Реакции гидролиза в органической химии. Гидролиз солей

Особое место среди обменных реакций занимает гидролиз. В общем случае гидролиз – это разложение веществ водой. Вода – одно из самых активных веществ. Она действует на самые различные классы соединений: соли, углеводы, белки, эфиры, жиры и т. д. При гидролизе соединений неметаллов обычно образуются две кислоты, например:

PCl 3 + 3 H 2 O = H 3 PO 3 + 3 HCl

При этом изменяется кислотность растворов по сравнению с кислотностью растворителя.

В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды, в результате которого смещается равновесие электролитической диссоциации воды.

Гидролизом соли называется обратимое взаимодействие ионов соли с ионами воды, приводящее к изменению равновесия между ионами водорода и гидроксида в растворе.

Гидролиз является результатом поляризационного взаимодействия ионов соли с их гидратной оболочкой в водном растворе. Чем значительнее это взаимодействие, тем интенсивнее протекает гидролиз. Упрощенно сущность процесса гидролиза можно представить следующим образом.

Катионы К n + связываются в растворе с гидратирующими их молекулами воды донорно-акцепторной связью; донором являются атомы кислорода молекулы воды, имеющие две неподеленные электронные пары, акцептором - катионы, имеющие свободные атомные орбитали. Чем больше заряд катиона и чем меньше его размер, тем значительнее поляризующее действие К n + на Н 2 O.

Анионы Аn‾ связываются с молекулами воды водородной связью. Сильное воздействие анионов может привести к полному отрыву протона от молекулы Н 2 O – водородная связь становится ковалентной. В результате образуется кислота или анион типа HS‾, НСО 3 ‾ и т. п.

Взаимодействие анионов An‾ с протонами тем значительнее, чем больше заряд аниона и меньше его радиус. Таким образом, интенсивность взаимодействия вещества с водой определяется силой поляризующего влияния К n+ и Аn‾ на молекулы Н 2 O. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экранируются d-электронами.

Гидролиз – процесс обратный реакции нейтрализации. Если реакция нейтрализации процесс экзотермический и необратимый, то гидролиз – процесс эндотермический и обратимый.

Реакция нейтрализации:

2 KOH + H 2 SO 3 → K 2 SO 3 + 2 H 2 O

сильный слабый сильный слабый

2 OH‾ + H 2 SO 3 = SO 3 2- + 2 H 2 O

Реакция гидролиза:

K 2 SO 3 + H 2 O ↔ KOH + KHSO 3

SO 3 2- + HOH ↔ HSO 3 ‾ + OH

При гидролизе смещается равновесие диссоциации воды вследствие связывания одного из ее ионов (Н + или ОН -) в слабый электролит соли. При связывании ионов Н + в растворе накапливаются ионы ОН − , реакция среды будет щелочная, а при связывании ионов ОН − накапливаются ионы Н + - среда будет кислая.

Различают четыре варианта действия воды на соли.

1. Если катионы и анионы имеют небольшие заряды и большие размеры, то их поляризующее влияние на молекулы воды невелико, т. е. взаимодействие соли с H 2 O практически не происходит. Это относится к катионам, гидроксиды которых являются щелочами (например, K + и Са 2+) и к анионам сильных кислот (например, Сl‾ и NО 3 ‾). Следовательно, соли, образованные сильным основанием и сильной кислотой, гидролизу не подвергаются . В этом случае равновесие диссоциации воды

H 2 O ↔ H + + OH‾

в присутствии ионов соли практически не нарушается. Поэтому растворы таких солей нейтральны (pH ≈ 7).

2. Если соль образована катионом сильного основания и анионом слабой кислоты (S 2- , CO 3 2- , CN‾ и др.), то происходит гидролиз по аниону . Пример – гидролиз соли СН 3 СООК. Ионы соли СН 3 СОО − и К + взаимодействуют с ионами Н + и ОН − из воды. При этом ацетат-ионы (СН 3 СОО −) связываются с ионами водорода (Н +) в молекулы слабого электролита - уксусной кислоты (CH 3 COOH), а ионы ОН − накапливаются в растворе, сообщая ему щелочную реакцию, так как ионы К + не могут связать ионы ОН − (КОН является сильным электролитом), pH > 7 .

Молекулярное уравнение гидролиза:

СН 3 СООК + H 2 OКОН + СН 3 ООН

Полное ионное уравнение гидролиза:

К + + СН 3 СОО − + НОН K + + ОН − + СН 3 СООН

сокращенное ионное уравнение гидролиза:

СН 3 СОО + Н ОН ОН − + СН 3 СООН

Гидролиз соли Na 2 S протекает ступенчато. Соль образована сильным основанием (NaOH) и слабой двухосновной кислотой (H 2 S). В этом случае анион соли S 2− связывает ионы Н + воды, в растворе накапливаются ионы ОН − . Уравнение в сокращенной ионной и молекулярной форме имеет вид:

I. S 2− + Н ОН ↔ HS + ОН −

Na 2 S + Н 2 О NaHS + NaOH

II. HS + Н ОН H 2 S + ОН −

NaHS + Н 2 О NaOH + H 2 S

Вторая ступень гидролиза практически не проходит при обычных условиях, так как, накапливаясь, ионы ОН − сообщают раствору сильнощелочную реакцию, что приводит к реакции нейтрализации, сдвигу равновесия влево в соответствии с принципом Ле Шателье. Поэтому гидролиз солей, образованных сильным основанием и слабой кислотой, подавляется прибавлением щелочи.

Чем больше поляризующее влияние анионов, тем интенсивнее гидролиз. В соответствии с законом действия масс это означает, что гидролиз протекает тем интенсивнее, чем слабее кислота.

