Метод триангуляции. Методы создания государственной геодезической сети Метод триангуляции для чего нужен

Триангуляционные сети в инженерно-геодезических работах используются в качестве основы для топографических съемок и раз-бивочных работ, а также для наблюдений за деформациями сооружений.

Для съемочных работ триангуляционная сеть позволяет сократить длины развиваемых на ее основе сетей сгущения и способствует уменьшению погрешностей в сетях низших разрядов и съемочных сетях. Выбор класса сети дня этой цели определяется в основном площадью съемки. Так, для крупнейших городов применяется триангуляция до 2-го класса включительно. В большинстве случаев исходным обоснованием для съемочных работ служит триангуляция 4-го класса. Триангуляция используется и для построения сетей сгущения 1-го и 2-го разрядов.

Для разбивочных работ триангуляция может служить непосредственной основой, с пунктов которой производится разбивка сооружений, или опорой для развития сетей низших разрядов, в свою очередь используемых для разбивки. Примером может служить триангуляция для строительства гидротехнических сооружений, тоннелей, мостов.

Из приведенных таблиц следует, что характеристики специальных триангуляций отличаются от государственных в основном длинами сторон, причем в сторону уменьшения. Это обстоятельство неизбежно приводит к повышению требований к отдельным измерительным операциям, таким как центрирование теодолита и визирных целей при угловых измерениях и т. п.

Особенностью разбивочной триангуляции является необходимость соблюдения точностных требований во взаимном положении смежных пунктов или пунктов, разделенных двумя-тремя сторонами. Это требование обусловлено тем, что с пунктов сети требуется вынести в натуру систему точек, как правило, принадлежащих единому сооружению или единому комплексу сооружений, связанных конструктивно или технологически.

Триангуляционные сети, предназначенные для наблюдений за плановыми смещениями сооружений, чаще всего применяются на крупных гидротехнических объектах. В основном они используются для измерения смещений недоступных точек и контроля устойчивости исходных опорных пунктов других построений. Характерной особенностью триангуляционных сетей для этого вида работ являются высокие требования к точности определения координат пунктов (2...5 мм) при небольших длинах сторон.

При развитии инженерно-геодезических сетей методом триангуляции наиболее типичными построениями являются: цепи треугольников (для линейно протяженных объектов), центральные системы (для городских и промышленных территорий), геодезические четырехугольники (для мостовых и гидротехнических сооружений), вставки пунктов в треугольники и небольшие сети из этих фигур. Возможны и комбинированные построения.

В сетях триангуляции треугольники стараются проектировать близкими к равносторонним; в особых случаях острые углы допускают до 20°, а тупые - до 140°. В свободных сетях для контроля масштаба сети необходимо иметь не менее двух непосредственно измеренных базисных сторон.

Уравнивание результатов измерений выполняют строгими способами.

При разработке проектов триангуляционных сетей расчет ожидаемой точности производят, как правило, на ЭВМ, используя различные программы.

Известно, что триангуляция как геодезический термин означает способ создания геодезических сетей . Да, это так. Но следует начать с другого.

Изначально с возникновением потребности человека в познании, обычное мышление приводит его к накоплению определенного багажа знаний. С развитием научного мышления все эти знания систематизируются, в том числе разъясняются на основе фактов, явлений и доказательств. Применяя теоретические предположения на практике, возникают своего рода критерии истины. То есть имеют ли подтверждения практическим путем все те предположения, которые с помощью определенных способов дают конкретный результат. Пожалуй, одним из таких научных методов, решающих задачу по высокоточному измерению больших расстояний между пунктами на земной поверхности с построением примыкающих друг к другу треугольников и измерений внутри них стал способ триангуляции.

Первым кто изобрел и применил метод триангуляции (1614-1616), был великий голландский ученый Виллеброрд Снелл (Снеллиус). В те годы уже были предположения о том, что Земля является планетой в космическом пространстве и имеет форму сферы (из космологии Джордано Бруно 1548-1600). Установление точных размеров планеты имело большое практическое значение по ее освоению в дальнейшем. Вот для этого в Нидерландах через постройку ряда треугольников были впервые выполнены градусные измерения дуги меридиана способом триангуляции. Что имеется ввиду. Выполнив измерения между жесткими геодезическими пунктами с разностью широт между ними в один градус (у Снеллиуса 1º11´30") способом триангуляции и получив конкретное расстояние дуги, голландский математик обычным расчетом мог получить длину всей окружности меридиана. Очевидно, что вычислить радиус Земли, приняв ее фигуру за форму шара (эллипса), оставалось делом техники.

В завершение исторического экскурса можно выделить взаимосвязанность и выборность научных познаний для будущего практического применения человеком. И не удивительно, что изобретение способа триангуляции произошло именно в Нидерландах, которые на тот момент считались ведущей морской державой с потребностью новых познаний в навигации, географии, астрономии и конечно геодезии .

