Взаимное расположение двух плоскостей в пространстве.Признаки параллельности двух плоскостей.

Цели урока:

  • Ввести понятие параллельных плоскостей.
  • Рассмотреть и доказать теоремы, выражающие признак параллельности плоскостей и свойства параллельных плоскостей.
  • Проследить применение этих теорем при решении задач.

План урока (записать на доске):

I. Подготовительная устная работа.

II. Изучение нового материала:

1. Взаимное расположение двух плоскостей в пространстве.
2. Определение параллельных плоскостей.
3. Признак параллельности плоскостей.
4. Свойство параллельных плоскостей.

III. Итог урока.

IV. Домашнее задание.

ХОД УРОКА

I. Устная работа

Начать урок хочется с цитаты из философского письма Чаадаева:

“Откуда это чудодейственная мощь анализа в математике? Дело в том, что ум здесь действует в полном подчинении данному правилу”.

Это подчинение правилу мы рассмотрим на следующем задании. Для усвоения нового материала необходимо повторить некоторые вопросы. Для этого надо установить утверждение, которое следует из данных утверждений и обосновать свой ответ:

II. Изучение нового материала

1. Как могут располагаться две плоскости в пространстве? Что представляет собой множество точек, принадлежащих обеим плоскостям?

Ответ:

а) совпадать (тогда дело будем иметь с одной плоскостью, не устраивает);
б) пересекаться, ;
в) не пересекаться (общих точек вообще нет).

2. Определение: Если две плоскости не пересекаются, то они называются параллельными

3. Обозначение:

4. Приведите примеры параллельных плоскостей из окружающей обстановки

5. Как выяснить параллельны ли какие-либо две плоскости в пространстве?

Ответ:

Можно воспользоваться определением, но это нецелесообразно, т.к. установить пересечение плоскостей не всегда возможно. Поэтому необходимо рассмотреть условие достаточное для того, чтобы утверждать о параллельности плоскостей.

6. Рассмотрим ситуации:

б) если ?

в) если ?

Почему в а) и б) ответ: "не всегда", а в в) "да"? (Пересекающиеся прямые определяют плоскость единственным образом, значит определены однозначно!)

Ситуация 3 и есть признак параллельности двух плоскостей.

7. Теорема: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Дано:

Доказать:

Доказательство:

(Обозначения на чертеж наносят учащиеся).

1. Отметим: . Аналогично:
2. Пусть: .
3. Имеем: Аналогично:
4. Получим: через М проходит противоречие с аксиомой планиметрии.
5. Итак: неверно, значит , ч. и т. д.

8. Решить № 51 (Обозначения на чертеж наносят учащиеся).

Дано:

Доказать:

Доказательство:

1 способ

1. Построим

2 способ

Ввести через через .

9. Рассмотрим два свойства параллельных плоскостей:

Теорема: Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

(Достраивают и наносят обозначение на чертеж сами учащиеся).

Дано:

Две плоскости в пространстве могут быть параллельными или могут пересекаться, как показано в следующей таблице.

Две пересекающиеся плоскости

Определение:
Две плоскости называют пересекающимися , если они не совпадают , и у них есть общие точки . В случае, когда две плоскости пересекаются, пересечением этих плоскостей является прямая линия .

Две параллельные плоскости

Определение:
Две плоскости называют параллельными , если они не имеют общих точек .

Признаки параллельности двух плоскостей

Первый признак параллельности двух плоскостей . Если две пересекающиеся прямые пересекающиеся прямые , лежащие в одной плоскости, соответственно параллельны параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

Доказательство . Рассмотрим рисунок 1, на котором изображены плоскости α и β

Прямые a и b лежат в плоскости α и пересекаются в точке K . Прямые c и d лежат в плоскости β и параллельны прямым a и b соответственно.

Будем доказывать первый признак параллельности двух плоскостей методом «от противного». Для этого предположим, что плоскости α и β не параллельны. Следовательно, плоскости α и β должны пересекаться, причём пересекаться по некоторой прямой. Обозначим прямую линию, по которой пересекаются плоскости α и β буквой l (рис.2) и воспользуемся признаком параллельности прямой и плоскости .

Плоскость α проходит через прямую a , параллельную прямой c , и пересекает плоскость β по прямой l . Отсюда, в силу , заключаем, что прямые a и l параллельны. В то же время плоскость α проходит через прямую b , параллельную прямой d , и пересекает плоскость β по прямой l . Отсюда, в силу признака параллельности прямой и плоскости , заключаем, что прямые b и l параллельны. Таким образом, мы получили, что на плоскости α через точку K проходят две прямые, а именно, прямые a и b , которые параллельны прямой l . Полученное противоречие с аксиомой о параллельных прямых даёт возможность утверждать, что предположение о том, что плоскости α и β пересекаются, является неверным. Доказательство первого признака параллельности двух плоскостей завершено.