3. Если соль образована катионом слабого основания и анионом сильной кислоты, то происходит гидролиз по катиону . Например, это имеет место при гидролизе соли NH 4 Cl (NH 4 ОH - слабое основание, НСl - сильная кислота). Отбросим ион Сl − , так как он с катионом воды дает сильный электролит, тогда уравнение гидролиза примет следующий вид:

NH 4 + + НОН NH 4 OH + Н + (сокращенное ионное уравнение)

NH 4 Cl + Н 2 О ↔ NH 4 OH + НСl (молекулярное уравнение)

Из сокращенного уравнения видно, что ионы ОН − воды связываются в слабый электролит, ионы Н + накапливаются в растворе и cреда становится кислой (pH < 7). Добавление кислоты к раствору (введение продукта реакции катионов H +) сдвигает равновесие влево.

Гидролиз соли, образованной многокислотным основанием (например, Zn(NO 3) 2) протекает ступенчато по катиону слабого основания.

I. Zn 2+ + НОН ZnOH + + H + (сокращенное ионное уравнение)

Zn(NO 3) 2 + Н 2 О ↔ ZnOHNO 3 + HNO 3 (молекулярное уравнение)

Ионы ОН − связываются в слабое основание ZnOH + , ионы Н + накапливаются.

Вторая ступень гидролиза практически не происходит при обычных условиях , так как в результате накопления ионов H + в растворе создается сильнокислая среда и равновесие реакции гидролиза по 2-ой ступени смещено влево:

II. ZnOH + + НОН Zn (OH ) 2 + H + (сокращенное ионное уравнение)

ZnOHNO 3 + Н 2 О ↔ Zn(OH) 2 + HNO 3 (молекулярное уравнение)

Очевидно, чем слабее основание, тем полнее идет гидролиз.

4. Соль, образованная катионом слабого основания и анионом слабой кислоты, подвергается гидролизу по катиону и по аниону. Примером служит процесс гидролиза соли СН 3 СООNH 4 . Запишем уравнение в ионной форме:

NH 4 + + CH 3 COO − + НОН ↔ NH 4 OH + СН 3 СООН

Гидролиз таких солей протекает очень сильно, поскольку в результате его образуются и слабое основание, и слабая кислота.

Реакция среды в этом случае зависит от сравнительной силы основания и кислоты, т.е. от их констант диссоциации (K Д):

    если K Д (основания) > K Д (кислоты) , то pH > 7;

    если K Д (основания) < K Д (кислоты), то pH < 7.

В случае гидролиза CH 3 COONH 4:

K Д (NH 4 OH) = 1,8·10 -5 ; K Д (CH 3 COOH)=1,8·10 -5 ,

поэтому реакция водного раствора этой соли будет почти нейтральной (pH ≈ 7).

Если основание и кислота, образующие соль, являются не только слабыми электролитами, но и малорастворимы или неустойчивы и разлагаются с образованием летучих продуктов, то в этом случае гидролиз соли протекает по всем ступеням до конца, т.е. до образования слабого труднорастворимого основания и слабой кислоты. В этом случае речь идет о необратимом или полном гидролизе.

Именно полный гидролиз является причиной того, что водные растворы некоторых солей приготовить нельзя, например Сr 2 (CO 3) 3 , Al 2 S 3 и др. Например:

Al 2 S 3 + 6H 2 O → 2Al(OH) 3 ↓ + 3H 2 S

Поэтому сульфид алюминия не может существовать в виде водных растворов, может быть получен только "сухим способом", например, из элементов при высокой температуре:

2Al + 3S – t ° → Al 2 S 3 ,

и должен храниться в герметических сосудах, исключающих попадание влаги.

Реакцией обмена в водном растворе такие соединения нельзя получить. При взаимодействии солей А1 3+ , Сr 3+ и Fe 3+ в растворе с сульфидами и карбонатами в осадок выпадают не сульфиды и карбонаты этих катионов, а их гидроксиды:

2AlCl 3 +3Na 2 S +6Н 2 О → 3Н 2 S + 2Аl(ОН) 3 ↓ +6NaCl

2CrCl 3 + 3Na 2 CO 3 + 3H 2 O → 2Сr(ОН) 3 ↓ + 3СO 2 + 6NaCl

В рассмотренных примерах происходит взаимное усиление гидролиза двух солей (АlСl 3 и Na 2 S или СrСl 3 и Nа 2 СО 3) и реакция идет до конца, так как продукты реакции выделяются из раствора в виде осадка и газа.

Гидролиз солей в ряде случаев может протекать очень сложно. (Простые уравнения реакции гидролиза в общепринятой записи часто являются условными.) Продукты гидролиза можно установить лишь на основании аналитического исследования. К примеру, продуктами гидролиза солей, содержащих многозарядные катионы, могут быть полиядерные комплексы. Так, если в раствоpax Hg 2+ содержатся только одноядерные комплексы, то в растворах Fe 3+ помимо комплексов 2+ и + обнаруживается двухъядерный комплекс 4+ ; в растворах Ве 2+ в основном образуются многоядерные комплексы состава [Ве 3 (OH) 3 ] 3+ ; в растворах Sn 2+ образуются комплексные ионы 2+ , 2+ , + ; в растворах Bi 3+ наряду с [ВiOН] 2+ находятся комплексные ионы состава 6+ . Реакции гидролиза, приводящие к образованию полиядерных комплексов, можно представить следующим образом:

mM k+ + nH 2 О ↔ М m (OН) n (mk - n)+ + nН + ,

где m изменяется от 1 до 9, а n может принимать значения от 1 до 15. Такого рода реакции возможны для катионов более чем 30 элементов. Установлено, что каждому заряду иона в большинстве случаев отвечает определенная форма комплекса. Так, для ионов М 2+ характерна форма димеров 3+ , для ионов М 3+ – 4+ , а для М 4+ – форма 5+ и более сложные, например 8+ .