Сущность метода

Триангуляция заключается в определении пространственного местоположения специально закрепленных на местности геодезических пунктов в вершинах целого ряда треугольников. Изначально, с высокой степенью точности (до долей секунд) определяют азимуты исходных направлений ab , ba , mn , nm (рис.1.Триангуляционный ряд треугольников по меридиану). Следующим этапом будет определение астрономических координат (широты и долготы) в пунктах измерений азимутов двух исходных базисов. В каждой паре жестких сторон (ab , mn ) координаты измеряются только в одной точке, например a , m (рис.1). При этом следует обратить особое внимание на определение астрономических широт в ряду треугольников, расположенных по направлению меридианов. При измерениях в треугольниках, сформированных вдоль параллелей, необходимо уделить должное внимание определению астрономических долгот. Далее производят измерения длин двух базисных сторон (ab , mn ). Эти стороны имеют сравнительно не большие длины (порядка 8-10 км). Поэтому их измерения более экономичные и точные относительно сторон cd , tq , составляющих расстояния от 30 до 40 км. В следующую очередь выполняется переход от базисов ab , mn через угловые измерения в ромбах abcd и mntq к сторонам cd , tq . А затем последовательно практически в каждой вершине треугольников cde , def , efg и других измеряются горизонтальные углы до примыкания к следующей основной стороне tq всего ряда треугольников. Через измеренные углы треугольника с измеренной базисной или вычисленной основной стороной последовательно вычисляются все другие стороны, их азимуты и координаты вершин треугольников.

Рис.1. Триангуляционный ряд треугольников по меридиану.

Триангуляционные сети

После первого применения градусного измерения дуги Снеллиусом триангуляционный метод становится основным способом в геодезических высокоточных измерениях. С XIX века, когда триангуляционные работы стали более совершенными с его помощью стали формироваться целые геодезические сети , строящиеся вдоль параллелей и меридианов. Самая знаменитая из всех известна под наименованием геодезической меридианной дуги Струве и Теннера (1816-1852) в последствие зачислена в мировое наследие по ЮНЕСКО. Ее триангуляционный ряд протянулся по Норвегии, Швеции, Финляндии и России от Северного Ледовитого океана до Черного моря в устье Дуная и составил дугу в 25º20´(рис.2).

Рис.2.

За основу геодезических сетей триангуляции в нашей стране принята схема профессора Ф.Н.Красовского (рис.3). Ее суть заключается в применении принципа построений от общего к частному. Изначально закладываются вдоль меридианов и параллелей пункты, образующие ряды треугольников протяженностью в пределах 200-240 км. Длины сторон в самих треугольниках составляют 25-40км. Все астрономические измерения азимутов, координат (широт и долгот) выходных точек на пунктах Лапласа (1) и промежуточных астрономических точках (2), высокоточные базисные (3) геодезические измерения и в каждой точке этой цепи должно соответствовать установленным требованиям I класса точности (рис.3). Замкнутый полигон из четырех триангуляционных рядов представляет собой фигуру, напоминающую квадрат с периметром равным ориентировочно около 800 км. Через центральные части первоклассных рядов триангуляции устраиваются в направлении друг к другу основные ряды триангуляционной сети II класса (рис.3) соответствующей точности. Базисные длины сторон в этих рядах не измеряются, а принимаются базисы со сторон триангуляции I класса. Аналогично отсутствуют и астрономические пункты. Возникшие четыре пространства заполняются сплошными триангуляционными сетями и II, и III классов.

Рис.3.Государственные сети триангуляции.

Безусловно описанная схема развития сетей триангуляции по Красовскому не может закрыть всю территорию страны ввиду понятных причин больших лесных и не заселенных территорий страны. Поэтому с запада на восток вдоль параллелей были проложены отдельные ряды первоклассной триангуляции и полигонометрии , а не сплошная триангуляционная сеть.

Достоинства триангуляции

В развитии геодезической науки и ее практического применения очевидны достоинства триангуляционного способа измерений. С помощью этого универсального метода возможно:

  • определение положения геодезических точек на значительно удаленных расстояниях;
  • выполнение основных работ по строительству геодезических сетей на всей территории страны;
  • обеспечение основой всех топографических съемок ;
  • выстраивание через основные геодезические работы различных систем координат ;
  • производство инженерных и изыскательских работ;
  • периодическое определение размеров Земли;
  • изучение перемещений земной поверхности.