Второй признак параллельности двух плоскостей . Если две пересекающиеся прямые, лежащие в одной плоскости, параллельны другой плоскости, то такие плоскости параллельны.

Доказательство . Рассмотрим рисунок 3, на котором изображены плоскости α и β .

На этом рисунке также изображены прямые a и b , которые лежат в плоскости α и пересекаются в точке K. По условию каждая из прямых a и b параллельна плоскости β . Требуется доказать, что плоскости α и β параллельны.

Доказательство этого утверждения аналогично доказательству первого признака параллельности двух плоскостей, и мы его оставляем читателю в качестве полезного упражнения.

На нашем сайте можно также ознакомиться с разработанными преподавателями учебного центра «Резольвента» учебными материалами для подготовки к ЕГЭ по математике .

индивидуальные занятия с репетиторами по математике и русскому языку

Параллельность плоскостей является понятием, впервые появившимся в эвклидовой геометрии более двух тысяч лет назад.

Основные характеристики классической геометрии

Рождение этой научной дисциплины связано с известнейшим трудом древнегреческого мыслителя Эвклида, написавшего в третьем веке до нашей эры памфлет «Начала». Разделенные на тринадцать книг, «Начала» являлись высшим достижением всей античной математики и излагали фундаментальные постулаты, связанные со свойствами плоских фигур.

Классическое условие параллельности плоскостей было сформулировано следующим образом: две плоскости могут назваться параллельными, если они между собой не имеют общих точек. Об этом гласил пятый постулат эвклидового труда.

Свойства параллельных плоскостей

В эвклидовой геометрии их выделяют, как правило, пять:

  • Свойство первое (описывает параллельность плоскостей и их единственность). Через одну точку, которая лежит вне конкретной данной плоскости, мы можем провести одну и только одну параллельную ей плоскость
  • Свойство третье (иными словами оно называется свойством прямой, пересекающей параллельность плоскостей). Если отдельно взятая прямая линия пересекает одну из этих параллельных плоскостей, то она пересечет и другую.
  • Свойство четвертое (свойство прямых линий, высеченных на плоскостях, параллельных друг другу). Когда две параллельные плоскости пересекаются третьей (под любым углом), линии их пересечения также являются параллельными
  • Свойство пятое (свойство, описывающее отрезки разных параллельных прямых, которые заключены между плоскостями, параллельными друг другу). Отрезки тех параллельных прямых, которые заключены между двумя параллельными плоскостями, обязательно равны.

Параллельность плоскостей в неэвклидовых геометриях

Такими подходами являются в частности геометрия Лобачевского и Римана. Если геометрия Эвклида реализовывалась на плоских пространствах, то у Лобачевского в отрицательно искривленных пространствах (выгнутых попросту говоря), а у Римана она обретает свою реализацию в положительно искривленных пространствах (иными словами - сферах). Существует весьма распространенное стереотипное мнение, что у Лобачевского параллельные плоскости (и линии тоже) пересекаются.

Однако это неверно. Действительно рождение гиперболической геометрии было связано с доказательством пятого постулата Эвклида и изменением взглядов на него, однако само определение параллельных плоскостей и прямых подразумевает, что они не могут пересечься ни у Лобачевского, ни у Римана, в каких бы пространствах они ни реализовывались. А изменение взглядов и формулировок заключалось в следующем. На смену постулату о том, что лишь одну параллельную плоскость можно провести через точку, не лежащую на данной плоскости, пришла другая формулировка: через точку, которая не лежит на данной конкретной плоскости, могут проходить две, по крайней мере, прямые, которые лежат в одной плоскости с данной и не пересекают ее.

е свойство параллельных прямых, называемое транзитив ностью параллельности:

  • Если две прямые а и b параллельны третьей прямой с, то они параллель ны друг другу.

Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про странстве существуют непараллельные и при том непересекающиеся прямые если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.

На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD параллельны, а АВ и В С скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C D, потому что обе они параллельны общей стороне CD со держащих их квадратов.

В стереометрии отношение параллельности рассматривается и для плоскостей: две пло скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

  • Если две плоскости параллельны третьей плоскости, то они параллельны между собой.
  • Если прямая и плоскость параллельны некоторой прямой(или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

  • Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

А вот признак параллельности плоскостей:

  • Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

Часто используется и такая простая теорема:

  • Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А В параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А В С D и ABCD, параллельны по признаку параллельности плоскостей: прямые A B и B С в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA и СС , пересекают параллельные плоскости АВСD и A B C D по прямым АС и А С , значит, эти прямые параллельны: аналогично, параллельные прямые В С и А D. Следовательно, параллельные плоскости АВ С и А DC, пересекающие куб по треугольникам.