При высоких температурах и больших значениях рН образуются и оксокомплексы:

2MOH ↔ MOM + H 2 O или

Например,

BiCl 3 + H 2 O « Bi(OH) 2 Cl + 2HCl

Катион Bi(OH) 2 + легко теряет молекулу воды, образуя катион висмутила ВiO + , который с хлорид-ионом дает белый кристаллический осадок:

Bi(OH) 2 Cl ®BiOCl↓ + H 2 O.

Структурно полиядерные комплексы можно представить в виде октаэдров, соединенных между собой по вершине, ребру или грани посредством различных мостиков (О, ОН и др.).

Сложный состав имеют продукты гидролиза карбонатов ряда металлов. Так, при взаимодействии растворимых солей Mg 2+ , Cu 2+ , Zn 2+ , Рb 2+ с карбонатом натрия образуются не средние карбонаты, а менее растворимые гидроксокарбонаты , например Сu 2 (ОН) 2 СО 3 , Zn 5 (ОН) 6 (СО 3) 2 , Рb 3 (ОН) 2 (СО 3) 2 . В качестве примера можно привести реакции:

5MgSO 4 + 5Na 2 CO 3 + Н 2 O → Мg 5 (ОН) 2 (СО 3) 4 ↓ + 5Na 2 SO 4 + СO 2

2Cu(NO 3) 2 + 2Na 2 CO 3 + H 2 O → Cu 2 (OH) 2 CO 3 ↓ + 4NaNO 3 + CO 2

Количественно гидролиз характеризуется степенью гидролиза h и константой гидролиза К Г.

Степень гидролиза показывает, какая часть соли, содержащаяся в растворе (С М), подверглась гидролизу (С Мгид) и рассчитывается как отношение:

h = С М гид / С М (100%).

Очевидно, что для обратимого процесса гидролиза h < 1 (<100%), а для необратимого гидролиза h = 1 (100%). Кроме природы соли, степень гидролиза зависит от концентрации соли и температуры раствора.

В растворах с умеренной концентрацией растворенного вещества степень гидролиза при комнатной температуре обычно невелика. Для солей, образованных сильным основанием и сильной кислотой, она практически равна нулю; для солей, образованных слабым основанием и сильной кислотой или сильным основанием и слабой кислотой, она составляет ≈ 1%. Так, для 0,01 М раствора NH 4 Cl h = 0,01%; для 0,1 н. раствора CH 3 COONH 4 h ≈ 0,5%.

Гидролиз – процесс обратимый, поэтому к нему применим закон действующих масс.

Константа гидролиза есть константа равновесия процесса гидролиза , и по своему физическому смыслу определяет степень необратимости гидролиза. Чем больше К Г, тем необратимее гидролиз. К Г имеет свое выражение для каждого случая гидролиза.

Выведем выражение для константы гидролиза соли слабой кислоты и сильного основания на примере NaCN:

NaCN + H 2 O ↔ NaOH + HCN;

Na + + CN – +H 2 O ↔ Na + + OH – + HCN;

CN – + H 2 O ↔ HCN + OH –

К равн = / .

Имеет наибольшую величину, которая в ходе реакции практически не изменяется, поэтому ее можно условно считать постоянной. Тогда помножив числитель и знаменатель на концентрацию протонов и введя постоянную концентрацию воды в константу, получим:

К равн = K W / К Д(кисл) = K Г

так как / = 1/ К Д(кисл)

Поскольку K W величина постояннаяи равна 10 -14 , очевидно, что чем меньше К Д слабой кислоты, анион которой входит в состав соли, тем больше K Г.

Аналогично, для соли, гидролизующейся по катиону (например NH 4 Cl), получим:

NH 4 + + H 2 O ↔ NH 4 OH + H + (сокращенное уравнение гидролиза)

К равн = /

K Г = К равн = K W / К Д(осн)

В этом выражении числитель и знаменатель дроби умножили на . Очевидно, что чем меньше К Д слабого основания, катион которого входит в состав соли, тем больше K Г.

Если соль образована слабым основанием и слабой кислотой (на примере NH 4 CN), то сокращенное уравнение гидролиза имеет вид:

NH 4 + + CN – + H 2 O ↔ NH 4 OH + HCN

К равн = / ,

В этом выражении для К равн числитель и знаменатель дроби умножаем на ·, поэтому выражение для K Г принимает вид:

K Г = K W / (К Д(кислоты) К Д(осн)).

Как следует из приведенных выражений, константа гидролиза обратно пропорциональна константе диссоциации слабого электролита , участвующего в образовании соли (если в образовании соли участвуют два слабых электролита, то K Г обратно пропорциональна произведению их констант диссоциации).

Рассмотрим гидролиз многозарядного иона. Возьмем Na 2 CO 3 .

I. CO 3 2- + H 2 O « HCO 3 – + OH –

K Г (I) = / × ( / ) = K W / К Д (II) ,

то есть в выражение для константы гидролиза по первой ступени в знаменатель входит вторая константа диссоциации, и для второй ступени гидролиза

    HCO 3 – + H 2 O « H 2 CO 3 + OH –

K Г (II) = / × ( / ) = K W / К Д (I)

K Д (I) = 4×10 -7 K Д (II) = 2.5×10 -8

K Г (II) = 5.6×10 -11 K Г (I) = 1.8×10 -4

Таким образом, K Г(I) >> K Г(II) , константа, а следовательно, и степень первой стадии гидролиза много больше последующих.