Ф.Н. Красовский разработал фундаментальную программу построения государственной триангуляции в СССР, которая была опубликована в 1928 г. В 1939 г. она нашла отражение в Основных положениях о построении опорной геодезической сети СССР. Согласно этой программе государственная триангуляция создавалась по принципу перехода от общего к частному (рис. 1.6 ), состояла из:

  • рядов триангуляции (астрономо-геодезической сети) 1-го класса длиной 200-250 км, прокладываемых примерно вдоль параллелей и меридианов;
  • основных рядов триангуляции 2-го класса длиной 100-120 км;
  • заполняющей сети 2-го класса, сети 3-го класса и определяемых засечками пунктов 4-го класса.

Рис. 1.6 . Схема Ф.Н. Красовского государственной триангуляции: 1 - пункт Лапласа; 2 - промежуточный астропункт; 3 - базис

На пересечениях рядов 1-го класса определяли длину и азимут выходных сторон триангуляции. Длины выходных сторон находили путем построения базисных сетей, в которых измеряли все углы и базис (проволоками) длиной 6-8 км; углы против базиса должны быть не менее 36°. Базисы измеряли с относительной средней квадратической ошибкой не более 1:500 000, а длины сторон определяли с ошибкой не более 1:300 000.

На концах выходных сторон - пунктах Лапласа 1 - определяли астрономические широты φ, долготы λ и азимуты α. В каждом звене триангуляции 1-го класса (звеном называют часть триангуляции 1-го класса между соседними выходными сторонами) кроме пунктов Лапласа через 70-100 км устанавливали промежуточные астрономические пункты 2, на которых измеряли φ и λ.

В 1932 г. начали выполнять общую гравиметрическую съемку территории СССР. Гравиметрические измерения по специальной программе стали выполнять при создании астрономо-геодезической сети. Совместное использование геодезических, астрономических и гравиметрических измерений позволяет вычислить астрономо-геодезические уклонения отвесных линий, детально изучить форму Земли и математически строго редуцировать результаты геодезических измерений с поверхности Земли на поверхность референц-эллипсоида.

Каждый полигон 1-го класса делился на четыре части основными рядами 2-го класса (см. рис. 1.6), в пересечении рядов строилась базисная 3 сеть для определения выходной стороны, на концах которой размещали пункты Лапласа для определения φ, λ, α.

Топографические съемки в масштабах 1:5000, 1: 2000 для удовлетворения потребностей различных отраслей народного хозяйства СССР привели в конце 40-х гг. к необходимости увеличить плотность и точность государственных геодезических сетей. Проект новой программы был опубликован для обсуждения в 1948 г. В 1954 г. были утверждены «Основные положения о государственной геодезической сети СССР» (сокращенно - Положения 1954 г.). В 1961 г. в Положения 1954 г. внесены изменения и дополнения в связи с применением высокоточных свето- и радиодальномеров. Действующая в настоящее время программа изложена в Основных положениях 1954-1961 гг., на ее основе в 1966 г. издана Инструкция о построении государственной геодезической сети СССР.

Общим в новой и старой программах является соблюдение принципа перехода от общего к частному. Государственная геодезическая сеть (ГГС) России является главной геодезической основой топографических съемок всех масштабов, должна удовлетворять требованиям народного хозяйства и обороны страны при решении соответствующих научных и инженерно-технических задач. ГГС создается методами триангуляции, полигонометрии, трилате-рации и их сочетаниями, позволяющими при прочих равных условиях обеспечивать требуемую точность и наибольшую экономическую эффективность.

ГГС подразделяют на сети 1, 2, 3 и 4-го классов. Астрономо-геодезическая сеть (АГС) 1 класса создается полигонами длиной около 800 км, длина звена 200 км, используется для научных исследований по изучению формы и размеров Земли, ее внешнего гравитационного поля и для распространения единой системы координат на всю территорию страны. Геодезические сети 2-го класса являются основой для создания сетей 3-го и 4-го классов.

Астрономо-геодезическая сеть

Схема построения АГС по Основным положениям 1954-1961 гг. приведена на рисунке 1.7 . В таблице 1 приведены основные характеристики ГГС, построенных по Основным положениям 1939 г. и по Основным положениям 1954-1961 гг. ...

Геодезические сети 2-го класса

Геодезические сети 2-го класса в основном являются сплошной сетью треугольников, заполняющих полигоны АГС 1-го класса. Базисные стороны размещают равномерно не более чем через 25 треугольников, одна из базисных сторон должна быть примерно в середине полигона 1-го класса, на концах этой стороны определяют пункты Лапласа. При экономической целесообразности сети 2-го класса могут создаваться полигонометрическими ходами, образующими сплошную сеть замкнутых полигонов с равномерным расположением пунктов внутри полигона 1-го класса. Возможно комбинирование триангуляции и полигонометрии.

