Сорбционная очистка. Пример адсорбции В чем суть процесса адсорбции

- (от лат. ad - на, при и sorbeo - поглощаю), процесс, приводящий к аномально высокой концентрации в-ва (а д с о р б а т а) из газообразной или жидкой среды на поверхности её раздела с жидкостью или тв. телом (а д с о р б е н т о м). Частный случай сорбции. Физический энциклопедический словарь

  • адсорбция - [лат. ad при, к + sorbere глотать] – поверхностное поглощение; поглощение какого-либо вещества из газообразной среды или раствора поверхностным слоем другого вещества в отличие от абсорбции – поглощения всем объёмом вещества Большой словарь иностранных слов
  • адсорбция - адсорбция ж. Поглощение, всасывание вещества из раствора или газа поверхностью твёрдого тела или поверхностным слоем жидкости. Толковый словарь Ефремовой
  • Адсорбция - (от лат. ad - y, на, при и sorbeo - поглощаю * a. adsorption; н. Adsorption, Adsorbieren, Adsorbierung; ф. adsorption; и. adsorcion) - поглощение отд. Горная энциклопедия
  • АДСОРБЦИЯ - АДСОРБЦИЯ (от лат. ad - на, при и sorbeo - поглощаю) - поглощение газов, паров или жидкостей поверхностным слоем твердого тела (адсорбента) или жидкости. Адсорбенты обычно имеют большую удельную поверхность - до нескольких сотен м2/г. Большой энциклопедический словарь
  • адсорбция - -и, ж. физ., хим. Поглощение частиц газа или растворенного вещества поверхностным слоем жидкого или твердого вещества. [От лат. ad - к и sorbere - поглощать, всасывать] Малый академический словарь
  • адсорбция - Адсорбция, адсорбции, адсорбции, адсорбций, адсорбции, адсорбциям, адсорбцию, адсорбции, адсорбцией, адсорбциею, адсорбциями, адсорбции, адсорбциях Грамматический словарь Зализняка
  • адсорбция - сущ., кол-во синонимов: 2 адсорбирование 2 сорбция 7 Словарь синонимов русского языка
  • адсорбция - орф. адсорбция, -и Орфографический словарь Лопатина
  • адсорбция - Поглощение вещества из раствора или газа поверхностным слоем жидкости или твердого тела (адсорбентом); играет важную роль в биол. системах, широко применяется в биохимии для разделения и очистки веществ. Микробиология. Словарь терминов
  • адсорбция - АДСОРБЦИЯ -и; ж. [от лат. ad- - к и sorbere - поглощать, всасывать]. Поглощение вещества из газа или раствора поверхностным слоем жидкого или твёрдого адсорбента (используется в химии, технике и т.п. для разделения и очистки веществ). ◁ Адсорбционный, -ая, -ое. Толковый словарь Кузнецова
  • Адсорбция - (Ад- + лат. sorbeo поглощать) поглощение (концентрирование) газов или растворенных веществ на поверхности твердого тела или жидкости. Медицинская энциклопедия
  • Адсорбция - Поглощение вещества из газа или раствора поверхностью раздела между ними (или поверхностью твердого тела). Иными словами, А. есть поглощение адсорбата из объема фаз на поверхности адсорбента. А. является частным случаем сорбции. Математическая энциклопедия
  • АДСОРБЦИЯ - АДСОРБЦИЯ, притяжение газа или жидкости к поверхности твердого тела или жидкости, в отличие от абсорбции, при которой подразумевается проникновение одного вещества в другое (как, например, губка пропитывается водой). Научно-технический словарь
  • Сорбция – процесс самопроизвольного поглощения твердым телом или жидкостью веществ из окружающей среды; гетерогенный процесс, протекающий на границе раздела фаз (ТВ – газ, ж – газ, ж – ж). Вещество, которое поглощает называется сорбентом, поглощаемое вещество – сорбатом. В большинстве случаев сорбция – обратный процесс: наряду с поглощением вещества протекает обратный процесс его десорбции сорбента в окружающую среду.

    Сорбент + сорбат ↔(сорбция, десорбция) сорбционный комплекс

    При сорбции вещества с течением времени устанавливается равновесие, которое соответствует равенству скорости сорбции и десорбции. Количественно достигаемое равновесие характеризуется константой сорбционного равновесия. Сорбция, которая сопровождается диффузией вещества вглубь сорбента называется абсорбцией, а сорбция, которая сопровождается концентрированием вещества на поверхности сорбента – адсорбцией.

    Абсорбция играет важную роль в обмене веществ, в частности в газообмене с окружающей седой. В качестве сорбента выступает жидкая фаза, в которой происходит растворение газов, либо между двумя несмешивающимися жидкостями происходит перераспределение вещества. Абсорбционное равновесие характеризуется константой распределения, где С 1 и С 2 соответствуют константе вещества в абсорбенте и в окружающей среде.

    К распр = С 1 /С 2

    Значение К распр зависит от природы контактирующих фаз и температуры. В целом выполняется правило: подобное растворяется в подобном, т е полярные вещества будут лучше растворяться в полярных растворителях, а неполярные – в неполярных (HCI; NH 3 – очень хорошо растворяются в воде, неполярный кислород хорошо растворяется в перфтордекалине C 10 F 22 , J 2 в CCI 4). Если К распр намного больше 1, то сорбируемое вещество преимущественно переходит в абсорбент; если намного меньше 1, то практически не сорбируется. Если извлекаемое вещество газ, то его абсорбция сопровождается резким уменьшением объема системы, что в соответствии с принципом Ле-Шателье означает: растворимость газов возрастает с увеличением порциального давления (закон Генри)

    С = КгР (х)

    Кг – константа Генри (константа абсорбционного равновесия); С – концентрация газа в жидкости (моль/л); Р – порциональное давление газа х.

    Увеличение растворимости газов с ростом давления объясняет кессонную болезнь водолазов, летчиков, которая наблюдается при переходе человека из области высокого давления в область низкого. Количественно абсорбция газов жидкости характеризуется коэффициентом абсорбции – объем газов, который при стандартных условиях может быть поглощен одним объемом жидкости. Если абсорбция сопровождается химическим взаимодействием с растворителем, то коэффициент абсорбции резко возрастает, азот – 0,024 – в 1 л воды растворяется 24 мл азота, кислород – 0,05, SO 2 – 80, HCI – 500, NH 3 – 1300. При хемосорбции резко изменятся химический состав абсорбента (при растворении SO 2 и NO 2 в воде увеличивается кислотность среды). SO 2 + H 2 O ↔ H 2 SO 3 ↔ 2H + + SO 3 2-

    2NO 2 + H 2 O ↔ HNO 3 + HNO 2 ↔ 2H+ + NO 2 - + NO 3 -

    При растворении аммиака повышается щелочность растворов

    NH 3 + H 2 O ↔ NH 4 OH ↔ OH - + NH 4 +

    В присутствии электролитов растворимость газов в жидкостях резко уменьшается (высаливание – закон Сеченова)

    Адсорбция: в отличие от абсорбции адсорбция связана с поглощением вещества на поверхности раздела контактирующих фаз. При адсорбции различают адсорбент – вещество, на поверхности которого протекает адсорбция и адсорбат – компонент, который концентрируется на поверхности адсорбента. Адсорбция бывает:

    Физическая – обусловлена силами межмолекулярного взаимодействия и образования Н связей (Э = 4-40 кДж/моль). Благодаря незначительной энергии физическая адсорбция всегда обратима и сопровождается экзотермичностью.

    Химическая – не обратима, связана с химическим взаимодействием адсорбента и адсорбата (Эсв = 400 кДж/моль).

    На практике чаще всего используют для поглощения газов, паров, растворимых веществ – твердые адсорбенты (сажа, активированный уголь, аморфный SiO 2 , Al 2 O 3 и т д). количественно адсорбция характеризуется удельной адсорбцией Г – равновесное количество поглощаемого вещества на единицу поверхности или массы твердого адсорбента

    Г = n/m [ммоль/Гадс][мэкв/Гадс][мг/Гадс]

    Адсорбция – чисто поверхностный процесс – молекулы сорбируемого вещества покрывают поверхность адсорбента мономолекулярным слоем. Сорбция протекает на активных центрах сорбента: выступах, впадинах, капиллярах, трещинах, ребрах, углах – для кристаллических сорбентов.