Степень гидролиза является величиной аналогичной степени диссоциации. Взаимосвязь степени и константы гидролиза аналогична таковой для степени и константы диссоциации.

Если в общем случае исходную концентрацию аниона слабой кислоты обозначить через С о (моль/л), то С о h (моль/л) – концентрация той части аниона A – , которая подверглась гидролизу и образовалось С о h (моль/л) слабой кислоты HA и С о h (моль/л) гидроксидных групп.

A – + H 2 O ↔ HA + OH – ,

С о -С о h С о h С о h

тогда K Г = / = С о h ·С о h / (С о -С о h ) = С о h 2 / (1-h ).

Приh << 1 K Г = С о h 2 h = √К Д / С о.

Очень похоже на закон разбавления Оствальда.

С о h , получим:

K Г = С о h ·С о h / С о = 2 / С о, откуда

= √К Г ·С о.

Аналогично, можно показать, что при гидролизе по катиону

= √К Г ·С о.

Таким образом, способность солей подвергаться гидролизу зависит от двух факторов:

    свойств ионов, образующих соль;

    внешних факторов.

Как сдвинуть равновесие гидролиза?

1) Добавление одноименных ионов . Поскольку при обратимом гидролизе устанавливается динамическое равновесие, то в соответствии с законом действия масс равновесие можно сместить в ту или иную сторону введением в раствор кислоты или основания. Введение кислоты (катионов Н +) подавляет гидролиз по катиону, добавление щелочи (анионов OH –) подавляет гидролиз по аниону. Этим часто пользуются для усиления или подавления процесса гидролиза.

2) Из формулы для h видно, что разбавление способствует гидролизу . Рост степени гидролиза карбоната натрия

Na 2 CO 3 + НОН ↔ NaHCO 3 + NaOH

при разбавлении раствора иллюстрирует рис. 20.

Рис. 20. Зависимость степени гидролиза Na 2 CO 3 от разбавления при 20°С

3) Повышение температуры способствует гидролизу . Константа диссоциации воды увеличивается при повышении температуры в большей степени, чем константы диссоциации продуктов гидролиза - слабых кислот и оснований, поэтому при нагревании степень гидролиза возрастает. К этому выводу легко прийти и иначе: так как реакция нейтрализации экзотермична (DH= –56 кДж/моль), то гидролиз, будучи противоположным ей процессом, эндотермичен, поэтому в соответствии с принципом Ле Шателье нагревание вызывает усиление гидролиза. Рис. 21 иллюстрирует влияние температуры на гидролиз хлорида хрома (III)

СrСl 3 + НОН ↔ CrOHCl 2 + НСl

Рис. 21. Зависимость степени гидролиза СrСl 3 от температуры

В химической практике весьма распространен гидролиз по катиону солей, образованных многозарядным катионом и однозарядным анионом, например АlС1 3 . В растворах этих солей менее диссоциированное соединение образуется в результате присоединения одного гидроксид-иона к иону металла. Учитывая, что ион Аl 3+ в растворе гидратирован, первую стадию гидролиза можно выразить уравнением

3+ + HOH ↔ 2+ + H 3 O +

При обычной температуре гидролиз солей многозарядных катионов практически ограничивается этой стадией. При нагревании происходит гидролиз по второй ступени:

2+ + HOH ↔ + + H 3 O +

Таким образом, кислая реакция водного раствора соли объясняется тем, что гидратированный катион теряет протон и аквагруппа Н 2 O превращается в гидроксогруппу ОН‾. В рассмотренном процессе могут образоваться и более сложные комплексы, например 3+ , а также комплексные ионы вида 3- и [АlO 2 (ОН) 2 ] 3- . Содержание различных продуктов гидролиза зависит от условий проведения реакции (концентрация раствора, температура, присутствие других веществ). Имеет значение также длительность протекания процесса, так как равновесие при гидролизе солей многозарядных катионов обычно достигается медленно.

Процесс образования слабодиссоциированных соединений с изменением водородного показателя среды при взаимодействии воды и соли называется гидролизом.

Гидролиз солей происходит в случае связывания одного иона воды с образованием труднорастворимых или слабодиссоциированных соединений за счет смещения равновесия диссоциации. По большей части этот процесс является обратимым и при разбавлении или увеличении температуры усиливается.

Чтобы узнать, какие соли подвергаются гидролизу, необходимо знать, какие по силе при ее образовании использовались основания и кислоты. Существует несколько видов их взаимодействий.

Получение соли из основания и кислоты слабой силы

Примерами могут служить сульфид алюминия и хрома, а также аммоний ускуснокислый и карбонат аммония. Данные соли при растворении в воде образуют основания и слабодиссоциирующие кислоты. Чтобы проследить обратимость процесса, необходимо составить уравнение реакции гидролиза солей:

Аммоний уксуснокислый + вода ↔ аммиак + уксусная кислота

В ионном виде процесс выглядит как:

CH 3 COO- + NH 4 + + Н 2 О ↔ CH 3 COOH + NH 4 OH.

В вышеприведенной реакции гидролизации образуются аммиак и уксусная кислота, то есть слабодиссоциирующие вещества.

Водородный показатель водных растворов (рН) напрямую зависит от относительной силы, то есть констант диссоциации продуктов реакции. Приведенная выше реакция будет слабощелочной, так как постоянная распада уксусной кислоты меньше константы гидроокиси аммония, то есть 1,75 ∙ 10 - 5 меньше, чем 6,3 ∙ 10 -5 . Если основания и кислоты удаляются из раствора, тогда процесс происходит до конца.

