Реальная скорость звука в воздухе составляет примерно. Скорость звука

Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

Звуки, различаемые людьми

В общем смысле слова звук - это физическое явление, которое вызывает воздействие на органы слуха. Он имеет вид продольных волн различной частоты. Люди могут слышать звук, частота которого колеблется в пределах 16-20000 Гц. Эти упругие продольные волны, которые распространяются не только в воздухе, но и в других средах, достигая уха человека, вызывают звуковые ощущения. Люди могут слышать далеко не все. Упругие волны частотой меньше 16 Гц называют инфразвуком, а выше 20000 Гц - ультразвуком. Их человеческое ухо не может слышать.

Характеристики звука

Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

Скорость распространения звуковых волн

Этот показатель зависит от плотности среды и ее упругости. В газовых средах на него действует температура вещества. Как правило, скорость звука не зависит от амплитуды и частоты волны. В редких случаях, когда эти характеристики оказывают влияние, говорят о так называемой дисперсии. Скорость звука в парах или газах колеблется в пределах 150-1000 м/с. В жидких средах она составляет уже 750-2000 м/с, а в твердых материалах - 2000-6500 м/с. В нормальных условиях скорость звука в воздухе достигает 331 м/с. В обычной воде - 1500 м/с.

Скорость звуковых волн в разных химических средах

Скорость распространения звука в разных химических средах неодинакова. Так, в азоте она составляет 334 м/с, в воздухе - 331, в ацетилене - 327, в аммиаке - 415, в водороде - 1284, в метане - 430, в кислороде - 316, в гелии - 965, в угарном газе - 338, в углекислоте - 259, в хлоре - 206 м/с. Скорость звуковой волны в газообразных средах возрастает с повышением температуры (Т) и давления. В жидкостях она чаще всего уменьшается при увеличении Т на несколько метров за секунду. Скорость звука (м/с) в жидких средах (при температуре 20°С):

Вода - 1490;

Этиловый спирт - 1180;

Бензол - 1324;

Ртуть - 1453;

Углерод четыреххлористый - 920;

Глицерин - 1923.

Из вышеуказанного правила исключением является только вода, в которой с ростом температуры увеличивается и скорость звука. Своего максимума она достигает при нагревании этой жидкости до 74°С. При дальнейшем повышении температуры скорость звука уменьшается. При увеличении давления она будет увеличиваться на 0,01%/1 Атм. В соленой морской воде с ростом температуры, глубины и солености будет повышаться и скорость звука. В других средах этот показатель изменяется по-разному. Так, в смеси жидкости и газа скорость звука зависит от концентрации ее составляющих. В изотопном твердом теле она определяется его плотностью и модулями упругости. В неограниченных плотных средах распространяются поперечные (сдвиговые) и продольные упругие волны. Скорость звука (м/с) в твердых веществах (продольной/поперечной волны):

Стекло - 3460-4800/2380-2560;

Плавленый кварц - 5970/3762;

Бетон - 4200-5300/1100-1121;

Цинк - 4170-4200/2440;

Тефлон - 1340/*;

Железо - 5835-5950/*;

Золото - 3200-3240/1200;

Алюминий - 6320/3190;

Серебро - 3660-3700/1600-1690;

Латунь - 4600/2080;

Никель - 5630/2960.

В ферромагнетиках скорость звуковой волны зависит от величины напряженности магнитного поля. В монокристаллах скорость звуковой волны (м/с) зависит от направления ее распространения:

  • рубин (продольная волна) - 11240;
  • сульфид кадмия (продольная/поперечная) - 3580/4500;
  • ниобат лития (продольная) - 7330.

Скорость звука в вакууме равняется 0, поскольку в такой среде он просто не распространяется.

Определение скорости звука

Все то, что связано со звуковыми сигналами, интересовало наших предков еще тысячи лет назад. Над определением сущности этого явления работали практически все выдающиеся ученые древнего мира. Еще античные математики установили, что звук обуславливается колебательными движениями тела. Об этом писали Евклид и Птолемей. Аристотель установил, что скорость звука отличается конечной величиной. Первые попытки определения данного показателя были предприняты Ф. Бэконом в XVII в. Он пытался установить скорость путем сравнения временных промежутков между звуком выстрела и вспышкой света. На основании этого метода группа физиков Парижской Академии наук впервые определила скорость звуковой волны. В различных условиях эксперимента она составляла 350-390 м/с. Теоретическое обоснование скорости звука впервые в своих «Началах» рассмотрел И. Ньютон. Произвести правильное определение этого показателя получилось у П.С. Лапласа.