Геодезические сети 3 и 4-го классов

Сети 3 и 4-го классов сгущают до требуемой плотности сети 2-го класса, они могут создаваться методами триангуляции, полигонометрии и трилатерации. Выбирают тот метод, который при обеспечении требуемой точности дает наибольшую экономическую эффективность. Характеристика этих сетей приведена в таблице 1. При использовании метода полигонометрии между узловыми и исходными пунктами допускается не более двух точек поворота. При расстоянии между ходами менее 4 км в сети 3-го класса и менее 3 км в сети 4-го класса их необходимо связывать между собой, т. е. прокладывать между ними ход.

На всех пунктах ГГС 1-4-го классов устанавливают два ориентирных пункта (ОРП) с подземными центрами, расстояния до ОРП 0,5-1,0 км (в лесу не менее 250 м). ОРП должны быть видны в теодолит, установленный на штативе над центром знака. За один из ориентирных пунктов можно принимать хорошо видимый с земли геодезический пункт или местный предмет (крест колокольни, шпиль башни и т. п.) при его расстоянии до данного пункта сети не более 3 км. ОРП необходимы для азимутальной привязки последующих геодезических построений (полигонометрии 1 и 2-го разрядов, теодолитных ходов и т. п.).

Высоты всех пунктов ГГС определяют методами геометрического (в равнинных и всхолмленных районах) и тригонометрического нивелирования. В среднем точность измерения углов построенной ГГС оказалась выше, установленной Основными положениями 1954-1961 гг.: 0,65"; 0,75"; 1,1"; l,5" в сетях 1, 2, 3, 4-го классов соответственно. Средняя квадратическая ошибка определения азимутов Лапласа, полученная в результате уравнивания блоков АГС, равна 1,1", т. е. примерно в два раза больше предусмотренной Основными положениями 1954-1961 гг.

В целом ГГС России по точности обеспечивает картографирование страны во всех масштабах вплоть до 1:2000 и позволяет решать научные и инженерно-технические задачи народного хозяйства страны. Дальнейшее совершенствование АГС может быть сведено к следующему. Совместное уравнивание сети 1 и 2-го классов с использованием всех измеренных направлений, азимутов на пунктах Лапласа, базисных или выходных сторон с учетом их весов и определением поправок в непосредственно измеренные величины, при этом будут устранены значительные деформации сети 2-го класса вблизи АГС 1-го класса и повышена точность определения координат всех пунктов. На следующем этапе предусмотрено построение фундаментальной геодезической сети (ФГС) с длинами сторон 2000-3000 км с сантиметровой и более высокой точностью измерения этих сторон. Каждый пункт ФГС должен стать обсерваторией или стационарной фундаментальной геодезической станцией, на которой периодически по определенной программе должен выполняться комплекс точнейших измерений: спутниковые - для определения геоцентрических координат; астрономические - для нахождения широт, долгот, азимутов; гравиметрические - для получения ускорения силы тяжести и т. п. Высоты всех пунктов ФГС целесообразно определить из нивелирования 1-го класса. Совместная обработка перечисленных и, возможно, других измерений позволит определить с высокой точностью координаты пунктов ФГС на данный момент времени и использовать их в качестве исходных при построении системы опорных пунктов на территории страны и, кроме того, для высокоточного определения координат ИСЗ, что в свою очередь позволит повысить точность автономного определения координат точек земной поверхности из наблюдений ИСЗ.

Методы триангуляции и трилатерации (рис. 1 а, б) предусматривают построение на местности цепочки или сети треугольников. В триангуляции в каждом из треугольников измеряют все горизонтальные углы, а в конце их цепи, либо в каком-либо определенном месте сплошной сети как минимум две стороны, называемые базисами . Это позволяет легко вычислить длины других сторон треугольников по известным формулам тригонометрии и геометрии. В трилатерации измеряют все стороны треугольников, а углы в их вершинах определяют по теореме косинусов. Цепочки треугольников трилатерации также включают в себя базисные стороны с известной длиной (базисом) и азимутом (дирекционным углом). На рисунке для ряда трилатерации базисные стороны не указаны.

Рис. 1

а) - метод триангуляции; б) - метод трилатерации; в) метод полигонометрии.

Иногда, для повышения надежности и обеспечения высокой точности оба указанных метода объединяют, т.е. во всех треугольниках измеряют горизонтальные углы и стороны. Такие сети называют линейно-угловыми. Элементами сети трилатерации также могут служить не только треугольники, но и геодезические четырехугольники, центральные системы. Метод трилатерации используется, в отличие от метода триангуляции, только при построении сетей 3 и 4 классов, поскольку он уступает ему по точности, а также и в технико-экономическом отношении.

Метод полигонометрии характеризуется построением на местности систем ломаных линий (ходов), в которых измеряют все линии и горизонтальные углы в точках поворота "рис." 1(в). В вершинах, являющихся исходными пунктами высших классов, измеряют т.н. примычные горизонтальные углы, которые используются для азимутальной привязки полигонометрического хода.

