рыбаки, работники речного транспорта, жители прибрежных поселков с обязательным лечением выявленных больных. Раз в 3 года исследуется рыба (по 15 экземпляров каждого вида) из естественных водоемов. Важно пропагандировать среди населения правила термической обработки рыбы: жарить пластованными кусками массой до 100 г не менее 25 минут или варить не менее 20 минут с момента закипания.

Большое значение имеют санитарное благоустройство населеных мест и речных судов и предотвращение загрязнения водоемов фекалиями.

Строение атома

При химических реакциях ядра атомов остаются без изменений, изменяется лишь строение электронных оболочек вследствие перераспределения электронов между атомами. Способностью атомов отдавать или присоединять электроны определяются его химические свойства.

Электрон имеет двойственную (корпускулярно-волновую) природу. Благодаря волновым свойствам электроны в атоме могут иметь только строго определенные значения энергии, которые зависят от расстояния до ядра. Электроны, обладающие близкими значениями энергии образуют энергетический уровень. Он содержит строго определенное число электронов - максимально 2n 2 . Энергетические уровни подразделяются на s-, p-, d- и f- подуровни; их число равно номеру уровня.

Квантовые числа электронов.

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси.

Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 ...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является внешним.

Пример.

Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5). Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - подуровнем.

l=0 s- подуровень, s- орбиталь - орбиталь сфера

l=1 p- подуровень, p- орбиталь - орбиталь гантель

l=2 d- подуровень, d- орбиталь - орбиталь сложной формы

f-подуровень, f-орбиталь - орбиталь еще более сложной формы

S - орбиталь

Три p - орбитали

Пять d - орбиталей

На первом энергетическом уровне (n = 1) орбитальное квантовое число l принимает единственное значение l = (n - 1) = 0. Форма обитали - сферическая; на первом энергетическом только один подуровень - 1s. Для второго энергетического уровня (n = 2) орбитальное квантовое число может принимать два значения: l = 0, s- орбиталь - сфера большего размера, чем на первом энергетическом уровне; l = 1, p- орбиталь - гантель. Таким образом, на втором энергетическом уровне имеются два подуровня - 2s и 2p. Для третьего энергетического уровня (n = 3) орбитальное квантовое число l принимает три значения: l = 0, s- орбиталь - сфера большего размера, чем на втором энергетическом уровне; l = 1, p- орбиталь - гантель большего размера, чем на втором энергетическом уровне; l = 2, d- орбиталь сложной формы.

Таким образом, на третьем энергетическом уровне могут быть три энергетических подуровня - 3s, 3p и 3d.

Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.

Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.

Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.

Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.

Таким образом, на s- подуровне - одна, на p- подуровне - три, на d- подуровне - пять, на f- подуровне - 7 орбиталей.

Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и -1/2 соответствующие противоположным направлениям вращения.

Принципы заполнения орбиталей.

1. Принцип Паули. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами).

2. Правило Клечковского (принцип наименьшей энергии). В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной. Чем меньше сумма (n + l), тем меньше энергия орбитали. При заданном значении (n + l) наименьшую энергию имеет орбиталь с меньшим n. Энергия орбиталей возрастает в ряду:

1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d " 4f < 6p < 7s.

3. Правило Хунда. Атом в основном состоянии должен иметь максимально возможное число неспаренных электронов в пределах определенного подуровня.

Полная электронная формула элемента.

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1) Главное квантовое число n минимально;

2) Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально);

3) Заполнение происходит так, чтобы (n + l) было минимально (правило Клечковского);

4) В пределах одного подуровня электроны располагаются таким образом, чтобы их суммарный спин был максимален, т.е. содержал наибольшее число неспаренных электронов (правило Хунда).

5) При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n 2 электронов, расположенных на n 2 подуровнях.

Пример.

Цезий (Сs) находится в 6 периоде, его 55 электронов (порядковый номер 55) распределены по 6 энергетическим уровням и их подуровням. Cоблюдая последовательность заполнения электронами орбиталей получим:

>55 >Cs 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 4p 6 4d 10 5s 2 5p 6 5d 10 6s 1

Список литературы

Для подготовки данной применялись материалы сети Интернет из общего доступа



Все в мире состоит из атомов. Но откуда они взялись, и из чего состоят сами? Сегодня отвечаем на эти простые и фундаментальные вопросы. Ведь многие люди, живущие на планете, говорят, что не понимают строения атомов, из которых сами и состоят.

Естественно, уважаемый читатель понимает, что в данной статье мы стараемся изложить все на максимально простом и интересном уровне, поэтому не «грузим» научными терминами. Тем, кто хочет изучить вопрос на более профессиональном уровне, советуем читать специализированную литературу. Тем не менее, сведения данной статьи могут сослужить хорошую службу в учебе и просто сделать Вас более эрудированными.

Атом – это частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, которая является носителем его свойств. Иными словами, это мельчайшая частица того или иного вещества, которая может вступать в химические реакции.