    Количество поглощаемого газа или пара в твердых сорбентах зависит от следующих факторов: природы и площади поверхности сорбента, природы поглощаемого газа или пара, концентрации или плотности газа (пара). Для кристаллической сорбции удельная поверхность составляет до 10м 2 . У пористых сорбентов удельная поверхность может достигать 10 3 , 10 5 м 2 /г. Чем больше удельная поверхность, тем активнее сорбент. Сорбируемость газа или пара определяется его сродством к поверхности сорбента: полярные молекулы лучше сорбируются на полярных сорбентах (пары воды поглощаются силикогелем SiO 2); неполярные вещества на неполярные сорбенты (масла активируемым углем). При физической адсорбции многокомпонентной газовой смеси лучше сорбируется тот газ, который легче сжимается (повышение температуры кипения). Т к физическая сорбция – экзотермический процесс, то с ростом температуры в соответствии с принципом Ле-Шателье эффективность адсорбции резко уменьшается. Зависимость удельной адсорбции от концентрации (давления) описывается изотермой Ленгвьюра

    Г = Г бесконеч * КС/ 1+КС, Г = альфа * с / 1 + ветта*с, где

    Г бесконеч – максимальная удельная адсорбция, К – константа сорбционного равновесия, С – равновесная концентрация, установившаяся в растворе.

    При низких концентрациях в растворе знаменателем можно пренебречь Кс<<1, тогда уравнение принимает вид Г = Г бесконеч КС, т е удельная адсорбция прямо пропорциональна равновесной концентрации. При очень больших С, КС>>1 тогда удельная адсорбция Г => Г бесконеч

    Таким образом изотерма Ленгвьюра имеет вид

    Адсо́рбция (от лат. ad - на, при и sorbeo - поглощаю), поглощение какого-либо вещества (адсорбата) из газообразной среды или раствора поверхностным слоем жидкости или твердого тела (адсорбентом). Различают два вида адсорбции: физическую и химическую (хемосорбцию). Менее прочная физическая адсорбция не сопровождается существенными изменениями молекул адсорбата. Она обусловлена силами межмолекулярного взаимодействия , которые связывают молекулы в жидкостях и некоторых кристаллах и проявляются в поведении сильно сжатых газов. Существенное отличие физической адсорбции - ее обратимость. При хемосорбции молекулы адсорбата и адсорбента образуют химические соединения. Часто адсорбция обусловлена и физическими и химическими силами, поэтому не существует четкой границы между физической адсорбцией и хемосорбцией.

    Явление адсорбции связано с тем, что силы межмолекулярного взаимодействия на границе раздела фаз нескомпенсированы, и, следовательно, пограничный слой обладает избытком энергии – свободной поверхностной энергией . В результате притяжения поверхностью раздела фаз находящихся вблизи нее молекул адсорбата свободная поверхностная энергия уменьшается, т.е. процессы адсорбции энергетически выгодны. Адсорбция всегда является экзотермическим процессом, т. е. протекает с выделением теплоты адсорбции Hs.

    Значения энтальпии физической адсорбции достаточно велики (порядка 10 ккал/моль) из-за слабых атомных взаимодействий. Физическая адсорбция легко обратима, поэтому, например, в случае адсорбции газа, достаточно легко может осуществиться замена адсорбированного слоя газа другим газом. Это явление называется обменной адсорбцией.

    Процесс адсорбции заканчивается установлением адсорбционного равновесия между адсорбентом и адсорбатом. Условием равновесия является равенство химических потенциалов обеих фаз. С ростом температуры или давления адсорбата в объеме увеличивается частота попаданий молекул адсорбата на поверхность адсорбента; пропорционально ей возрастает скорость адсорбции и увеличивается равновесное количество адсорбированных молекул. Кривые зависимости равновесной адсорбции от температуры или давления адсорбата называются, соответственно, изобарой и изотермой адсорбции.

    Адсорбированные молекулы могут перемещаться по поверхности, совершая при этом колебательные движения, то приближаясь к поверхности, то удаляясь от нее. Время, в течение которого молекула находится на поверхности, называется временем адсорбции. С ростом температуры время адсорбции уменьшается: чем выше температура, тем интенсивнее колебательное движение, и больше вероятность того, что в процессе таких колебаний связь молекулы с поверхностью будет разорвана и молекула покинет поверхность. Процесс, при котором адсорбированные молекулы покидают поверхность, называется десорбция . Скоростью адсорбции (десорбции) называется отношение количества молекул, адсорбирующихся (десорбирующихся) за единицу времени, к единице поверхности или массы адсорбента. Если скорости адсорбции и десорбции равны друг другу, устанавливается адсорбционное равновесие. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и др.).

    В случае контакта поверхности кристалла и жидкого раствора из жидкости на поверхность твердого тела переходят молекулы, находящиеся в растворе. Между их концентрациями в растворе и на поверхности адсорбента устанавливается равновесие. Вещества, адсорбируемые из раствора, называются поверхностно-активными веществами (ПАВ). Высокая адсорбируемость ПАВов связана с сильным снижением поверхностного натяжения раствора на данной поверхности по сравнению с поверхностным натяжением чистого растворителя на этой же поверхности. Инактивные вещества повышают поверхностное натяжение и ухудшают адсорбцию.

    Если теплота адсорбции сравнима с поверхностной энергией адсорбента, то в процессе адсорбции может существенно меняться кристаллическая структура поверхности твердого тела, причем при физической адсорбции перестройке подвергаются в основном поверхности молекулярных кристаллов, а в случае хемосорбции изменения поверхностной структуры наблюдаются даже для металлов и ионных кристаллов. Адсорбированные на поверхности пленки сильно изменяют свойства поверхности, а в ряде случаев затрагивают и более толстые приповерхностные слои.

    Адсорбция играет важную роль во многих природных процессах, таких, как обогащение почв и образование вторичных рудных месторождений. Именно благодаря адсорбции осуществляется первая стадия поглощения различных веществ из окружающей среды клетками и тканями биологических систем, функционирование биологических мембран, первые этапы взаимодействия ферментов с субстратом, защитные реакции против токсичных веществ. Многие адсорбенты (активный уголь, каолин , иониты и др.) служат противоядиями, поглощая и удаляя из организма вредные вещества. Адсорбенты обычно имеют большую удельную поверхность - до нескольких сотен м 2 /г. В промышленности адсорбцию осуществляют в специальных аппаратах - адсорберах; применяют для осушки газов, очистки органических жидкостей и воды, улавливания ценных или вредных отходов производства.


    Курсовая работа

    по дисциплине: Процессы и аппараты химической технологии

    на тему: «Адсорбция »

    Введение

    1. Классификация процесса, основные определения

    1.1 Основные понятия процесса адсорбции

    1.2 Основные промышленные адсорбенты и их свойства

    1.3 Изотерма адсорбции

    2. Закономерности процесса адсорбции

    2.1 Теории адсорбции

    2.2 Адсорбция на границе раствор - пар

    2.3 Адсорбция на границе твердое тело - газ

    2.4 Адсорбция на границе твердое тело - раствор

    2.4.1 Молекулярная адсорбция из растворов

    2.4.2 Адсорбция из растворов электролитов

    3. Оборудование, реализующее процесс адсорбции

    3.1 Адсорбция с неподвижным слоем адсорбента

    3.2 Адсорбция силикагелем

    3.3 Гиперсорбция

    3.4 Адсорбция в кипящем (псевдоожиженном) слое

    3.5 Расчет адсорберов периодического действия

    3.6 Расчет адсорберов непрерывного действия

    Заключение

    Список использованной литературы

    Введение

    Адсорбцией называют процесс поглощения вещества из смеси газов, паров или растворов поверхностью или объемом пор твердого тела - адсорбента.

    Явление адсорбции известно очень давно. Такие природные материалы, как песок и почва, использовали для очистки воды еще на заре человеческого общества. В конце XVIII века К. Шееле и одновременно Фонтана обнаружили способность свежепрокаленного древесного угля поглощать различные газы в объемах, в несколько раз превышающих его собственный объем. Вскоре выяснилось, что величина поглощенного объема зависит от типа угля и природы газа. Т.Е. Ловиц в 1785 году открыл явление адсорбции углем в жидкой среде, подробно исследовал его и предложил использовать уголь для очистки фармацевтических препаратов, спирта, вина, органических соединений. Ловиц показал, что древесный уголь способен быстро очищать испорченную воду и делать ее пригодной для питья. И сейчас основным действующим началом фильтров для воды служат углеродные материалы, конечно более современные, чем природные угли. Адсорбция отравляющих веществ из воздуха была использована Н.Д. Зелинским при создании противогаза во время первой мировой войны.