Рассмотрим пример необратимого гидролиза:

Сульфат алюминия + вода = гидроокись алюминия + сероводород

В этом случае процесс необратим, потому как один из продуктов реакции удаляется, то есть выпадает в осадок.

Гидролиз соединений, полученных взаимодествием слабого основания с сильной кислотой

Этот тип гидролиза описывают реакции разложения сульфата алюминия, хлорида или бромида меди, а также хлорида железа или аммония. Рассмотрим реакцию хлорида железа, которая протекает в две стадии:

Стадия первая:

Хлорид железа + вода ↔ гидроксохлорид железа + соляная кислота

Ионное уравнение гидролиза солей хлорида железа принимает вид:

Fe 2+ + Н 2 О + 2Cl - ↔ Fe(OH) + + Н + + 2Cl -

Вторая стадия гидролиза:

Fe(OH)+ + Н 2 О + Cl - ↔ Fe(OH) 2 + Н + + Cl -

По причине дефицита ионов гидроксогруппы и накапливания ионов водорода гидролиз FeCl 2 протекает по первой стадии. Образуется сильная соляная кислота и слабое основание - гидрокись железа. В случае подобных реакций среда получается кислой.

Негидролизующиеся соли, полученные путем взаимодействия сильных оснований и кислот

Примером таких солей могут быть хлориды кальция или натрия, сульфат калия и бромид рубидия. Однако приведенные вещества не гидролизуются, так как при растворении в воде имеют нейтральную среду. Единственным малодиссоциирующим веществом в этом случае является вода. Для подтверждения этого утверждения можно составить уравнение гидролиза солей хлорида натрия с образованием кислоты соляной и гидроокиси натрия:

NaCl + Н 2 О ↔ NaOH + HCl

Реакция в ионном виде:

Na + + Cl - + Н 2 О↔ Na + + ОН - + Н + + Cl -

Н 2 О ↔ Н + + ОН -

Соли как продукт реакции сильной щелочи и кислоты слабой силы

В данном случае гидролиз солей протекает по аниону, что соответствует щелочной среде водородного показателя. В качестве примеров можно назвать ацетат, сульфат и карбонат натрия, силикат и сульфат калия, а также натриевую соль синильной кислоты. Например, составим ионно-молекулярные уравнения гидролиза солей сульфида и ацетата натрия:

Диссоциация сульфида натрия:

Na 2 S ↔ 2Na + + S 2-

Первая стадия гидролиза многоосновной соли, происходит по катиону:

Na 2 S + Н 2 О ↔ NaH S + NaOH

Запись в ионном виде:

S 2- + Н 2 О ↔ HS - + ОН -

Вторая ступень осуществима в случае повышения температуры реакции:

HS - + Н 2 О ↔ H 2 S + ОН -

Рассмотрим еще одну реакцию гидролиза на примере натрия уксуснокислого:

Натрий уксуснокислый + вода ↔ уксусная кислота + едкий натр.

В ионном виде:

CH 3 COO - + Н 2 О ↔ CH 3 COOH + ОН -

В результате реакции образуется слабая уксусная кислота. В обоих случаях реакции будут иметь щелочную среду.

Равновесие реакции по принципу Ле-Шателье

Гидролиз, как и остальные химические реакции, бывает обратимым и необратимым. В случае обратимых реакций один из реагентов расходуется не весь, в то время как необратимые процессы протекают с полным расходом вещества. Это связано со смещением равновесия реакций, которое основано на изменении физических характеристик, таких как давление, температура и массовая доля реагентов.

Согласно понятию принципа Ле-Шателье, система будет считаться равновесной до тех пор, пока на нее не будет изменено одно или несколько внешних условий протекания процесса. К примеру, при уменьшении концентрации одного из веществ равновесие системы постепенно начнет смещаться в сторону образования этого же реагента. Гидролиз солей также имеет способность подчиняться принципу Ле-Шателье, с помощью которого можно ослабить или усилить протекание процесса.

Усиление гидролиза

Гидролиз можно усилить до полной необратимости несколькими способами:

  • Повысить скорость образования ионов ОН - и Н + . Для этого нагревают раствор, и за счет увеличения поглощения теплоты водой, то есть эндотермической диссоциации, этот показатель повышается.
  • Прибавить воды.
  • Перевести один из продуктов в газообразное состояние либо связать в тяжело растворимое вещество.

Подавление гидролиза

Подавить процесс гидролизации, так же как и усилить, можно несколькими способами.

Ввести в раствор один из образующихся в процессе веществ. Например, подщелачивать раствор, в случае если рН˃7, или же наоборот подкислять, где реакционная среда меньше 7 по водородному показателю.

Взаимное усиление гидролиза

Взаимное усиление гидролизации применяется в том случае, если система стала равновесной. Разберем конкретный пример, где системы в разных сосудах стали равновесны:

Al 3+ + Н 2 О ↔ AlOH 2+ + Н +

СО 3 2- + Н 2 О ↔ НСО 3 - + ОН -

Обе системы мало гидролизованы, поэтому, если смешать их друг с другом, произойдет связывание гидроксоинов и ионов водорода. В результате получим молекулярное уравнение гидролиза солей:

Хлорид алюминия + карбонат натрия + вода = хлорид натрия + гидроокись алюминия + диоксид углерода.

По принипу Ле-Шателье равновесие системы перейдет в сторону продуктов реакции, а гидролиз пройдет до конца с образованием гидроксида алюминия, выпавшего в осадок. Такое усиление процесса возможно лишь в том случае, если одна из реакций протекает по аниону, а другая по катиону.