Формулы скорости звука

Для газообразных сред и жидкостей, в которых звук распространяется, как правило, адиабатически, изменение температуры, связанное с растяжениями и со сжатиями в продольной волне, не может быстро выравниваться за короткий период времени. Очевидно, что на этот показатель влияет несколько факторов. Скорость звуковой волны в однородной газовой среде или жидкости определяется по следующей формуле:

где β - адиабатическая сжимаемость, ρ - плотность среды.

В частных производных данная величина считается по такой формуле:

c 2 = -υ 2 (δρ/δυ) S = -υ 2 Cp/Cυ (δρ/δυ) T ,

где ρ, T, υ - давление среды, ее температура и удельный объем; S - энтропия; Cp - изобарная теплоемкость; Cυ - изохорная теплоемкость. Для газовых сред эта формула будет выглядеть таким образом:

c 2 = ζkT/m= ζRt/M = ζR(t + 273,15)/M = ά 2 T,

где ζ - величина адиабаты: 4/3 для многоатомных газов, 5/3 для одноатомных, 7/5 для двухатомных газов (воздух); R - газовая постоянная (универсальная); T - абсолютная температура, измеряемая в кельвинах; k - постоянная Больцмана; t - температура в °С; M - молярная масса; m - молекулярная масса; ά 2 = ζR/ M.

Определение скорости звука в твердом теле

В твердом теле, обладающем однородностью, существует два вида волн, различающихся поляризацией колебаний по отношению направления их распространения: поперечная (S) и продольная (P). Скорость первой (C S) всегда будет ниже, чем второй (C P):

C P 2 = (K + 4/3G)/ρ = E(1 - v)/(1 + v)(1-2v)ρ;

C S 2 = G/ρ = E/2(1 + v)ρ,

где K, E, G - модули сжатия, Юнга, сдвига; v - коэффициент Пуассона. Во время расчета скорости звука в твердом теле используются адиабатические модули упругости.

Скорость звука в многофазных средах

В многофазных средах благодаря неупругому поглощению энергии скорость звука находится в прямой зависимости от частоты колебаний. В двухфазной пористой среде она рассчитывается по уравнениям Био-Николаевского.

Заключение

Измерение скорости звуковой волны используется при определении различных свойств веществ, таких как модули упругости твердого тела, сжимаемость жидкостей и газа. Чувствительным методом определения примесей является измерение малых изменений скорости звуковой волны. В твердых телах колебание этого показателя позволяет проводить исследования зонной структуры полупроводников. Скорость звука является очень важной величиной, измерение которой позволяет узнать многое о самых разных средах, телах и других объектах научных исследований. Без умения ее определять были бы невозможны многие научные открытия.

Чем теплее вода, тем больше в ней скорость звука. При погружении на большую глубину скорость звука в воде также увеличивается. Километры в час (км/ч) - внесистемная единица измерения скорости.

А в 1996г была запущена первая версия сайта с мгновенными вычислениями. Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей, Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука.

Скорость звука в газах и парах

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского. При достаточно высоких частотах (выше частоты Био) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода.

В чистой воде скорость звука составляет около 1500 м/с (см. опыт Колладона-Штурма) и увеличивается с ростом температуры. Объект, движущийся со скоростью 1 км/ч, преодолевает за один час один километр. Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите, пожалуйста.

Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив скорость звука, самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации.

Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает волновой кризис, сопровождающийся появлением волнового сопротивления. 1) ворота в крепостях.

Почему в космосе темно? Правда ли, что звезды падают? Скорость, число Маха которой превышает 5, называется гиперзвуковой. Сверхзвуковая скорость - скорость перемещения тела (газового потока), превышающая скорость распространения звука в идентичных условиях.

Смотреть что такое «СВЕРХЗВУКОВАЯ СКОРОСТЬ» в других словарях:

В твёрдых телах звук распространяется гораздо быстрее, чем в воде или воздухе. Волна в каком-то смысле движение нечто, распространяющееся в пространстве. Волна – это процесс перемещения в пространстве изменения состояния. Давайте представим себе, каким образом происходит распространение звуковых волн в пространстве. Эти слои сжимаются, что в свою очередь снова создает избыточное давление, влияющее на соседние слои воздуха.