    Адсорбция газов на твердых поверхностях используется в некоторых отраслях пищевой промышленности, а именно масложировой (например, в производстве маргарина) и в бродильной (например, в производстве дрожжей) для очистки технологических газовых потоков с целью предотвращения выбросов вредных веществ в атмосферу. Поглощение паров воды происходит на пористых веществах, которые выполняют роль твердого адсорбента. Подобные процессы наблюдаются в отношении сахара, соли и сухарей. Адсорбционный способ регулирования газового состава хранилищ скоропортящихся продуктов позволяет в несколько раз сократить потери и увеличить сроки хранения. Адсорбция различных пищевых кислот, лимонной в частности, снижает по сравнению с водой поверхностное натяжение большинства прохладительных напитков. Адсорбция веществ на поверхности раздела жидкость - газ способствует устойчивости пен. Подобный процесс имеет место в бродильной промышленности при производстве дрожжей и некоторых других полупродуктов. Усиление смачивания водой различных поверхностей широко используется в промышленности в качестве сопутствующего процесса при мойке оборудования, подготовке сырья, обработке полуфабрикатов и т.д. Адсорбция на границе твердое тело - жидкость широко применяется при очистке жидкостей (например, диффузионного сока при производстве сахара, растительных масел и соков) от примесей.

    Развитие теории адсорбционных сил еще не достигло такой стадии, когда по известным физико-химическим свойствам газа и твердого тела можно было бы рассчитать изотерму адсорбции, не проводя экспериментальных исследований. Поэтому попыткам описать экспериментальные изотермы с помощью различных теоретических уравнений, которым соответствуют определенные модели адсорбции, посвящено огромное количество работ. Если теоретическое уравнение изотермы адсорбции хорошо воспроизводит экспериментальные данные, то можно рассчитать неизвестные величины адсорбции при разных условиях (р и Т) и определить различные геометрические параметры твердых тел. Рассмотрим лишь немногие, наиболее распространенные теоретические уравнения изотерм адсорбции.

    1. Классификация процесса, основные определения

    1.1 Основные понятия процесса адсорбции

    Адсорбцией называется самопроизвольно протекающий диффузионный процесс взаимодействия двух фаз - твердого тела - адсорбента и газа, пара или растворенного вещества - адсорбтива, происходящий поглощением газа, пара или растворенного вещества поверхностью твердого тела.

    Поглощение газов, паров и растворенных веществ твердыми телами обычно сопровождается процессами проникновения поглощаемого вещества в твердое тело (абсорбцией), капиллярной конденсацией и химическими реакциями (хемосорбцией), что весьма затрудняет изучение собственно адсорбции. Поэтому поглощение газов, паров и растворенных веществ твердыми телами обычно рассматривается как общий процесс сорбции.

    Адсорбция всегда сопровождается выделением тепла. В большинстве случаев тепловой эффект адсорбции по своей величине приближается к теплоте конденсации поглощаемого газа или пара.

    Адсорбцию подразделяют на два вида: физическую и химическую. Физическая адсорбция в основном обусловлена поверхностными вандервальсовыми силами, которые проявляются на расстояниях, значительно превышающих размеры адсорбируемых молекул, поэтому на поверхности адсорбента обычно удерживаются несколько слоев молекул адсорбата.

    При химической адсорбции поглощаемое вещество вступает в химическое взаимодействие с адсорбентом с образованием на его поверхности обычных химических соединений.

    Силы притяжения возникают на поверхности адсорбента благодаря тому, что силовое поле поверхностных атомов и молекул не уравновешено силами взаимодействия соседних частиц. По физической природе силы взаимодействия молекул поглощаемого вещества и адсорбента относятся в основном к дисперсионным, возникающим благодаря перемещению электронов в сближающихся молекулах. В ряде случаев адсорбции большое значение имеют электростатические и индукционные силы, а также водородные связи. Поэтому адсорбция является самопроизвольным процессом, течение которого сопровождается уменьшением свободной энергии и энтропии системы.

    Процессы адсорбции избирательны и обратимы. Процесс, обратный адсорбции, называют десорбцией, которую используют для выделения поглощенных веществ и регенерации адсорбента.

    Наиболее рационально применять адсорбцию для обработки смесей с низкой концентрацией извлекаемых веществ.

    Статическая и динамическая активность адсорбентов .

    Основной характеристикой адсорбента является его активность, определяемая весовым количеством вещества, поглощенного единицей объема или веса поглотителя.

    Различают активность статическую и динамическую.

    Статическая активность адсорбента характеризуется максимальным количеством вещества, адсорбированного к моменту достижения равновесия весовой или объемной единицей адсорбента при данной температуре и концентрации адсорбируемого вещества в газо-воздушной смеси.

    Динамическая активность является характеристикой адсорбента при протекании паровоздушной смеси через слой адсорбента до момента проскока адсорбируемого газа.

    Если газовая смесь проходит через слой адсорбента, то в начальный период процесса адсорбтив полностью извлекается из газовой смеси. По истечении определенного промежутка времени в газовой смеси, уходящей из поглотителя, начинают появляться заметные, все возрастающие количества адсорбтива (проскок), и к концу процесса концентрация уходящего газа становится равной начальной концентрации паровоздушной смеси.

    В адсорберах промышленного типа с активированным углем динамическая активность составляет 85-95% от статической, а в случае применения силикагеля динамическая активность оказывается меньше статической на 60-70%.

    Селективные свойства адсорбентов .

    В процессах адсорбции, так же как и в процессах абсорбции, поглощающие вещества (адсорбенты обладают селективными свойствами по отношению к поглощаемым газам и парам. Иными словами, применение адсорбционных процессов в качестве метода разделения газовых смесей основано на том, что газовая смесь, приведенная в соприкосновение с адсорбентом, освобождается лишь от одного компонента, в то время как другие оказываются непоглощенными.

    Если в процессах абсорбции селективные качества процесса определялись растворимостью или нерастворимостью газа в поглощающей жидкости, то в процессах адсорбции критерием селективных качеств является статическая активность адсорбента.

    Из смеси газов, приведенных в соприкосновение с адсорбентом, в первую очередь и в значительно большем количестве поглощается газ или пар того вещества, которое имеет более высокую температуру кипения. В большинстве случаев температура кипения поглощаемого газа (например, паров бензола) сильно отличается от температуры кипения инертного газа (например, воздуха) и присутствие инертного газа почти не оказывает влияния на ход процесса. В данном случае поглощение бензола из паровоздушной смеси с парциальной упругостью паров бензола р протекает точно так же, как и поглощение чистых паров бензола, имеющих то же давление.

    Разделение адсорбционным методом смеси газов, компоненты которой имеют близко лежащие температуры кипения, предоставляет большие трудности или практически невозможно.

    1.2 Основные промышленные адсорбенты и их свойства

    Основными промышленными адсорбентами являются пористые тела, обладающие большим объемом микропор. Свойства адсорбентов определяются природой материала, из которого они изготовлены, и пористой внутренней структурой.

    В промышленных адсорбентах основное количество поглощенного вещества сорбируется на стенках микропор (r < 10 9 м). Роль переходных пор (10 -9 < r < 10 -7 м) и макропор (r < 10 -7 м) в основном сводится к транспортированию адсорбируемого вещества к микропорам.

    Адсорбенты характеризуются своей поглотительной, или адсорбционной способностью, определяемой максимально возможной концентрацией адсорбтива в единице массы или объема адсорбента, его пористой структуры, природы поглощаемого вещества, его концентрации, температуры, а для газов и паров - от их парциального давления. Максимально возможную при данных условиях поглотительную способность адсорбента условно называют равновесной активностью .

    По химическому составу все адсорбенты можно разделить на углеродные и неуглеродные. К углеродным адсорбентам относятся активные (активированные угли), углеродные волокнистые материалы, а также некоторые виды твердого топлива. Неуглеродные адсорбенты включают в себя силикагели, активный оксид алюминия, алюмагели, цеолиты и глинистые породы.

    Активные угли, состоящие из множества беспорядочно расположенных микрокристаллов графита, обычно используют для поглощения органических веществ в процессах очистки и разделения жидкостей и газов (паров). Эти адсорбенты получают сухой перегонкой ряда углеродсодержащих веществ (древесины, каменного угля, костей животных, косточек плодов и др.). После этого уголь активируют, например прокаливают его при температуре 850-900 о С, что приводит к освобождению пор от смолистых веществ и образованию новых микропор. Активацию проводят также экстрагированием смол из пор органическими растворителями, окислением кислородом воздуха и др. Более однородная структура углей получается при их активации химическими методами: путем их обработки горячими растворами солей (сульфатами, нитратами и др.) или минеральными кислотами (серной, азотной и др.)

    Качество активированных углей зависит от свойств исходных углеродсодержащих материалов и от условий активации. Характеристикой степени активации активированного угля является обгар, т. е. сгоревшая часть угля, выраженная в процентах от количества исходного материала.