Гидролиз по аниону

Гидролиз водных растворов солей осуществляется за счет соединения их ионов с молекулами воды. Один из способов гидролизации производится по аниону, то есть прибавление водного иона Н + .

В большинстве своем этому способу гидролиза подвержены соли, которые образуются посредством взаимодействия сильного гидроксида и слабой кислоты. Примером солей, разлагающихся по аниону, может выступать сульфат или сульфит натрия, а также карбонат или фосфат калия. Водородный показатель при этом более семи. В качестве примера разберем диссоциацию натрия уксуснокислого:

В растворе это соединение разделяется на катион - Na + , и анион - СН 3 СОО - .

Катион диссоциированного натрия уксуснокислого, образованный сильным основанием, не может вступить в реакцию с водой.

При этом анионы кислоты с легкостью реагируют с молекулами Н 2 О:

СН 3 СОО - + НОН = СН 3 СООН +ОН -

Следовательно, гидролизация осуществляется по аниону, и уравнение принимает вид:

CH3COONa + НОН = СН 3 СООН + NaOH

В случае, если гидролизу подвергаются многоосновные кислоты, процесс происходит в несколько стадий. В нормальных условиях подобные вещества гидролизуются по первой стадии.

Гидролиз по катиону

Катионному гидролизу в основном подвержены соли, образованные путем взаимодействия сильной кислоты и основания малой силы. Примером служит бромид аммония, нитрат меди, а также хлорид цинка. При этом среда в растворе при гидролизации соответствует менее семи. Рассмотрим процесс гидролиза по катиону на примере хлорида алюминия:

В водном растворе он диссоциирует на анион - 3Cl - и катион - Al 3+ .

Ионы сильной хлороводородной кислоты не взаимодействуют с водой.

Ионы (катионы) основания, напротив, подвержены гидролизу:

Al 3+ + НОН = AlOH 2+ + Н +

В молекулярном виде гидролизация хлорида алюминия выглядит следующим образом:

AlCl3 + Н 2 О = AlOHCl + HCl

При нормальных условиях предпочтительно пренебрегать гидролизацией по второй и третьей ступени.

Степень диссоциации

Любая реакция гидролиза солей характеризуется степенью диссоциации, которая показывает отношение между общим числом молекул и молекулами, способными переходить в ионное состояние. Степень диссоциации характеризуется несколькими показателями:

  • Температура, при которой осуществляется гидролиз.
  • Концентрация диссоциируемого раствора.
  • Происхождение растворяемой соли.
  • Природа самого растворителя.

По степени диссоциации все растворы делятся на сильные и слабые электролиты, которые, в свою очередь, при растворении в различных растворителях проявляют разную степень.


Константа диссоциации

Количественным показателем возможности вещества распадаться на ионы является константа диссоциации, также называемая константой равновесия. Говоря простым языком, постоянная равновесия есть отношение разложившихся на ионы электролитов к непродиссоциированным молекулам.

В отличие от степени диссоциации, этот параметр не зависит от внешних условий и концентрации солевого раствора в процессе гидролизации. При диссоциации многоосновных кислот степень диссоциации на каждой ступени становится на порядок меньше.

Показатель кислотно-основных свойств растворов

Водородный показатель или рН - мера для определения кислотно-основных свойств раствора. Вода в ограниченном количестве диссоциирует на ионы и является слабым электролитом. При расчете водородного показателя используют формулу, которая является отрицательным десятичным логарифмом скопления водородных ионов в растворах:

рН = -lg[Н + ]

  • Для щелочной среды этот показатель будет равен более семи. Например, [Н + ] = 10 -8 моль/л, тогда рН = -lg = 8, то есть рН ˃ 7.
  • Для кислой среды, напротив, водородный показатель должен быть менее семи. Например, [Н + ] = 10 -4 моль/л, тогда рН = -lg = 4, то есть рН ˂ 7.
  • Для нейтральной среды, рН = 7.

Очень часто для определения рН-растворов используют экспресс-метод по индикаторам, которые, в зависимости от рН, меняют свой цвет. Для более точного определения пользуются иономерами и рН-метрами.

Количественные характеристики гидролиза

Гидролиз солей, как и любой другой химический процесс, имеет ряд характеристик, в соответствии с которыми протекание процесса становится возможным. К наиболее значимым количественным характеристикам относится константа и степень гидролиза. Остановимся подробнее на каждом из них.

Степень гидролиза

Чтобы узнать, какие соли подвергаются гидролизу и в каком количестве, используют количественный показатель - степень гидролиза, который характеризует полноту протекания гидролизации. Степенью гидролиза называют часть вещества от общего количества молекул, способного к гидролизации, записывается в процентном соотношении:

h = n/N∙ 100%,

где степень гидролиза - h;

количество частиц соли, подвергнутых гидролизации - n;

общая сумма молекул соли, участвующих в реакции - N.

К факторам, влияющим на степень гидролизации, относятся:

  • постоянная гидролизации;
  • температура, при повышении которой степень возрастает за счет усиления взаимодействия ионов;
  • концентрация соли в растворе.

Константа гидролиза

Она является второй по значимости количественной характеристикой. В общем виде уравнения гидролиза солей можно записать как:

МА + НОН ↔ МОН + НА

Отсюда следует, что константа равновесия и концетрация воды в одном и том же растворе есть величины постоянные. Соответственно, произведение этих двух показателей будет также постоянной величиной, что и означает константу гидролиза. В общем виде Кг можно записать, как:

Кг = ([НА]∙[МОН])/[МА],

где НА - кислота,

МОН - основание.

В физическом смысле константа гидролиза описывает способность определенной соли подвергаться процессу гидролизации. Этот параметр зависит от природы вещества и его концентрации.