История открытия и строение

Понятия атома было известно еще в Древней Греции. Атомизм – физическая теория, которая гласит, что все материальные предметы состоят из неделимых частиц. Наряду с Древней Грецией, идеи атомизма параллельно развивался еще и в Древней Индии.

Не известно, рассказали тогдашним философам об атомах инопланетяне, или они додумались сами, но экспериментально подтвердить данную теорию химики смогли много позже – только в семнадцатом веке, когда Европа выплыла из пучины инквизиции и средневековья.

Долгое время господствующим представлением о строении атома было представление о нем как о неделимой частице. То, что атом все-таки можно разделить, выяснилось только в начале двадцатого века. Резерфорд, благодаря своему знаменитому опыту с отклонением альфа-частиц, узнал, что атом состоит из ядра, вокруг которого вращаются электроны. Была принята планетарная модель атома, в соответствии с которой электроны вращаются вокруг ядра, как планеты нашей Солнечной системы вокруг звезды.


Современные представления о строении атома продвинулись далеко. Ядро атома, в свою очередь, состоит субатомных частиц, или нуклонов – протонов и нейтронов. Именно нуклоны составляют основную массу атома. При этом протоны и нейтроны также не являются неделимыми частицами, и состоят из фундаментальных частиц - кварков.

Ядро атома имеет положительный электрический заряд, а электроны, вращающиеся по орбите – отрицательный. Таким образом, атом электрически нейтрален.

Ниже приведем элементарную схему строения атома углерода.


Свойства атомов

Масса

Массу атомов принято измерять в атомных единицах массы – а.е.м. Атомная единица массы представляет собой массу 1/12 части свободно покоящегося атома углерода, находящегося в основном состоянии.

В химии для измерения массы атомов используется понятие "моль" . 1 моль – это такое количество вещества, в котором содержится число атомов, равное числу Авогадро.

Размер

Размеры атомов чрезвычайно малы. Так, самый маленький атом – это атом Гелия, его радиус – 32 пикометра. Самый большой атом – атом цезия, имеющий радиус 225 пикометров. Приставка пико означает десять в минус двенадцатой степени! То есть, если 32 метра уменьшить в тысячу миллиардов раз, мы получим размер радиус атома гелия.

При этом, масштабы вещей таковы, что, по сути, атом на 99% состоит из пустоты. Ядро и электроны занимают крайне малую часть его объема. Для наглядности, рассмотрим такой пример. Если представить атом в виде олимпийского стадиона в Пекине (а можно и не в Пекине, просто представьте себе большой стадион), то ядро этого атома будет представлять собой вишенку, находящуюся в центре поля. Орбиты электронов при этом находились бы где-то на уровне верхних трибун, а вишня весила бы 30 миллионов тонн. Впечатляет, не так ли?


Откуда взялись атомы?

Как известно, сейчас различные атомы сгруппированы в таблицу Менделеева. В ней насчитывается 118 (а если с предсказанными, но еще не открытыми элементами - 126) элементов, не считая изотопов. Но так было далеко не всегда.

В самом начале формирования Вселенной никаких атомов не было и подавно, существовали лишь элементарные частицы, под воздействием огромных температур взаимодействующие между собой. Как сказал бы поэт, это был настоящий апофеоз частиц. В первые три минуты существования Вселенной, из-за понижения температуры и совпадения еще целой кучи факторов, запустился процесс первичного нуклеосинтеза, когда из элементарных частиц появились первые элементы: водород, гелий, литий и дейтерий (тяжелый водород). Именно из этих элементов образовались первые звезды, в недрах которых проходили термоядерные реакции, в результате которых водород и гелий «сгорали», образуя более тяжелые элементы. Если звезда была достаточно большой, то свою жизнь она заканчивала так называемым взрывом «сверхновой», в результате которого атомы выбрасывались в окружающее пространство. Так и получилась вся таблица Менделеева.


Так что, можно сказать, что все атомы, из которых мы состоим, когда-то были частью древних звезд.

Почему ядро атома не распадается?

В физике существует четыре типа фундаментальных взаимодействий между частицами и телами, которые они составляют. Это сильное, слабое, электромагнитное и гравитационное взаимодействия.

Именно благодаря сильному взаимодействию, которое проявляется в масштабах атомных ядер и отвечает за притяжение между нуклонами, атом и является таким «крепким орешком».

Не так давно люди поняли, что при расщеплении ядер атомов высвобождается огромная энергия. Деление тяжелых атомных ядер является источником энергии в ядерных реакторах и ядерном оружии.


Итак, друзья, познакомив Вас со структурой и основами строения атома, нам остается только напомнить о том, что готовы в любой момент прийти Вам на помощь. Не важно, нужно Вам выполнить диплом по ядерной физике, или самую маленькую контрольную – ситуации бывают разные, но выход есть из любого положения. Подумайте о масштабах Вселенной, закажите работу в Zaochnik и помните – нет поводов для беспокойства.

Поделиться