III. Изображение пространственных фигур.

Есть такой афоризм Геометрия это искус ство правильно рассуждать на неправильном чертеже. Действительно, если вернуться к из ложенным выше рассуждениям, то окажется:

единственная польза, которую мы извлекли из сопровождавшего их рисунка куба, состоит в том, что он сэкономил нам место на объясне нии обозначений. С тем же успехом можно было изобразить его, как тело на рис. 4, я, хотя, очевидно, представленное на нём нечто не только не куб, но и не многогранник. И всё же в приведённом афоризме заключена лишь часть правды. Ведь прежде, чем рассуждать излагать готовое доказательство, надо его при думать. А для этого нужно ясно представлять себе заданную фигуру, соотношения между её элементами. Выработать такое представление помогает хороший чертёж. Более того, как мы увидим, в стереометрии удачный чертёж мо жет стать не просто иллюстрацией, а основой решения задачи.

Художник (вернее, художник-реалист) на рисует наш куб таким, каким мы его видим (рис. 5, б), т. е. в перспективе, или централь ной проекции. При центральной проекции из точки О (центр проекции) на плоскость а про извольная точка Х изображается точкой X, в которой а пересекается с прямой ОХ (рис. 6). Центральная проекция сохраняет прямоли нейное расположение точек, но, как правило, переводит параллельные прямые в пересека ющиеся, не говоря уже о том, что изменяет расстояния и углы. Изучение её свойств при вело к появлению важного раздела геометрии (см. статью Проективная геометрия).

Но в геометри-ческих чертежах исполь-зуется другая проекция. Можно сказать, что она получается из централь-ной когда центр О уда-ляется в бесконечность и прямые ОХ становятся па раллельными.

Выберем плоскость а и пересекающую её прямую l. Проведём через точку Х прямую, па раллельную l. Точка X, в которой эта прямая встречается с а, и есть параллельная проекция Х на плоскость, а вдоль прямой l (рис. 7). Про екция фигуры состоит из проекций всех её точек. В геометрии под изображением фигуры понимают её параллельную проекцию.

В частности, изображение прямой линии это прямая линия или (в исключительном слу чае, когда прямая параллельна направлению проекции) точка. На изображении параллель

Всем, кто когда-либо учился или сейчас учится в школе, приходилось сталкиваться с различными трудностями при изучении дисциплин, которые включены в программу, разработанную Министерством образования.

С какими трудностями приходится сталкиваться

Изучение языков сопровождается зазубриванием имеющихся грамматических правил и основных исключений из них. Физкультура требует от учеников большой выкладки, хорошей физической формы и огромного терпения.

Однако ни с чем нельзя сравнить те сложности, которые возникают при изучении точных дисциплин. Алгебра, содержащая в себе запутанные способы решения элементарных задач. Физика с богатым набором формул физических законов. Геометрия и ее разделы, в основе которых лежат сложные теоремы и аксиомы.

Примером могут служить аксиомы, объясняющие теорию параллельности плоскостей, которые необходимо обязательно запомнить, так как они лежат в основе всего курса школьной программы по стереометрии. Давайте попробуем разобраться, как проще и быстрее это можно сделать.

Параллельные плоскости на примерах

Аксиома, указывающая на параллельность плоскостей, звучит следующим образом: «Любые две плоскости считаются параллельными только в том случае, если они не содержат общих точек », то есть не пересекаются друг с другом. Чтобы более детально представить себе данную картину, в качестве элементарного примера можно привести отношение потолка и пола или противоположных стен в здании. Становится сразу понятно, что имеется в виду, а также подтверждается тот факт, что эти плоскости в обычном случае никогда не пересекутся.

Другим примером может служить оконный стеклопакет, где в качестве плоскостей выступают полотна стекол. Они также ни при каких условиях не будут образовывать точек пересечения между собой. Дополнительно к этому можно добавить книжные полки, кубик Рубика, где плоскостями являются его противоположные грани, и прочие элементы быта.

Обозначаются рассматриваемые плоскости специальным знаком в виде двух прямых «||», которые наглядно иллюстрируют параллельность плоскостей. Таким образом, применяя реальные примеры, можно сформировать более четкое восприятие темы, а, следовательно, можно переходить далее к рассмотрению более сложных понятий.

Где и как применяется теория параллельных плоскостей

При изучении школьного курса геометрии ученикам приходится сталкиваться с разносторонними задачами, где зачастую необходимо определить параллельность прямых, прямой и плоскости между собой или зависимость плоскостей друг от друга. Анализируя имеющееся условие, каждую задачу можно соотнести к четырем основным классам стереометрии.