Исследуем действие универсального индикатора на растворы некоторых солей

Как мы видим, среда первого раствора — нейтральная (рН=7), второго — кислая (рН < 7), третьего щелочная (рН > 7). Чем же объяснить столь интересный факт? 🙂

Для начала, давайте вспомним, что такое pH и от чего он зависит.

pH- водородный показатель, мера концентрации ионов водорода в растворе (по первым буквам латинских слов potentia hydrogeni - сила водорода).

pH вычисляется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на один литр:

В чистой воде при 25 °C концентрации ионов водорода и гидроксид-ионов одинаковы и составляют 10 -7 моль/л (рН=7).

Когда концентрации обоих видов ионов в растворе одинаковы, раствор имеет нейтральную реакцию. Когда > раствор является кислым, а при > - щелочным.

За счет чего же в некоторых водных растворах солей происходит нарушение равенства концентраций ионов водорода и гидроксид-ионов?

Дело в том, что происходит смещение равновесия диссоциации воды вследствие связывания одного из ее ионов ( или ) с ионами соли с образованием малодиссоциированного, труднорастворимого или летучего продукта. Это и есть суть гидролиза.

— это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита -кислоты (или кислой соли), или основания (или основной соли).

Слово «гидролиз» означает разложение водой («гидро»-вода, «лизис» — разложение).

В зависимости от того какой ион соли вступает во взаимодействие с водой, различают три типа гидролиза:

  1. žгидролиз по катиону (в реакцию с водой вступает только катион);
  2. žгидролиз по аниону (в реакцию с водой вступает только анион);
  3. žсовместный гидролиз — гидролиз по катиону и по аниону (в реакцию с водой вступает и катион, и анион).

Любую соль можно рассматривать как продукт, образованный взаимодействием основания и кислоты:


Гидролиз соли – взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа.

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:
1) диссоциация соли в растворе – необратимая реакция (степень диссоциации, или 100%);
2) собственно , т.е. взаимодействие ионов соли с водой, — обратимая реакция (степень гидролиза ˂ 1, или 100%)
Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!
Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей KCl, NaNO 3 , NaSO 4 и BaI среда нейтральная .

Гидролиз по аниону

В случае взаимодействия анионов растворенной соли с водой процесс называется гидролизом соли по аниону .
1) KNO 2 = K + + NO 2 — (диссоциация)
2) NO 2 — + H 2 O ↔ HNO 2 + OH — (гидролиз)
Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1 М раствора – на 0,0014%), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион OH —), в нем p H = 8,14.
Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:
NO 2 — + H 2 O (H +, OH —) ↔ HNO 2 + OH —
Примеры:
а) NaClO = Na + + ClO —
ClO — + H 2 O ↔ HClO + OH —
б) LiCN = Li + + CN —
CN — + H 2 O ↔ HCN + OH —
в) Na 2 CO 3 = 2Na + + CO 3 2-
CO 3 2- + H 2 O ↔ HCO 3 — + OH —
г) K 3 PO 4 = 3K + + PO 4 3-
PO 4 3- + H 2 O ↔ HPO 4 2- + OH —
д) BaS = Ba 2+ + S 2-
S 2- + H 2 O ↔ HS — + OH —
Обратите внимание, что в примерах (в- д) нельзя увеличить число молекул воды и вместо гидроанионов (HCO 3, HPO 4, HS) писать формулы соответствующих кислот (H 2 CO 3, H 3 PO 4, H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты) он не может.
Если бы такая неустойчивая кислота, как H 2 CO 3 , образовывалась в растворе своей соли NaCO 3 , то наблюдалось бы выделение из раствора газа CO 2 (H 2 CO 3 = CO 2 + H 2 O). Однако, при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона с появлением в растворе только гидранионов угольной кислоты HCO 3 — .
Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты. Чем слабее кислота, тем выше степень гидролиза. Например, ионы CO 3 2- , PO 4 3- и S 2- подвергаются гидролизу в большей степени, чем ион NO 2 , так как диссоциация H 2 CO 3 и H 2 S по 2-й ступени, а H 3 PO 4 по 3-тей ступени протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , K 3 PO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости соды на ощупь).

Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).
Если в концентрированный раствор сильно гидролизующейся по аниону соли,
например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует со щелочью и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза, ведь в раствор соды мы не добавляли щелочь NaOH!

Обратите особое внимание на соли кислот средней силы — ортофосфорной и сернистой. По первой ступени эти кислоты диссоциируют довольно хорошо, поэтому их кислые соли гидролизу не подвергаются, и среда раствора таких солей — кислая (из-за наличия катиона водорода в составе соли). А средние соли гидролизуются по аниону — среда щелочная. Итак, гидросульфиты, гидрофосфаты и дигидрофосфаты — не гидролизуются по аниону, среда кислая. Сульфиты и фосфаты — гидролизуются по аниону, среда щелочная.

Гидролиз по катиону

В случае взаимодействия катиона растворенной соли с водой процесс называется
гидролизом соли по катиону

1) Ni(NO 3) 2 = Ni 2+ + 2NO 3 − (диссоциация)
2) Ni 2+ + H 2 O ↔ NiOH + + H + (гидролиз)

Диссоциация соли Ni(NO 3) 2 протекает нацело, гидролиз катиона Ni 2+ − в очень малой степени (для 0,1М раствора − на 0,001%), но этого оказывается достаточно, чтобы среда стала кислотной (среди продуктов гидролиза присутствует ион H +).

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Катион металла отщепляет от молекулы воды гидроксид-ион и освобождает катион водорода H + .