Это явление использовано в ултразвуковой дефектоскопии металлов. Из таблицы видно, что с уменьшением длины волны уменьшаются размеры пороков в металле (раковин, иногородных вкраплений), которые могут быть обнаруженыпучком ультразвука.

Дело в том, что при движении на скоростях полета свыше 450 км/ч к обычному сопротивлению воздуха, которое пропорционально квадрату скорости, начинает добавляться и волновое сопротивление. Волновое сопротивление резко увеличивается при приближении скорости самолета к скорости звука, в несколько раз превышая сопротивление, связанное с трением и образованием вихрей.

Чему равна скорость звука?

Помимо скорости, волновое сопротивление напрямую зависит от формы тела. Так вот, стреловидное крыло заметно уменьшает именно волновое сопротивление. Дальнейшее увеличение угла атаки при маневрировании ведет к распространению срыва потока по всему крылу, потери управляемости и сваливании самолета в штопор. Крыло с обратной стреловидностью частично лишено этого недостатка.

При создании крыла обратной стреловидности возникли сложные проблемы, связанные в первую очередь с упругой положительной дивергенцией (а попросту - со скручиванием и последующим разрушением крыла). Продуваемые в сверхзвуковых трубах крылья из алюминиевых и даже стальных сплавов разрушались. Лишь в 1980-х годах появились композитные материалы, позволяющие бороться со скручиванием с помощью специально ориентированной намотки углепластиковых волокон.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распро­страняться не могут, так как там нечему колебаться. При температуре 20 °С она равна 343 м/с, т. е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из автомата Калашни­кова.

В разных газах звук распространяется с разной скоростью. Введите значение единицы (скорость звука в воздухе), которое вы хотите пересчитать. В областях современных технологий и бизнеса выигрывает тот, кто успевает делать все быстро.

СКОРОСТЬ ЗВУКА - скорость распространения в среде упругой волны. Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .

Для многих даже спустя годы после окончания школы остается неизвестным, какова же на самом деле скорость звука в воздухе. Кто-то невнимательно слушал преподавателя, а кто-то просто не до конца понял излагаемый материал. Что ж, быть может, настало время восполнить этот пробел в знаниях. Сегодня мы не просто укажем «сухие» цифры, а поясним сам механизм, определяющий скорость звука в воздухе.

Как известно, воздух представляет собой совокупность различных газов. Немногим более 78% приходится на азот, почти 21% занимает кислород, оставшаяся часть представлена углекислым и Следовательно, речь пойдет о скорости распространения звука в газовой среде.

Сначала давайте определимся, Наверняка многие слышали высказывание «звуковые волны» или «звуковые колебания». Действительно, например, диффузор звуковоспроизводящей колонки колеблется с определенной частотой, которая классифицируется слуховым аппаратом человека как звук. Один из законов физики гласит, что давление в газах и жидкостях распространяется без изменения во всех направлениях. Отсюда следует, что в идеальных условиях скорость звука в газах равномерна. Разумеется, в действительности имеет место ее естественное затухание. Нужно запомнить эту особенность, так как именно она объясняет, почему скорость может изменяться. Но это мы немного отвлеклись от главной темы. Итак, если звук - это колебания, то что именно колеблется?

Любой газ - это совокупность атомов определенной конфигурации. В отличие от твердых тел, между атомами в них относительно большое расстояние (по сравнению, например, с кристаллической решеткой металлов). Можно привести аналогию с горошинами, распределенными по емкости с желеобразной массой. колебаний сообщает импульс движения ближайшим атомам газа. Они в свою очередь, подобно шарам на бильярдном столе, «ударяют» по соседним, и процесс повторяется. Скорость звука в воздухе как раз и определяет интенсивность импульса-первопричины. Но это лишь одна составляющая. Чем плотнее расположены атомы вещества, тем выше скорость распространения звука в нем. К примеру, скорость звука в воздухе почти в 10 раз меньше, чем в монолитном граните. Это очень легко понять: чтобы атом в газе мог «долететь» до соседнего и передать ему энергию импульса, ему необходимо преодолеть определенное расстояние.

Следствие: с увеличением температуры скорость распространения волн повышается. Несмотря на собственная скорость атомов выше, они хаотично двигаются и чаще соударяются. Также верно, что сжатый газ проводит звук намного быстрее, но чемпионом все-таки является сжиженное В расчетах скорости звука в газах учитываются начальная плотность, сжимаемость, температура и коэффициент (газовая постоянная). Собственно, все это следует из вышесказанного.