Триангуляция

Основными методами создания плановых геодезических сетей являются триангуляция, полигонометрия, трилатерация.

Триангуляция 1 класса. Триангуляция 1 класса строится в виде астрономо-геодезической сети 1 класса, которая совместно со сплошной гравиметрической съемкой призвана обеспечить решение основных научных задач, связанных с определением формы и размеров Земли, а также с изучением вековых движений и деформаций земной коры. В то же время она является главной основой развития геодезических сетей последующих классов и имеет целью распространение единой системы координат на всю территорию России. Построение ее осуществлено с наивысшей точностью, доступной современному приборостроению, и при использовании всех возможностей тщательно продуманной методики измерений . Сеть 1 класса образует систему полигонов из звеньев триангуляции, каждое из которых не превышает 200 км. Периметр полигона порядка 800--1000 км. Звенья (ряды) триангуляции по возможности располагаются вдоль меридианов и параллелей.

Типовой фигурой, из которой построены звенья триангуляции, является треугольник, близкий к равностороннему. Однако использовались и комбинации треугольников, геодезических четырехугольников и центральных систем. В месте пересечения звеньев (их концах) измерены базисные стороны или расположены базисные сети, построенные для определения длины выходной стороны, заменяющей базисную сторону. В этом случае измерен базис длиною не менее 6 км с точностью порядка 1: 1 000 000. На обоих концах базисных сторон (выходных сторон) определены пункты Лапласа (астрономические определения широт, долгот и азимутов).

В отдельных районах взамен полигонов, образованных звеньями триангуляции 1 класса, построена сплошная сеть триангуляции 1 класса. Базисные стороны и пункты Лапласа в ней определены примерно через 10 сторон.

Взамен звеньев триангуляции строились вытянутые звенья полигонометрии 1 класса (максимальное удаление отдельных пунктов от замыкающей не превышает 20 км, а направления сторон уклоняются от направления замыкающей не более чем на 20°), состоящие не больше чем из 10 сторон длиною порядка 20--25 км . Представление о схеме построения астрономо-геодезической сети дает (рис. 2).

Для определения высот базисов и линий полигонометрии над поверхностью эллипсоида, а также с целью изучения фигуры Земли и се гравитационного поля по всем рядам астрономо-геодезической сети проведено астрономо-гравиметрическое нивелирование.

Координаты астрономо-геодезической сети вычисляются в единой "Системе", основой которой является референц-эллипсоид Красовского, а исходным пунктом -- координаты Пулковской обсерватории.



Рис.2

Триангуляция 2 класса строится в виде сплошных сетей треугольников, заполняющих полигоны триангуляции 1 класса. Она является основной опорной сетью, служащей для развития сетей последующего сгущения и геодезического обоснования всех топографических съемок и изысканий инженерных сооружений. Вместе с тем благодаря своей жесткости и высокой точности сеть 2 класса наряду с сетью 1 класса может быть использована и для целей научного исследования. Треугольники сети 2 класса должны по возможности приближаться к равносторонним. В зависимости от физико-географических условий длины сторон сети триангуляции 2 класса колеблются в пределах от 7 до 20 км, причем в каждом отдельном случае выбор длин сторон должен быть экономически обоснован.

Сеть 2 класса надежно связана с сетью 1 класса. Типовые схемы привязки триангуляции показаны на (рис. 3). Базисные стороны располагаются не реже чем через 25 треугольников, причем одна базисная сторона должна располагаться примерно в середине полигона 1 класса и на ее концах определены пункты Лапласа.

Рис.3

Пункт Лапласа - это геодезический пункт, на котором из астрономических наблюдений были определены астрономический азимут и астрономическая долгота. Для астрономических наблюдений используют небесные светила: Солнце и звезды. Пунктов Лапласа на довольно обширную территорию (порядка1 млн км) всего несколько - 10 - 12 пунктов .

На (рис. 4). представлена наиболее типичная схема построения сети триангуляции 2 класса внутри полигона 1 класса со сгущением ее пунктами 3 класса для обеспечения необходимой густоты пунктов: 1 пункт на 50--60 км.

Взамен триангуляции 2 класса допускается построение сети методом полигонометрии, детальная схема которой разрабатывается в каждом конкретном случае.

Триангуляция 3 и 4 классов. Триангуляция 3 и 4 классов является дальнейшим сгущением государственной геодезической сети для целей крупномасштабного картографирования и обоснования строительства инженерных сооружений.

Триангуляция 3 и 4 классов строится в виде вставок жестких систем или отдельных пунктов в сети старших классов с обязательным измерением всех трех углов треугольников. Типовые схемы построения сетей 3 и 4 классов показаны на (рис. 5).