    Активированный уголь применяется при адсорбции либо в виде зерен величиной от 1 до 7 мм, либо в виде порошка. Зерна и порошок получают путем измельчения и классификации. Удельная активная поверхность активных углей выражается величиной от 600 до 1700 м 2 на один грамм. Применяются активированные угли главным образом для поглощения паров органических жидкостей, находящихся в газовых смесях, и для очистки различных растворов от примесей.

    Серьезным недостатком этих углей является горючесть, и применять их можно при температурах не выше 200°. Для уменьшения горючести к ним подмешивают силикагель, однако такая добавка приводит к понижению активности адсорбента, поэтому активированные угли с добавкой к ним силикагеля практически применяют сравнительно редко.

    Силикагелем называют продукт обезвоживания геля кремневой кислоты, получаемого действием серной или соляной кислот или растворов кислых солей на раствор силиката натрия. Выпавший гель кремневой кислоты после промывки высушивается при температуре 115-130° до влажности 5-7%.

    Силикагель отличается однородностью пор как по величине, так и распределению. Применяется силикагель в виде зерен диаметром от 0,2 до 7 мм главным образом для поглощения паров воды, т. е. для сушки газов. Удельная активная поверхность силикагеля выражается величиной порядка 600 м 2 на один грамм.

    К достоинствам силикагелей относятся их негорючесть и большая механическая прочность. Недостатком относится резкое снижение поглотительной способности по отношению к парам органических веществ в присутствии влаги.

    По сорбционным свойствам к силикагелю близко примыкают алюмагели, получаемые термической обработкой гидроксида алюминия при температурах 600-1000 о С. Поры полученного сорбента имеют диаметр 1-3 нм, удельную поверхность 2·10 5 - 4·10 5 м 2 /кг; насыпная плотность такого сорбента 1600 кг/м 3 . Алюмагели используют для осушки газов, очистки водных растворов и минеральных масел.

    Цеолиты представляют собой природные или синтетические минералы, которые являются водными алюмосиликатами, содержащими оксиды щелочных щелочноземельных металлов. Эти адсорбенты отличаются регулярной структурой пор, размеры которых соизмеримы с размерами поглощаемых молекул. Особенность цеолитов состоит в том, что адсорбционные поверхности соединены между собой окнами определенного диаметра, через которые могут проникать только молекулы меньшего размера. На этом основано разделение смесей с разными по размеру молекулами, что послужило причиной называть цеолиты молекулярными ситами.

    Для разделения газовых смесей применяют цеолиты в виде шариков или гранул размером от 1 до 5 мм, а для разделения жидких смесей - в виде мелкозернистого порошка.

    Особенно широко цеолиты используют для глубокой осушки газов и жидкостей, в процессах очистки и разделения смесей веществ с близкой молекулярной массой, а также в качестве в качестве катализаторов и их носителей.

    Для очистки жидкостей от различных примесей в качестве адсорбентов применяют природные глинистые породы. Эти глины для их активации обрабатывают серной или хлороводородной кислотами и получают адсорбент с удельной поверхностью пор порядка (1,0 ч1,5)·10 5 м 2 /кг.

    1.3 Изотерма адсорбции

    Каковы бы ни были взгляды на природу адсорбционных сил, под действием которых частицы газа скапливаются на поверхности твердого тела, бесспорным является то, что между частицами газа, находящимися в газовой фазе, и частицами его, находящимися на поверхности адсорбента, в момент полного насыщения наступает равновесие, т. е. в единицу времени адсорбируется столько частиц, сколько удаляется с поверхности.

    Количество поглощенного вещества, соответствующее равновесному состоянию, зависит от концентрации поглощаемого компонента в газовой смеси или в растворе или, что то же самое, от парциального давления поглощаемого компонента в смеси и может быть выражено уравнением (1.3.1)

    a=f(p) (1.3.1)

    где a - количество вещества, поглощаемого весовой или объемной единицей адсорбента при достижении фазового равновесия, в кгс/кгс или в кгс/м 3 ; р - парциальное давление поглощаемого компонента в газовой фазе в мм pm. cm.

    Кривая, выражающая эту функциональную зависимость при достижении состояния равновесия, называется изотермой адсорбции. Типичные кривые зависимости между количеством поглощаемого компонента и его давлением приведены на рис. 1.3.1

    Рис. 1.3.1 - Кривые абсорбции

    2. Закономерности процесса адсорбции

    2.1 Теории адсорбции

    Единой теории, которая достаточно корректно описывала бы все виды адсорбции на разных поверхностях раздела фаз, не имеется; рассмотрим поэтому некоторые наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела твердое тело - газ или твердое тело - раствор.

    Теория мономолекулярной адсорбции Ленгмюра

    Теория мономолекулярной адсорбции, которую разработал американский химик И. Ленгмюр, основывается на следующих положениях.

    1) Адсорбция является локализованной и вызывается силами, близкими к химическим.

    2) Адсорбция происходит не на всей поверхности адсорбента, а на активных центрах , которыми являются выступы либо впадины на поверхности адсорбента, характеризующиеся наличием т.н. свободных валентностей. Активные центры считаются независимыми (т.е. один активный центр не влияет на адсорбционную способность других), и тождественными.

    3) Каждый активный центр способен взаимодействовать только с одной молекулой адсорбата ; в результате на поверхности может образоваться только один слой адсорбированных молекул.

    4) Процесс адсорбции является обратимым и равновесным - адсорбированная молекула удерживается активным центром некоторое время, после чего десорбируется; т.о., через некоторое время между процессами адсорбции и десорбции устанавливается динамическое равновесие.

    Рис. 2.1.1 - Изотерма мономолекулярной адсорбции

    В состоянии равновесия скорость адсорбции равна скорости десорбции. Скорость десорбции прямо пропорциональна доле занятых активных центров (х), а скорость адсорбции прямо пропорциональна произведению концентрации адсорбата на долю свободных активных центров (1 - х):

    Отсюда находим х:

    Разделив числитель и знаменатель правой части уравнения (2.1.4) на k A , получим:

    Максимально возможная величина адсорбции Г о достигается при условии, что все активные центры заняты молекулами адсорбата, т.е. х = 1. Отсюда следует, что х = Г / Г о. Подставив это в уравнение (2.1.5), получаем:

    Уравнение (2.1.7) есть изотерма мономолекулярной адсорбции , связывающая величину адсорбции Г с концентрацией адсорбата С. Здесь b - некоторая постоянная для данной пары адсорбент-адсорбат величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров. График изотермы адсорбции Ленгмюра приведен на рис. 2.1.1. Константу b можно определить графически, проведя касательную к изотерме адсорбции в точке С = 0.

    При описании процесса адсорбции газов в уравнении (2.1.7) концентрация может быть заменена пропорциональной величиной парциального давления газа:

    Теория мономолекулярной адсорбции Ленгмюра применима для описания некоторых процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата.

    Теория полимолекулярной адсорбции Поляни

    На практике часто (особенно при адсорбции паров) встречаются т.н. S-образные изотермы адсорбции (рис. 2.1.2), форма которых свидетельствует о возможном, начиная с некоторой величины давления, взаимодействии адсорбированных молекул с адсорбатом.

    Рис. 2.1.2 - Изотерма полимолекулярной адсорбции

    Для описания таких изотерм адсорбции М. Поляни предложил теорию полимолекулярной адсорбции , основанную на следующих основных положениях:

    1. Адсорбция вызвана чисто физическими силами .

    2. Поверхность адсорбента однородна , т.е. на ней нет активных центров; адсорбционные силы образуют непрерывное силовое поле вблизи поверхности адсорбента.

    3. Адсорбционные силы действуют на расстоянии, большем размера молекулы адсорбата. Иначе говоря, у поверхности адсорбента существует некоторый адсорбционный объём , который при адсорбции заполняется молекулами адсорбата.

    4. Притяжение молекулы адсорбата поверхностью адсорбента не зависит от наличия в адсорбционном объеме других молекул, вследствие чего возможна полимолекулярная адсорбция.

    5. Адсорбционные силы не зависят от температуры и, следовательно, с изменением температуры адсорбционный объем не меняется.