Все-таки какова скорость звука в воздухе? Многие уже догадались, что невозможно дать однозначный ответ. Приведем лишь некоторые основные данные:

При нуле на нулевой точке (уровень моря) скорость звука составляет около 331 м/с;

Снизив температуру до - 20 градусов Цельсия, можно «замедлить» звуковые волны до 319 м/с, так как изначально атомы в пространстве движутся медленнее;

Повышение же ее до 500 градусов ускоряет распространение звука почти в полтора раза - до 550 м/с.

Однако приведенные данные ориентировочны, так как кроме температуры на способность газов проводить звук влияет также давление, конфигурация пространства (помещение с предметами или открытая площадь), собственная подвижность и т.д.

В настоящее время свойство атмосферы проводить звук активно исследуется. К примеру, один из проектов позволяет посредством регистрации отраженного (эха) определять температуру слоев воздуха.

С какой скоростью движется звук?

Скорость звука зависит от того, в какой среде он распространяется. Так, в воздухе звук движется со скоростью 344 м/c. Однако если температура, давление, влажность воздуха варьируют, то и скорость звука изменяется. Через жидкую среду, например воду, звук проходит со скоростью примерно 1500 м/c. Ещё быстрее звук движется сквозь твёрдые вещества: 2500 м/с – через твёрдые пластмассы, 5000 м/с – через сталь и примерно 6000 м/с – через некоторые виды стекла.

Может ли звук отражаться от предметов так же, как свет?

Звуковые волны отражаются от твёрдых, гладких и плоских поверхностей (стены, двери), как световые волны от зеркала. Если между возвращением отзвука (или отражения) и посылом оригинального звука проходит более 0,1 с, то мы слышим их как два раздельных звука, отражённый звук называется эхом. Если разница во времени между приходом отражённого эха и посылом звука меньше, то они смешиваются. Что увеличивает общую длительность звучания. Данное явление известно как реверберация.

Специальные звукопоглощающие комнаты изнутри полностью покрыты мягкими материалами определённой фактуры. Стены, потолки и пол улавливают почти всю звуковую энергию, и отражения звука не происходит ни в виде эха, ни в виде реверберации. Такие помещения называют глухими комнатами: все звуки в них приглушены.

Охотящиеся киты, например белухи, издают акустические щелчки, похожие на те, что рассылает летучая мышь. Эти импульсы отражаются как эхо, сообщая киту о расположенных рядом объектах.

Измерим звук

Скорость в соответствии с числом Маха

Некоторые самолёты могут летать со скоростью выше скорости звука, по шкале Маха она соответствует числу М=1. Вокруг летящего сверхзвукового самолёта образуется волна сжатия, которая распространяется в виде громкого глубокого глухого удара, известного как звуковой (когда самолёт преодолевает звуковой барьер). Удар мог бы выдать присутствие самолёта-невидимки «Стелс», бомбардировщика Б-2, поэтому такие самолёты обычно летают со скоростью чуть меньше числа М=1.

Крейсерская скорость Б-2 – примерно 700 км/ч.

Число Маха

Скорость звука можно описать по шкале Маха. Единицу измерения представляют в виде сравнительного числа отношения скорости самолёта к скорости звука в определённых условиях. Число Маха названо так по имени австрийского учёного Эрнста Маха (1838-1916).

Скорость звука в воздухе при температуре 20 градусов и стандартном давлении воздуха на уровне моря соответствует примерно 1238 км/ч. Поэтому предмет, двигающийся так же быстро, имеет скорость М=1 в числах Маха.

Очень высоко над землёй, где температура и давление воздуха ниже обычных, скорость звука составляет 1062 км/ч. Поэтому число Маха 1,5 там соответствует 1593 км/ч.

10 дБ – самые тихие звуки, которые может уловить наш слух, например тиканье часов

20 дБ – шёпот

40 дБ – спокойная беседа окружающих людей

50 дБ – телевидение или радио в среднем звуковом диапазоне

60 дБ – достаточно громкая беседа

70 дБ – домашние приборы: пылесос или домашний комбайн

80 дБ – поезд, проезжающий мимо станции

100 дБ – очень шумный станок или отбойный молоток для дорожных работ

120 дБ – взлетающий реактивный самолёт

По шкале децибелов каждый разрыв в 10 дБ означает 10-кратное увеличение энергии. Например, 60 дБ – звук, в десять раз более сильный, чем 50 дБ.

Поделиться