Пункты сетей всех классов должны иметь отметки, полученные из геометрического или тригонометрического нивелирования.

На пунктах государственной геодезической сети устанавливается по 2 ориентирных пункта на расстоянии от 500 до 1000 м (в лесу не ближе 250 м). В отдельных случаях в качестве одного из ориентирных пунктов может быть принят хорошо видимый с земли до основания геодезический знак или постоянный местный предмет (башня, колокольня, мечеть, фабричная труба п т. д.), расположенные на расстоянии не более 2--3 км от данного пункта.



Геодезическая сеть 2 класса представляет собой сплошную сеть треугольников, либо полигонометрических ходов с узловыми точками, которая полностью заполняет полигоны 1 класса.

Сети 3 и 4 классов могут быть представлены как сплошной сетью треугольников, опирающихся на пункты высших классов, так и могут быть отдельными точками, координаты которых определяются засечками привязкой к пунктам высших классов. При этом для точек 4 класса высшими по классу являются и пункты 3 класса.

Таблица 1 Основные характеристики триангуляции 1, 2, 3 и 4-го классов



Как видно из таблицы при треангуляции допустимая средняя квадратическая погрешность измерения углов постепенно увиличивается с каждым слудующим классом; допустимая навязка также увеличивается, а вот длины сторон конечно же уменьшаются; допустимая относительная погрешность базисной стороны уменьшается.

Работы по развитию государственных геодезических сетей 1, 2 и 3-го классов выполняются Федеральной службой геодезии и картографии России (Роскартография) . Сети 4-го класса развиваются по мере надобности ведомственными организациями, ведущими топографические съемки крупных масштабов, инженерно- геодезические работы.

Значение слова "Триангуляция (в геодезии)" в Большой Советской Энциклопедии

Триангуляция (от лат. triangulum — треугольник), один из методов создания сети опорных геодезических пунктов и сама сеть, созданная этим методом; состоит в построении рядов или сетей примыкающих друг к другу треугольников и в определении положения их вершин в избранной системе координат. В каждом треугольнике измеряют все три угла, а одну из его сторон определяют из вычислений путём последовательного решения предыдущих треугольников, начиная от того из них, в котором одна из его сторон получена из измерений. Если сторона треугольника получена из непосредственных измерений, то она называется базисной стороной Триангуляция (в геодезии) В прошлом вместо базисной стороны непосредственно измеряли короткую линию, называемую базисом, и от неё путём тригонометрических вычислений через особую сеть треугольников переходили к стороне треугольника Триангуляция (в геодезии) Эту сторону Триангуляция (в геодезии) обычно называют выходной стороной, а сеть треугольников, через которые она вычислена,— базисной сетью. В рядах или сетях Триангуляция (в геодезии) для контроля и повышения их точности измеряют большее число базисов или базисных сторон, чем это минимально необходимо.

Принято считать, что метод Триангуляция (в геодезии) изобрёл и впервые применил В. Снеллиус в 1615—17 при прокладке ряда треугольников в Нидерландах для градусных измерений . Работы по применению метода Триангуляция (в геодезии) для топографических съёмок в дореволюционной России начались на рубеже 18—19 вв. К началу 20 в. метод Триангуляция (в геодезии) получил повсеместное распространение.

Триангуляция (в геодезии) имеет большое научное и практическое значение. Она служит для: определения фигуры и размеров Земли методом градусных измерений; изучения горизонтальных движений земной коры; обоснования топографических съёмок в различных масштабах и целях; обоснования различных геодезических работ при изыскании, проектировании и строительстве крупных инженерных сооружений, при планировке и строительстве городов и т.д.

При построении Триангуляция (в геодезии) исходят из принципа перехода от общего к частному, от крупных треугольников к более мелким. В связи с этим Триангуляция (в геодезии) подразделяется на классы, отличающиеся точностью измерений и последовательностью их построения. В малых по территории странах Триангуляция (в геодезии) высшего класса строят в виде сплошных сетей треугольников. В государствах с большой территорией (СССР, Канада, КНР, США и др.) Триангуляция (в геодезии) строят по некоторой схеме и программе. Наиболее стройная схема и программа построения Триангуляция (в геодезии) применяется в СССР.