    Уравнение Фрейндлиха

    Теоретические представления, развитые Ленгмюром и Поляни, в значительной степени идеализируют и упрощают истинную картину адсорбции. На самом деле поверхность адсорбента неоднородна, между адсорбированными частицами имеет место взаимодействие, активные центры не являются полностью независимыми друг от друга и т.д. Все это усложняет вид уравнения изотермы. Г. Фрейндлих показал, что при постоянной температуре число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т.н. удельная адсорбция x/m), пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенным в некоторую степень, которая всегда меньше единицы:

    Рис.2.1.3 - Изотерма адсорбции Фрейндлиха в обычных (а) и

    логарифмических координатах (б)

    Показатель степени n и коэффициент пропорциональности а в уравнении Фрейндлиха определяются экспериментально. Логарифмируя уравнения (2.1.9 - 2.1.10), получаем:

    Т.о., зависимость логарифма удельной адсорбции от логарифма концентрации (давления) графически выражается прямой линией, отсекающей на оси ординат отрезок, равный lg a, тангенс угла наклона которой к оси абсцисс равен по величине показателю степени при давлении или концентрации (рис. 2.1.3):

    2.2 Адсорбция на границе раствор - пар

    В жидких растворах поверхностное натяжение у является функцией от концентрации растворенного вещества. На рис. 2.2.1 представлены три возможных зависимости поверхностного натяжения от концентрации раствора (т.н. изотермы поверхностного натяжения). Вещества, добавление которых к растворителю уменьшает поверхностное натяжение, называют поверхностно-активными (ПАВ), вещества, добавление которых увеличивает или не изменяет поверхностное натяжение - поверхностно-инактивными (ПИАВ).

    Рис. 2.2.1 - Изотермы поверхностного Рис. 2.2.2 - Изотерма адсорбции

    натяжения растворов ПАВ (1, 2) и ПАВ на границе раствор-пар

    Уменьшение поверхностного натяжения и, следовательно, поверхностной энергии происходит в результате адсорбции ПАВ на поверхности раздела жидкость - пар, т.е. того, что концентрация поверхностно-активного вещества в поверхностном слое раствора оказывается больше, чем в глубине раствора.

    Количественной мерой адсорбции на границе раствор-пар является поверхностный избыток Г (гамма), равный числу молей растворенного вещества в поверхностном слое. Количественное соотношение между адсорбцией (поверхностным избытком) растворенного вещества и изменением поверхностного натяжения раствора с ростом концентрации раствора определяет изотерма адсорбции Гиббса :

    График изотермы адсорбции ПАВ представлен на рис. 2.2.1 Из уравнения (2.2.1) следует, что направление процесса - концентрирование вещества в поверхностном слое или, наоборот, нахождение его в объеме жидкой фазы - определяется знаком производной dу/dС. Отрицательная величина данной производной соответствует накоплению вещества в поверхностном слое (Г > 0), положительная - меньшей концентрации вещества в поверхностном слое по сравнению с его концентрацией в объеме раствора.

    Величину g = -dу/dС называют также поверхностной активностью растворенного вещества. Поверхностную активность ПАВ при некоторой концентрации С 1 определяют графически, проводя касательную к изотерме поверхностного натяжения в точке С = С 1 ; при этом поверхностная активность численно равна тангенсу угла наклона касательной к оси концентраций:

    Нетрудно заметить, что с ростом концентрации поверхностная активность ПАВ уменьшается. Поэтому поверхностную активность вещества обычно определяют при бесконечно малой концентрации раствора; в этом случае её величина, обозначаемая g о, зависит только от природы ПАВ и растворителя. Исследуя поверхностное натяжение водных растворов органических веществ, Траубе и Дюкло установили для гомологических рядов поверхностно-активных веществ следующее эмпирическое правило:

    В любом гомологическом ряду при малых концентрациях удлинение углеродной цепи на одну группу СН 2 увеличивает поверхностную активность в 3 - 3.5 раза.

    Для водных растворов жирных кислот зависимость поверхностного натяжения от концентрации описывается эмпирическим уравнением Шишковского :

    Здесь b и K - эмпирические постоянные, причём значение b одинаково для всего гомологического ряда, а величина К увеличивается для каждого последующего члена ряда в 3 - 3,5 раза.

    Рис. 2.2.3 - Предельная ориентация молекул ПАВ в поверхностном слое

    Молекулы большинства ПАВ обладают дифильным строением, т.е. содержат как полярную группу, так и неполярный углеводородный радикал. Расположение таких молекул в поверхностном слое энергетически наиболее выгодно при условии ориентации молекул полярной группой к полярной фазе (полярной жидкости), а неполярной - к неполярной фазе (газу или неполярной жидкости). При малой концентрации раствора тепловое движение нарушает ориентацию молекул ПАВ; при повышении концентрации происходит насыщение адсорбционного слоя и на поверхности раздела фаз образуется слой "вертикально" ориентированных молекул ПАВ (рис. 2.2.3). Образование такого мономолекулярного слоя соответствует минимальной величине поверхностного натяжения раствора ПАВ и максимальному значению адсорбции Г (рис. 2.2.1-2.2.2); при дальнейшем увеличении концентрации ПАВ в растворе поверхностное натяжение и адсорбция не изменяются.

    2.3 Адсорбция на границе твердое тело - газ

    При адсорбции газов на твердых телах описание взаимодействия молекул адсорбата и адсорбента представляет собой весьма сложную задачу, поскольку характер их взаимодействия, определяющий характер адсорбции, может быть различным. Поэтому обычно задачу упрощают, рассматривая два крайних случая, когда адсорбция вызывается физическими или химическими силами - соответственно физическую и химическую адсорбцию.

    Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий. Она характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т.е. экзотермичностью, причем тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата (10 - 80 кДж/моль). Таковой является, например, адсорбция инертных газов на угле.

    Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата. Хемосорбция обычно необратима; химическая адсорбция, в отличие от физической, является локализованной, т.е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40 - 120 кДж/моль, повышение температуры способствует её протеканию. Примером химической адсорбции является адсорбция кислорода на вольфраме или серебре при высоких температурах.

    Следует подчеркнуть, что явления физической и химической адсорбции чётко различаются в очень редких случаях. Обычно осуществляются промежуточные варианты, когда основная масса адсорбированного вещества связывается сравнительно слабо и лишь небольшая часть - прочно. Например, кислород на металлах или водород на никеле при низких температурах адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать химическая адсорбция. При повышении температуры увеличение химической адсорбции с некоторой температуры начинает перекрывать падение физической адсорбции, поэтому температурная зависимость адсорбции в этом случае имеет четко выраженный минимум (рис. 2.3.1).

    Рис. 2.3.1 - Зависимость объема адсорбированного никелем водорода от

    температуры

    При постоянной температуре количество адсорбированного вещества зависит только от равновесных давления либо концентрации адсорбата; уравнение, связывающее эти величины, называется изотермой адсорбции.

    2.4 Адсорбция на границе твердое тело - раствор

    2.4.1 Молекулярная адсорбция из растворов

    Изотермы адсорбции растворенных веществ из раствора по своему виду аналогичны изотермам адсорбции для газов; для разбавленных растворов эти изотермы хорошо описываются уравнениями Фрейндлиха или Ленгмюра, если в них подставить равновесную концентрацию растворенного вещества в растворе. Однако адсорбция из растворов является значительно более сложным явлением по сравнению с газовой, поскольку одновременно с адсорбцией растворенного вещества часто происходит и адсорбция растворителя.

    Рис. 2.4.1 - Ориентация молекул ПАВ на поверхности адсорбента

    Зависимость адсорбции от строения молекул адсорбата очень сложна, и вывести какие-либо закономерности довольно трудно. Молекулы многих органических веществ состоят из полярной (гидрофильной) и неполярной (гидрофобной) группировок, т.е. являются поверхностно-активными веществами. Молекулы ПАВ при адсорбции на твердом адсорбенте ориентируются на его поверхности таким образом, чтобы полярная часть молекулы была обращена к полярной фазе, а неполярная - к неполярной. Так, при адсорбции алифатических карбоновых кислот из водных растворов на неполярном адсорбенте - активированном угле - молекулы ориентируются углеводородными радикалами к адсорбенту; при адсорбции из бензола (неполярный растворитель) на полярном адсорбенте - силикагеле - ориентация молекул кислоты будет обратной (рис. 2.4.1).

    2.4.2 Адсорбция из растворов электролитов

    Адсорбция из водных растворов электролитов происходит, как правило, таким образом, что на твердом адсорбента из раствора адсорбируются преимущественно ионы одного вида. Преимущественная адсорбция из раствора или аниона, или катиона определяется природой адсорбента и ионов. Механизм адсорбции ионов из растворов электролитов может быть различным; выделяют обменную и специфическую адсорбцию ионов. Обменная адсорбция представляет собой процесс обмена ионов между раствором и твердой фазой, при котором твердая фаза поглощает из раствора ионы какого-либо знака (катионы либо анионы) и вместо них выделяет в раствор эквивалентное число других ионов того же знака. Обменная адсорбция всегда специфична, т.е. для данного адсорбента к обмену способны только определенные ионы; обменная адсорбция обычно необратима.