К первому классу относят задачи, в условии которых необходимо определить параллельность прямой и плоскостимежду собой. Ее решение сводится к доказательству одноименной теоремы. Для этого нужно определить, имеется ли для прямой, не принадлежащей рассматриваемой плоскости, параллельная прямая, лежащая в этой плоскости.

Ко второму классу задач относятся те, в которых задействуют признак параллельности плоскостей. Его применяют для того, чтобы упростить процесс доказательства, тем самым значительно сокращая время на поиск решения.

Следующий класс охватывает спектр задач о соответствии прямых основным свойствам параллельности плоскостей. Решение задач четвертого класса заключается в определении, выполняется ли условие параллельности плоскостей. Зная, как именно происходит доказательство той или иной задачи, ученикам становится проще ориентироваться при применении имеющегося арсенала геометрических аксиом.

Таким образом, задачи, условие которых требует определить и доказать параллельность прямых, прямой и плоскости или двух плоскостей между собой, сводятся к правильному подбору теоремы и решению согласно имеющемуся набору правил.

О параллельности прямой и плоскости

Параллельность прямой и плоскости - особая тема в стереометрии, так как именно она является базовым понятием, на которое опираются все последующие свойства параллельности геометрических фигур.

Согласно имеющимся аксиомам, в случае когда две точки прямой принадлежат некоторой плоскости, можно сделать вывод, что данная прямая также лежит в ней. В сложившейся ситуации становится ясно, что возможны три варианта расположения прямой относительно плоскости в пространстве:

  1. Прямая принадлежит плоскости.
  2. Для прямой и плоскости имеется одна общая точка пересечения.
  3. Для прямой и плоскости точки пересечения отсутствуют.

Нас, в частности, интересует последний вариант, когда отсутствуют какие-либо точки пересечения. Только тогда можно говорить о том, что прямая и плоскость относительно друг друга являются параллельными. Таким образом, подтверждается условие основной теоремы о признаке параллельности прямой и плоскости, которая гласит, что: «Если прямая, не принадлежащая рассматриваемой плоскости, параллельна любой прямой на этой плоскости, то рассматриваемая прямая также является параллельной данной плоскости».

Необходимость использования признака параллельности

Признак параллельности плоскостей, как правило, используется для поиска упрощенного решения задач о плоскостях. Суть данного признака состоит в следующем: «Если имеются две пересекающиеся прямые, лежащие в одной плоскости, параллельные двум прямым, принадлежащим другой плоскости, то такие плоскости можно назвать параллельными ».

Дополнительные теоремы

Помимо использования признака, доказывающего параллельность плоскостей, на практике можно встретиться с применением двух других дополнительных теорем. Первая представлена в следующей форме: «Если одна из двух параллельных плоскостей параллельна третьей, то и вторая плоскость либо тоже параллельна третьей, либо полностью совпадает с ней ».

Базируясь на использовании приводимых теорем, всегда можно доказать параллельность плоскостей относительно рассматриваемого пространства. Вторая теорема отображает зависимость плоскостей от перпендикулярной прямой и имеет вид: «Если две несовпадающие плоскости перпендикулярны по отношению к некоторой прямой, то они считаются параллельными друг другу ».

Понятие необходимого и достаточного условия

При неоднократном решении задач доказательства параллельности плоскостей было выведено необходимое и достаточное условие параллельности плоскостей. Известно, что любая плоскость задается параметрическим уравнением вида: А 1 х+ В 1 у+ C 1 z+D 1 =0. Наше условие базируется на использовании системы уравнений, задающих расположение плоскостей в пространстве, и представлено следующей формулировкой: «Для доказательства параллельности двух плоскостей необходимо и достаточно, чтобы система уравнений, описывающих эти плоскости, была несовместной, то есть не имела решения ».

Основные свойства

Однако при решении геометрических задач использования признака параллельности не всегда бывает достаточно. Иногда возникает ситуация, когда необходимо доказать параллельность двух и более прямых в различных плоскостях или равенство отрезков, заключенных на этих прямых. Для этого применяют свойства параллельности плоскостей. В геометрии их насчитывается всего два.

Первое свойство позволяет судить о параллельности прямых в определенных плоскостях и представлено в следующем виде: «Если две параллельные плоскости пересечь третьей, то прямые, образованные линиями пересечения, будут также параллельны друг другу ».

Смысл второго свойства состоит в том, чтобы доказать равенство отрезков, расположенных на параллельных прямых. Его трактовка представлена ниже. «Если рассматривать две параллельные плоскости и заключить между ними область, то можно утверждать, что длина образованных этой областью отрезков будет одинакова ».

Поделиться