Государственная Триангуляция (в геодезии) в СССР делится на 4 класса (рис. ). Государственная Триангуляция (в геодезии) СССР 1-го класса строится в виде рядов треугольников со сторонами 20—25 км , расположенных примерно вдоль меридианов и параллелей и образующих полигоны с периметром 800—1000 км . Углы треугольников в этих рядах измеряют высокоточными теодолитами , с погрешностью не более ± 0,7" . В местах пересечения рядов Триангуляция (в геодезии) 1-го класса измеряют базисы при помощи мерных проволок (см. Базисный прибор ), причём погрешность измерения базиса не превышает 1: 1000000 доли его длины, а выходные стороны базисных сетей определяются с погрешностью около 1: 300 000. После изобретения высокоточных электрооптических дальномеров стали измерять непосредственно базисные стороны с погрешностью не более 1: 400 000. Пространства внутри полигонов Триангуляция (в геодезии) 1-го класса покрывают сплошными сетями треугольников 2-го класса со сторонами около 10—20 км , причём углы в них измеряют с той же точностью, как и в Триангуляция (в геодезии) 1-го класса. В сплошной сети Триангуляция (в геодезии) 2-го класса внутри полигона 1-го класса измеряется также базисная сторона с указанной выше точностью. На концах каждой базисной стороны в Триангуляция (в геодезии) 1-го и 2-го классов выполняют астрономические определения широты и долготы с погрешностью не более ± 0,4" , а также азимута с погрешностью около ± 0,5" . Кроме того, астрономические определения широты и долготы выполняют и на промежуточных пунктах рядов Триангуляция (в геодезии) 1-го класса через каждые примерно 100 км , а по некоторым особо выделенным рядам и значительно чаще.

На основе рядов и сетей Триангуляция (в геодезии) 1-го и 2-го классов определяют пункты Триангуляция (в геодезии) 3-го и 4-го классов, причём их густота зависит от масштаба топографической съёмки. Например, при масштабе съёмки 1: 5000 один пункт Триангуляция (в геодезии) должен приходиться на каждые 20—30 км 2 . В Триангуляция (в геодезии) 3-го и 4-го классов погрешности измерения углов не превышают соответственно 1,5" и 2,0" .

В практике СССР допускается вместо Триангуляция (в геодезии) применять метод полигонометрии . При этом ставится условие, чтобы при построении опорной геодезической сети тем и др. методом достигалась одинаковая точность определения положения пунктов земной поверхности.

Вершины треугольников Триангуляция (в геодезии) обозначаются на местности деревянными или металлическими вышками высотой от 6 до 55 м в зависимости от условий местности (см. Сигнал геодезический ). Пункты Триангуляция (в геодезии) в целях долговременной их сохранности на местности закрепляются закладкой в грунт особых устройств в виде металлических труб или бетонных монолитов с вделанными в них металлическими марками (см. Центр геодезический ), фиксирующими положение точек, для которых даются координаты в соответствующих каталогах.

Координаты пунктов Триангуляция (в геодезии) определяют из математической обработки рядов или сетей Триангуляция (в геодезии) При этом реальную Землю заменяют некоторым референц-эллипсоидом , на поверхность которого приводят результаты измерения углов и базисных сторон Триангуляция (в геодезии) В СССР принят референц-эллипсоид Красовского (см. Красовского эллипсоид ). Построение Триангуляция (в геодезии) и её математическая обработка приводят к созданию на всей территории страны единой системы координат, позволяющей ставить топографо-геодезические работы в разных частях страны одновременно и независимо друг от друга. При этом обеспечивается соединение этих работ в одно целое и создание единой общегосударственной топографической карты страны в установленном масштабе.

Лит.: Красовский Ф. Н., Данилов В. В., Руководство по высшей геодезии, 2 изд., ч. 1, в. 1—2, М., 1938—39; Инструкция о построении государственной геодезической сети СССР, 2 изд., М., 1966.

Л. А. Изотов.

Дуга́ Стру́ве , названная по имени создателя — российского астронома Фридриха Георга Вильгельма Струве (Василия Яковлевича Струве) — сеть из 265 триангуляционных пунктов, представлявших собой заложенные в землю каменные кубы с длиной ребра 2 метра, протяжённостью более 2820 километров. Создавалась с целью определения параметров Земли, её формы и размера.

Геодезический пункт

Геодези́ческий пункт — точка, особым образом закреплённая на местности (в земле, реже — на здании или другом искусственном сооружении), и являющаяся носителем координат, определённых геодезическими методами. Геодезический пункт является элементом геодезической сети, которая служит геодезической основой топографической съёмки местности и ряда других геодезических работ, а по назначению подразделяется на плановую (тригонометрическую), высотную (нивелирную) и гравиметрическую. Плановая сеть 1 класса, элементы которой определены также астрономическими и гравиметрическими методами, называется астрономо-геодезической.