    При специфической адсорбции адсорбция на поверхности твердой фазы ионов какого-либо вида не сопровождается выделением в раствор эквивалентного числа других ионов того же знака; твердая фаза при этом приобретает электрический заряд. Это приводит к тому, что вблизи поверхности под действием сил электростатического притяжения группируется эквивалентное число ионов с противоположным зарядом, т.е. образуется двойной электрический слой. Взаимодействие концентрирующихся на поверхности зарядов приводит к понижению поверхностной энергии системы. Для случая специфической адсорбции электролита Песковым и Фаянсом было сформулировано следующее эмпирическое правило (правило Пескова - Фаянс а ):

    На поверхности кристаллического твердого тела из раствора электролита специфически адсорбируется ион, который способен достраивать его кристаллическую решетку или может образовывать с одним из ионов, входящим в состав кристалла, малорастворимое соединение.

    3. Оборудование, реализующее процесс адсорбции

    3.1 Адсорбция с неподвижным слоем адсорбента

    Наиболее широко в настоящее время распространен в промышленности периодический метод адсорбции с неподвижным слоем адсорбента. Адсорбция проводится за четыре операции (циклы): поглощение (адсорбция) углем газа из смеси, отгонка его из угля (десорбция), сушка угля и охлаждение. После охлаждения адсорбер снова включается на поглощение. Таким образом, для непрерывного поглощения необходимо иметь несколько адсорберов, которые поочередно включаются на поглощение. Обычно установки состоят из двух, трех или четырех адсорберов.

    Рис. 3.1.1- Схема установки для адсорбции активированным углем:

    /, // -адсорберы; 1, 3 - конденсаторы; 2, 4 - сепараторы; 5 - газодувка;

    6 - подогреватель; 7 - конденсатор; а, б, в, г, д, е - задвижки

    На рис. 3.1.1 показана схема адсорбционной установки, предназначенной для извлечения углеводородов из газов. В адсорбере / происходит поглощение, а в адсорбере // за это же время-десорбция, сушка и охлаждение. Из адсорбера / газ поступает в распределительную линию. На схеме показан цикл десорбции в адсорбере // , поэтому задвижки а и б открыты и в адсорбер поступает водяной пар. Отогнанные углеводороды вместе с водяными парами поступают в конденсатор 1, где конденсируется большая часть водяных паров; образующаяся при этом вода отделяется в сепараторе 2, а пары углеводородов с оставшимся небольшим количеством водяного пара конденсируются в конденсаторе 3. Вода отделяется в сепараторе 4; из сепаратора углеводороды направляются в сборник, а неконденсирующиеся пары-на компрессию для перевода их в конденсат.

    После окончания десорбции задвижки а и б закрывают, открывают задвижки б, г, д и пускают в ход газодувку 5. Перед этим подается водяной пар в подогреватель б; нагреваясь в нем, газ поступает в адсорбер // через задвижки в и г. Выходя из адсорбера // через задвижку д, газ попадает в конденсатор 7 и далее засасывается газодувкой 5. Через некоторое время, когда из адсорбера // будет вытеснен оставшийся в нем после десорбции водяной пар и сконденсирован в конденсаторе 7, задвижку е закрывают и начинается циркуляция газа: через газодувку, подогреватель 6, адсорбер //, конденсатор 7 и снова газодувку. Поглощаемая газом в адсорбере // влага конденсируется в конденсаторе 7. После окончания сушки прекращают подачу пара в подогреватель 6 и газ направляется мимо него; при этом начинается цикл охлаждения адсорбера //. По его окончании газодувку 5 выключают, а задвижки переключают для перевода адсорбера //на поглощение, а адсорбер / на десорбцию.

    Процесс адсорбции проводят также за три цикла. В этом случае после окончания первого цикла-адсорбции уголь нагревается горячим инертным газом и выделяющиеся при этом пары поглощенного вещества отводятся в конденсатор. Этот цикл-десорбция заканчивается продувкой угля водяным паром, после чего уголь охлаждается холодным воздухом. Таким образом, при этом методе отсутствует цикл сушки и полная регенерация угля достигается при охлаждении.

    Известен также метод адсорбции, проводимый за два цикла; при этом нагретую паровоздушную смесь пропускают через горячий и влажный активированный уголь и одновременно с поглощением паров происходит также подсушивание угля. Затем через уголь пропускают холодную паровоздушную смесь с тем, чтобы одновременно с поглощением происходило охлаждение адсорбента. После окончания адсорбции производится десорбция водяным паром, после чего через горячий и влажный уголь вновь пропускают нагретую паровоздушную смесь. Экономически наиболее выгодным является именно этот метод, проводимый за два цикла, так как расход энергии меньше, а производительность установки значительно выше.

    Рис. 3.1.2 - Угольный адсорбер:

    1 - корпус; 2 - решетка; 3 - парораспределитель; 4 - вход

    паровоздушной смеси; 5 - выход непоглощенного газа;

    6 - выход влаги

    На рис. 3.1.2 представлен вертикальный угольный адсорбер; активированный уголь располагается в виде слоя на решетке 2, паровоздушная смесь подается под решетку по трубе 4, а не поглощенная часть паровоздушной смеси удаляется через патрубок 5.

    На рис. 3.1.3 представлен горизонтальный адсорбер и на рис. 6 кольцевой адсорбер, устройство которых не требует пояснении.

    Рис. 3.1.3 - Горизонтальный адсорбер

    3.2 Адсорбция силикагелем

    Гель двуокиси кремния Si0 2 , или силикагель, применяется в сорбционной технике в виде зерен (напоминающих по размерам и структуре гранулированный уголь) или в виде тончайшей пыли.

    Адсорбционные установки, работающие на зернистом силикагеле, аналогичны установкам на активированном угле с применением регенерации адсорбента.

    Применение пылеобразного силикагеля позволяет осуществлять процесс адсорбции непрерывным методом с движением адсорбента и адсорбтива противотоком друг к другу (рис. 3.2.2).

    Рис. 3.2.1 - Кольцевой адсорбер:

    1 - корпус адсорбера; 2- слой адсорбента

    В адсорбер 1, который представляет собой полый стальной цилиндрический аппарат, состоящий из нескольких царг, снизу поступает газовая смесь. Навстречу газовому потоку в адсорбере перемещается сверху вниз охлажденная пыль силикагеля. Для полного поглощения адсорбтива достаточно контакта фаз в течение непродолжительного времени; пыль силикагеля, собирающаяся внизу аппарата, является насыщенной, а газы, уходящие из адсорбера, не содержат поглощаемого компонента. Отработанный силикагель из нижней части аппарата перемещается шнеком и подается в десорбер 2, где происходят одновременно десорбция и регенерация путем нагревания.

    Освобожденная от поглощаемого газа газовая смесь выходит из адсорбера 1 в верхней части его и. пройдя последовательно через циклон 7 и пылеуловитель 8, подается газодувкой 9 в атмосферу или в какие-нибудь аппараты для дальнейшей обработки. Циклон соединяется трубопроводом с нижней частью аппарата, и осевшая в нем пыль адсорбента «самотеком» перемещается в десорбер. Для пневматического перемещения пыли силикагеля из десорбера в адсорбер используют газы, освобожденные от поглощаемого компонента, для чего отводящий газопровод соединен также с газодувкой 5.

    Рис. 3.2.2 - Схема установки для адсорбции силикагелем:

    1 - адсорбер; 2 - десорбер; 3 - конденсатор; 4 - сборник;

    5, 9 - газодувка; 6 - холодильник; 7 - циклон; 8 - пылеуловитель

    Активность силикагеля несколько меньше, чем активированного угля; степень поглощения силикагелем составляет в среднем 92% и в лучшем случае достигает 95-97%. В то же время силикагель обладает преимуществами по сравнению с активированным углем: меньше расходуется адсорбента, так как силикагель может работать непрерывно гораздо дольше активированного угля и десорбция из силикагеля может проводиться при более высоких температурах.

    Десорбер представляет собой нагреватель, имеющий несколько пустотелых полок, в которых циркулируют дымовые газы.

    Пыль силикагеля постепенно перемещается в десорбере сверху вниз, с полки на полку, при помощи гребков. В десорбере из адсорбента полностью удаляются поглощенные им газы и пары. Образовавшиеся в десорбере пары поглощенного вещества направляются в конденсатор 3, и после конденсации собираются в сборник 4. Регенерированная пыль силикагеля через нижний шнек удаляется из десорбера. затем подается пневматически (газодувкой 5) через холодильник 6 в верхнюю часть адсорбера для повторного поглощения. Таким образом, осуществляется непрерывная адсорбция и замкнутая циркуляция пыли силикагеля в системе.