Катион аммония в результате гидролиза образует слабое основание − гидрат аммиака и катион водорода:

NH 4 + + H 2 O ↔ NH 3 · H 2 O + H +

Обратите внимание, что нельзя увеличивать число молекул воды и вместо гидроксокатионов (например, NiOH +) писать формулы гидроксидов (например, Ni(OH) 2). Если бы гидроксиды образовались, то из растворов солей выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).
Избыток катионов водорода легко обнаружить индикатором или измерить специальными приборами. В концентрированный раствор сильно гидролизующейся по катиону соли, вносится магний или цинк, то последние реагируют с кислотой с выделением водорода.

Если соль нерастворимая — то гидролиза нет, т.к ионы не взаимодействуют с водой.

Гидролизом
называют
реакции
обменного
взаимодействия
вещества с водой, приводящие к их
разложению.

Особенности

Гидролиз органических
веществ
Живые организмы осуществляют
гидролиз различных органических
веществ в ходе реакций при
участии ФЕРМЕНТОВ.
Например, в ходе гидролиза при
участии пищеварительных
ферментов БЕЛКИ расщепляются
на АМИНОКИСЛОТЫ,
ЖИРЫ - на ГЛИЦЕРИН и
ЖИРНЫЕ КИСЛОТЫ,
ПОЛИСАХАРИДЫ (например,
крахмал и целлюлоза) - на
МОНОСАХАРИДЫ (например, на
ГЛЮКОЗУ), НУКЛЕИНОВЫЕ
КИСЛОТЫ - на свободные
НУКЛЕОТИДЫ.
При гидролизе жиров в
присутствии щёлочей
получают мыло; гидролиз
жиров в присутствии
катализаторов применяется
для получения глицерина и
жирных кислот. Гидролизом
древесины получают этанол, а
продукты гидролиза торфа
находят применение в
производстве кормовых
дрожжей, воска, удобрений и
др.

Гидролиз органических соединений

жиры гидролизуются с получением глицерина и
карбоновых кислот (с NaOH – омыление).
крахмал и целлюлоза гидролизуются до
глюкозы:

Обратимый и необратимый гидролиз

Почти все реакции гидролиза
органических веществ
обратимы. Но есть и
необратимый гидролиз.
Общее свойство необратимого
гидролиза - один (лучше оба)
из продуктов гидролиза должен
быть удален из сферы реакции
в виде:
- ОСАДКА,
- ГАЗА.
СаС₂ + 2Н₂О = Са(ОН)₂↓ + С₂Н₂
При гидролизе солей:
Al₄C₃ + 12 H₂O = 4 Al(OH)₃↓ + 3CH₄
Al₂S₃ + 6 H₂O = 2 Al(OH)₃↓ + 3 H₂S
CaH₂ + 2 H₂O = 2Ca(OH)₂↓ + H₂

Г И Д Р О Л И З С О Л Е Й

ГИДРОЛИЗ СОЛЕЙ
Гидролиз солей -
разновидность реакций
гидролиза, обусловленного
протеканием реакций
ионного обмена в растворах
(водных) растворимых
солей-электролитов.
Движущей силой процесса
является взаимодействие
ионов с водой, приводящее к
образованию слабого
электролита в ионном или
молекулярном виде
(«связывание ионов»).
Различают обратимый и
необратимый гидролиз солей.
1. Гидролиз соли слабой
кислоты и сильного основания
(гидролиз по аниону).
2. Гидролиз соли сильной
кислоты и слабого основания
(гидролиз по катиону).
3. Гидролиз соли слабой
кислоты и слабого основания
(необратимый).
Соль сильной кислоты и
сильного основания не
подвергается гидролизу.

Уравнения реакций

Гидролиз соли слабой кислоты и сильного основания
(гидролиз по аниону):
(раствор имеет щелочную среду, реакция протекает
обратимо, гидролиз по второй ступени протекает в
ничтожной степени).
Гидролиз соли сильной кислоты и слабого основания
(гидролиз по катиону):
(раствор имеет кислую среду, реакция протекает обратимо,
гидролиз по второй ступени протекает в ничтожной
степени).

10.

Гидролиз соли слабой кислоты и слабого основания:
(равновесие смещено в сторону продуктов, гидролиз
протекает практически полностью, так как оба продукта
реакции уходят из зоны реакции в виде осадка или
газа).
Соль сильной кислоты и сильного основания не
подвергает- ся гидролизу, и раствор нейтрален.

11. СХЕМА ГИДРОЛИЗА КАРБОНАТА НАТРИЯ

Na₂CO₃
NaOH
сильное основание
H₂CO₃
слабая кислота
ЩЕЛОЧНАЯ СРЕДА
СОЛЬ КИСЛАЯ, гидролиз по
АНИОНУ

12. СХЕМА ГИДРОЛИЗА ХЛОРИДА МЕДИ (II)

CuCl₂
Cu(OH)₂↓
слабое основание
HCl
сильная кислота
КИСЛАЯ СРЕДА
СОЛЬ ОСНОВНАЯ, гидролиз по
КАТИОНУ

13. СХЕМА ГИДРОЛИЗА СУЛЬФИДА АЛЮМИНИЯ

Al₂S₃
Al(OH)₃↓
слабое основание
H₂S
слабая кислота
НЕЙТРАЛЬНАЯ РЕАКЦИЯ
СРЕДЫ
гидролиз необратимый

14.

РОЛЬ ГИДРОЛИЗА В ПРИРОДЕ
Преобразование земной коры
Обеспечение слабощелочной среды морской
воды
РОЛЬ ГИДРОЛИЗА В ЖИЗНИ
ЧЕЛОВЕКА
Стирка
Мытье посуды
Умывание с мылом
Процессы пищеварения
Поделиться