В последнее время проводится работа по созданию новой — спутниковой — геодезической сети (прежде всего — в промышленно развитых и обжитых районах), с закреплением на местности пунктами спутниковой геодезической сети, координаты которых определяются относительными методами космической геодезии. По возможности такие пункты совмещаются с действующими пунктами старых геодезических сетей, а создаваемая спутниковая сеть подлежит жесткой привязке к существующим геодезическим пунктам. Кроме этого к геодезическим пунктам относятся и пункты специального предназначения. Это пункты лазерной локации спутников, сверхдлиннобазисной радиоинтерферометрии, пункты службы вращения Земли и некоторые другие.

Поэтому геодезические пункты, принадлежащие к этим сетям, имеют различное предназначение.

Пункты плановой геодезической сети являются носителями плановых координат которые определены в известной системе координат с заданной степенью точности, в результате геодезических измерений . Традиционными геодезическими методами определения координат плановых (тригонометрических)геодезических пунктов являются триангуляция (тогда такой пункт называется пунктом триангуляции или триангуляционным пунктом), полигонометрия (тогда такой пункт называется пунктом полигонометрии или полигонометрическим пунктом), трилатерация (тогда такой пункт называется трилатерационным пунктом), или их сочетание (тогда он называется пунктом линейно-угловой сети). Располагаются они, по возможности, на возвышенных местах (вершинах холмов, сопок, гор), чтобы обеспечить видимость на соседние пункты сети во всех направлениях. Пункты плановой геодезической сети также определены по высоте над уровнем моря, но точность определения по высоте ниже точности определения в плане, в результате технологических различий в методах определения.

Пункты высотной геодезической сети являются носителями высотных координат, определённых с большой точностью методом геометрического нивелирования. Поэтому такие пункты называют также нивелирными пунктами (центры нивелирных пунктов называют реперами ) . В плане они определены лишь приблизительно. Во взаимной видимости между нивелирными пунктами нет необходимости, а технология измерений требует расположения данных пунктов, по возможности, в равнинных местах (чаще всего — вдоль рек), поскольку с наличием перепада высот теряется точность определения. По этой причине, как правило, пункты тригонометрической сети не совпадают с пунктами нивелирования (нивелирными пунктами).

На пунктах гравиметрической сети производится определение уклонений силы тяжести. Параметры таких пунктов определяются с помощью специального прибора — гравиметра. Гравиметрические пункты также определены в плане и по высоте, с определённой степенью точности.

Каждый геодезический пункт закрепляется специальным геодезическим центром , к которому приводятся координаты геодезического пункта (у нивелирных пунктов геодезические центры именуются реперами или марками). (Пункты спутниковой сети и других специальных сетей закрепляются центрами или группами центров особой конструкции). Над центром пункта тригонометрической (плановой) сети сооружается геодезический знак — наземное сооружение (деревянное, металлическое, каменное или железобетонное), в виде тура, штатива, пирамиды геодезическая пирамида или сигнала геодезический сигнал , служащего для закрепления визирной цели, установки геодезического прибора, и являющегося площадкой для работы наблюдателя. Также служит для опознавания пункта на местности. На определённом расстоянии от тригонометрического пункта закладывается ориентирные пункты обращенные лицевой панелью на сам геодезический пункт, а также сооружается астрономический стоб (если на пункте проводятся астрономические определения). Кроме того, геодезический пункт имеет специальное внешнее оформление. Если это экономически выгодно, знак на пункте может сооружаться временным (разборным или перевозным).

На пунктах других геодезических сетей (высотной и гравиметрической) знак не сооружается, поскольку по технологии определений он не используется. В этом случае, для закрепления и опознавания пункта на местности служит опознавательный столб (металлический, железобетонный) с охранной табличкой, и специальное внешнее оформление пункта, определённое «Инструкцией по постройке геодезических знаков» (окопка канавами, создание каменных валов, насыпка кургана и т. д.).

Поэтому чаще всего именно плановый (тригонометрический) пункт с его крупным и приметным знаком, расположенным где-нибудь на возвышенности, ассоциируется у обывателя с понятием «геодезический пункт».

Каждый геодезический пункт Государственной геодезической сети имеет индивидуальный номер, нанесенный на марку центра и внесенный в специальный каталог. Кроме этого, каждому пункту плановой Государственной сети присваивается имя, которое заносится в соответствующие каталоги с указанием всех параметров пункта. Имена некоторых тригопунктов нанесены на топографическую карту рядом с их условными знаками.

Тригонометрический пункт

Материал из Википедии — свободной энциклопедии


Элемент тригонометрического знака геодезической сети первого класса Японии

Тригонометрический пункт , тригопункт (пункт триангуляции) — геодезический пункт , плановые координаты которого определены тригонометрическими методами.
Данный термин не является официальным. Это профессиональный собирательный термин в геодезии для отделения понятия планового геодезического пункта, определенного тригонометрическими методами, от высотного, астрономического и других, поскольку назначение последних иное.
Для определения координат могут использоваться способы триангуляции , полигонометрии,

Поделиться