    Расход адсорбента определяют по его динамической активности, которая для заданных условий принимается по опытным данным. Скорость десорбции газа, равно как и время, необходимое для осуществления регенерации адсорбента, также определяют по опытным данным.

    3.3 Гиперсорбция

    адсорбция промышленный адсорбент изотерма

    В нефтяной промышленности для разделения газов пиролиза нефти находит применение метод непрерывной адсорбции в движущемся слое адсорбента. Этот метод, названный гиперсорбцией , отличается более высокой производительностью установок по сравнению с установками периодического действия, работающими с неподвижным слоем адсорбента, а также более высокой степенью разделения газовых смесей на составляющие их компоненты.

    Схема одной из простейших адсорбционных установок непрерывного действия представлена на рис. 3.3.1.

    Основным аппаратом установки является колонна 5, разделенная на несколько секций. Внутри этой колонны под действием силы тяжести твердый гранулированный адсорбент движется сверху вниз со скоростью, регулируемой механизмом выгрузки 8.

    Газовая смесь, подлежащая разделению, подается в колонну разделения через специальную распределительную тарелку 4 и, проходя по адсорбционной секции колонны 3 противотоком к адсорбенту, отдает ему хорошо адсорбируемые компоненты, которые и поглощаются адсорбентом. Неадсорбированный газ проходит через холодильник 2, где охлаждается кодой, и удаляется из верхней части колонны в виде головной фракции.

    Рис. 3.3.1 - Схема установки для непрерывного разделения газовых

    смесей методом гиперсорбции:

    1 - бункер; 2 - холодильник; 3 - адсорбционная секция;

    4 - распределительная тарелка; 5 - колонна; 6 - ректификационная

    секция; 7 - отпарная секция; 8 - механизм выгрузки; 9 - газлифт;

    10 - реактиватор; 11 - газодувка

    Однако регенерация силикагеля и десорбция из него адсорбтива могут значительно отличаться от методов регенерации угля и десорбции из него адсорбированных продуктов. Отличие в методе регенерации вызвано тем, что силикагель не меняет своей структуры и адсорбционных качеств под воздействием высокой температуры. Так, например, широко практикуется регенерация силикагеля путем нагревания его до 300°, в то время как нагревание активированного угля даже до 200° недопустимо.

    Адсорбцию силикагелем производят на установках с автоматическим переключением адсорберов, в которых десорбция и регенерация осуществляются одновременно путем продувки через адсорбент горячего воздуха.

    Применение пылеобразного силикагеля позволяет осуществлять процесс адсорбции непрерывным методом с движением адсорбента и адсорбтива противотоком друг к другу

    Десорбция поглощенного газа осуществляется в отпарной секции 7 колонны глухим паром и отдувкой сорбента острым перегретым паром. Последний выводится вместе с тяжелой фракцией-донным продуктом - и отделяется от него конденсацией.

    В ректификационной секции 6 установки десорбированный компонент выводится из колонны в виде бокового и донного продуктов. При повышении температуры десорбированные тяжелые компоненты поднимаются в виде «флегмы» вверх по колонне, вытесняя плохо сорбируемые компоненты. Благодаря такому «флегмированию» может быть получен донный продукт высокой степени чистоты.

    Освобожденный от поглощенных газов адсорбент после десорбции подается из нижней части колонны снова в бункер 1 колонны при помощи газлифта 9 газодувкой 11 и из бункера снова в колонну, совершая таким образом непрерывную циркуляцию.

    В качестве адсорбента в описанной установке применяется активированный уголь высокой активации.

    Для того чтобы активность угля не падала, часть адсорбента, направляемого газлифтом в бункер, отбирается и пропускается через реактиватор 10, где отпаривается при более высокой температуре. Реактиватор обогревается топочными газами. Отдувка сорбента производится острым паром, который отводится вверху реактиватора вместе с продуктами отдувки. Благодаря реактивации активность сорбента при длительной работе установки не снижается.

    Работа установки полностью автоматизирована, что способствует получению продуктов высокой чистоты (99%).

    Потери адсорбента от износа составляют за один цикл от 0,001 до 0.0005%.

    Производительность колонны разделения определяется максимально допустимыми нагрузками по газу на единицу сечения колонны, при которых газовый поток еще не разрыхляет (взвешивает) слой адсорбента. При разделении газовых смесей нагрузка будет наибольшей в адсорбционной секции колонны. Особенно велика нагрузка адсорбционной секции колонны по сравнению с нагрузкой ректификационных секций в тех случаях, когда разделяемая смесь содержит большое количество легких компонентов. Для повышения производительности колонны в ней устанавливают несколько питающих тарелок, имеющих каждая свою адсорбционную секцию, где осуществляется противоточный контакт газа со свежим адсорбентом. Это достигается индивидуальной подачей адсорбента в верхнюю часть каждой секции и регулированием соответствующего отбора в основании каждой секции с помощью специального распределителя. Схема колонны с двумя питающими тарелками представлена на рис. 3.3.2.

    Рис. 3.3.2. - Схема колонны с двумя тарелками питания:

    I, II - адсорбционные секции; 1 - перегородка; 2 - внутриколонная

    труба для подачи свежего адсорбента во вторую адсорбционную

    секцию; 3 - распределительное устройство

    Колонна имеет две адсорбционные секции I и II, разделенные перегородкой 1. Свежий адсорбент подается в секцию II по внутриколонным трубам 2. Оба потока сорбента из двух секций соединяются в пространстве, где помещается распределительное устройство 3, и направляются в ректификационную секцию колонны. Газ при этом также разделяется на два потока, каждый из которых проходит свою адсорбционную секцию. Повышение производительности при этом приблизительно прямо пропорционально числу питающих тарелок.

    Распределительная тарелка имеет назначение равномерно распределять газ по сечению колонны и предотвращать унос сорбента газами. Тарелка представляет собой плоскую плиту с отверстиями, в которые завальцованы в определенном порядке патрубки длиной 0,46-0,61 м. Тарелки монтируются патрубками вниз; через патрубки движется адсорбент.

    Механизм выгрузки определяет скорость движения адсорбента по колонне и сохраняет направление этой скорости в плоскости по всему сечению колонны. Он состоит из трех описанных выше распределительных тарелок с патрубками; две тарелки неподвижны, а одна-средняя-движется. При возвратно-поступательном движении патрубки средней тарелки попеременно заполняются сорбентом, ссыпающимся с верхней тарелки, и разгружаются через патрубки нижней тарелки. Скорость циркуляции сорбента определяется частотой колебаний подвижной тарелки. Благодаря большому числу патрубков и равномерному их распределению в тарелках выгрузка сорбента с единицы площади сечения колонны везде одинакова, что определяет его плоскопараллельное движение.

    Передача адсорбента из колонны в газлифт осуществляется через гидрозатвор, схема устройства которого показана на рис. 3.3.3. Гидрозатвор представляет собой высокую трубу 1 небольшого диаметра, заполненную сорбентом. В нижней части гидрозатвора установлен механизм выгрузки клапанного типа 2, который связан с указателем уровня, помещенным в верхней части гидрозатвора. Такая связь обеспечивает синхронность выгрузки обоими механизмами и заполненность гидрозатвора сорбентом. Гидрозатвор устраняет возможность перетока в колонну газа, подаваемого газодувкой в газлифт.

    Рис. 3.3.3 - Схема устройства гидрозатвора:

    1 - труба: 2 - механизм выгрузки; 5 - тарельчатый механизм;

    4 - отпарная секция

    Водяной холодильник 2 и отпарная секция 7 выполнены в виде кожухотрубных теплообменников высотой 0,4 м. Сорбент движется внутри трубок диаметром 25 мм, развальцованных в трубных решетках. Таких трубок в холодильнике 1335, а в отпарной секции-920. Реактиватор по конструкции аналогичен отпарной секции колонны.

    Колонна имеет диаметр 1370 мм и общую высоту 26 м. Высота ректификационной секции 1520 мм. Рабочее давление 5,3 ат м . Действительная скорость циркуляции адсорбента 8160 кгс/час; температура отпаривания 260°. Производительность установки 2108 нм3/час.

    3.4 Адсорбция в кипящем (псевдоожиженном) слое

    За последнее время в ряде отраслей промышленности находит применение адсорбция в кипящем слое, которая по сравнению с адсорбцией в неподвижном слое имеет ряд преимуществ, а именно:

    1) при сорбции адсорбентом, находящимся в псевдоожиженном состоянии, вследствие интенсивного движения частиц не происходит послойной отработки адсорбента;

    2) вследствие интенсивного перемешивания частиц адсорбента температура в кипящем слое выравнивается и предотвращается перегрев;

    3) адсорбент, находящийся в псевдоожиженном состоянии, оказывает относительно очень малое гидравлическое сопротивление;

    4) адсорбент представляет собой текучую фазу, легко транспортируемую из аппарата в аппарат.

    Вместе с этим адсорбция в кипящем слое имеет и свои недостатки:

    1) в кипящем слое адсорбента отработавшие частицы адсорбента смешаны с неотработавшими. Поток, выходящий из адсорбера, встретив отработавшие частицы адсорбента, может вызвать десорбцию, что отрицательно скажется на степени разделения газовой смеси;

    2) вследствие интенсивного перемешивания частиц адсорбента в кипящем слое происходит их истирание; поэтому к адсорбенту предъявляются особые требования по механической прочности;

    3) при интенсивном движении частиц адсорбента в кипящем слое усиливается эрозия стенок аппарата.

    На рис. 3.4.1 дана схема колонного аппарата для адсорбции в кипящем слое, применяемого при разделении углеводородных газов. Колонна снабжена контактными колпачковыми тарелками, схема устройства которых представлена на рис. 3.4.2. Частицы адсорбента, движущегося по колонне сверху вниз, переходят с тарелки на тарелку по переточным стаканам 1. Газ, который поддерживает частицы адсорбента на тарелке в состоянии псевдоожижения, проходит снизу вверх через патрубки 2 с колпачками 3. Для большей турболизации кипящего слоя установлены вертикальные перегородки 4, а для осуществления теплообмена-пучок трубок 5, в которых в зависимости от условий процесса может протекать охлаждающий или нагревающий агент.

    Подобные документы

      Классификация процесса адсорбции: основные определения и понятия. Общая характеристика ряда промышленных адсорбентов и их свойства. Теории адсорбции. Оборудование, реализующее этот процесс. Особенности протекания различных видов химической адсорбции.

      курсовая работа , добавлен 15.11.2011

      Изучение основных видов адсорбции. Факторы, влияющие на скорость адсорбции газов и паров. Изотерма адсорбции. Уравнение Фрейндлиха и Ленгмюра. Особенности адсорбции из растворов. Правило Ребиндера, Панета-Фаянса-Пескова. Понятие и виды хроматографии.

      презентация , добавлен 28.11.2013

      Понятие и единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции. Поверхностно-активные и поверхностно-инактивные вещества. Уравнения адсорбционного равновесия.

      реферат , добавлен 22.01.2009

      Характеристика способов регенерации угля. Сферы и задачи использования углеродных сорбентов при очистке воздуха и газов. Теоретические аспекты кинетики адсорбции. Современное состояние и перспективы использования СВЧ-энергии в технологических процессах.

      курсовая работа , добавлен 24.05.2015

      Аппараты для проведения адсорбции. Схема технологического процесса. Диффузионный критерий Нуссельта. Определение продолжительности адсорбции. Механический расчет кольцевого адсорбера. Расчет тонкостенных обечаек. Гидравлическое сопротивление слоя.

      курсовая работа , добавлен 24.03.2015

      Диффузионный и смешанный механизм адсорбции. Роль электростатических взаимодействий в процессе адсорбции ионогенных ПАВ на межфазной границе раздела жидкость–газ. Исследование динамического поверхностного натяжения водных растворов алкилсульфатов натрия.

      дипломная работа , добавлен 10.02.2012

      Изотерма адсорбции паров дихлорэтана на активном угле. Диаметр и высота адсорбера. Коэффициент внутренней массопередачи. Продолжительность адсорбции, выходная кривая. Построение профиля концентрации в слое адсорбента. Вспомогательные стадии цикла.

      курсовая работа , добавлен 10.06.2014

      Применение уравнения Фрейндлиха и Ленгмюра для описания адсорбции поверхностно-активных веществ на твердом адсорбенте. Определение предельной адсорбции уксусной кислоты из водного раствора на активированном угле; расчет удельной поверхности адсорбента.

      лабораторная работа , добавлен 16.06.2013

      Изотермы адсорбции паров пористых углеродных материалов, полученные из углеродсодержащего сырья. Наиболее эффективный поглотитель по отношению к остальным сорбентам. Адсорбционная способность сорбентов по отношению к парам летучих углеводородов.

      курсовая работа , добавлен 20.01.2010

      Изучение теории и составляющих факторов реакции адсорбции полимеров. Гелеобразование геллана. Методика определения количества адсорбированных полимеров на поверхности кернов. Влияние предварительной активации поверхности на кинетику адсорбции полимера.

    Адсорбция является универсальным методом, позволяющим практически полностью извлечь примесь из газовой или жидкой среды. В химической промышленности, в частности в ТНВ, адсорбционный метод широко используется для гладкой очистки и осушки технологических потоков, улучшения качества сырья и продуктов и является одним из методов защиты окружающей среды.

    Адсорбция – это концентрирование веществ на поверхности или в объеме твердого тела. В процессе адсорбции участвуют как минимум два компо­нента. Твердое вещество, на поверхно­сти или в объеме которого происходит концентрирование поглощаемого веще­ства, называется адсорбентом . Поглощаемое вещество, находящееся в газовой или жидкой фазе называется адсорбтивом , а после того, как оно перешло в адсорбированное состояние – адсорбатом . Любое твердое вещество обладает поверхностью, и следовательно, потенциально является адсорбентом. Однако, в технике используют твердые адсорбенты с развитой внутренней поверхностью. Развитие внутренней поверхности в твердом теле достигается путем создания специальных условий в процессе его синтеза или в результате дополнительной обработки.

    С термодинамической точки зрения адсорбция проявляется с уменьшением свободной энергии Гиббса (G). Как и все процессы, сопровождающие уменьшением энергии Гиббса, адсорбция является самопроизвольным процессом. Переход вещества из газовой или жидкой фазы в адсорбированное состояние связан с потерей по меньшей мере одной степени свободы, (трехмерная объемная газовая или жидкая фаза  двухмерная поверхностная фаза), что ведет к уменьшению энтропии системы (S). Поскольку энтальпия (Н) связана с энергией Гиббса и энтропией уравнением Н = G + TS, то в процессе адсорбции она убывает, и следовательно, адсорбция – процесс экзотермический.

    Адсорбционные явления делят на два основных типа: физическую адсорбцию и хемосорбцию (сорбцию, основанную на силах химического взаимодействия). Физическая адсорбция вызывается силами молекулярного взаимодействия: дисперсионными и электростатическими. Дисперсионные силы вносят основной вклад в энергию взаимодействия молекул. Так, молекулы любого адсорбтива обладают флуктуирующими диполями и квадруполями, вызывающими мгновенные отклонения распределения электронной плотности от среднего распределения. При сближении молекул адсорбтива с атомами или молекулами адсорбента движение флуктуирующих диполей приобретает систематический и строго упорядоченный характер, что приводит к возникновению притяжения между ними. В ряде случаев дисперсионные силы усиливаются электростатическими силами – ориентационными и индукционными. Ориентационные силы возникают при взаимодействии полярных молекул с поверхностью, содержащей, электростатические заряды (ионы, диполи), а индукционные – вызываются изменением электронной структуры молекул адсорбтива и адсорбента под действием друг друга.

    В отличие от физической адсорбции, при хемосорбции не сохраняется индивидуальность адсорбтива и адсорбента. При сближении молекул адсорбтива с поверхностью адсорбента происходит перераспределение электронов взаимодействующих компонентов с образованием химической связи. Если физическую адсорбцию можно сравниь с конденсацией, то хемосорбция рассматривается как химический процесс, протекающий на поверхности раздела фаз.

    Физическую адсорбцию и хемосорбцию можно отличить на основании численного значения теплоты адсорбции. Теплота адсорбции компонентов промышленных газов соизмерима с теплотой их конденсации и не превышает 85-125 кДж/моль. Теплота хемосорбции одного моля вещества достигает нескольких сотен кДж. Хемосорбция, как правило, протекает с небольшой скоростью, это обстоятельство часто используется для ее распознания. Кроме того, хемосорбция может протекать при высоких температурах, когда физическая адсорбция пренебрежимо мала. При хемоморбции характерным является резкое, скачкообразное изменение поглотительной способности по извлекаемому компоненту при переходе от адсорбента одной химической природы к адсорбенту другой природы. При хемосорбции адсорбированные молекулы не могут перемещаться по поверхности адсорбента, их положение фиксировано, и такая адсорбция называется локализованной. Физическая адсорбция может быть как локализованной, так и не локализованной. Обычно, при повышении температуры молекулы приобретают подвижность и характер процесса изменяется: локализованная адсорбция переходит в нелокализованную.



    Поделиться