Какие растворы имеют кислую среду. Гидролиз солей

Исследуем действие универсального индикатора на растворы некоторых солей

Как мы видим, среда первого раствора — нейтральная (рН=7), второго — кислая (рН < 7), третьего щелочная (рН > 7). Чем же объяснить столь интересный факт? 🙂

Для начала, давайте вспомним, что такое pH и от чего он зависит.

pH- водородный показатель, мера концентрации ионов водорода в растворе (по первым буквам латинских слов potentia hydrogeni - сила водорода).

pH вычисляется как отрицательный десятичный логарифм концентрации водородных ионов, выраженной в молях на один литр:

В чистой воде при 25 °C концентрации ионов водорода и гидроксид-ионов одинаковы и составляют 10 -7 моль/л (рН=7).

Когда концентрации обоих видов ионов в растворе одинаковы, раствор имеет нейтральную реакцию. Когда > раствор является кислым, а при > - щелочным.

За счет чего же в некоторых водных растворах солей происходит нарушение равенства концентраций ионов водорода и гидроксид-ионов?

Дело в том, что происходит смещение равновесия диссоциации воды вследствие связывания одного из ее ионов ( или ) с ионами соли с образованием малодиссоциированного, труднорастворимого или летучего продукта. Это и есть суть гидролиза.

— это химическое взаимодействие ионов соли с ионами воды, приводящее к образованию слабого электролита -кислоты (или кислой соли), или основания (или основной соли).

Слово «гидролиз» означает разложение водой («гидро»-вода, «лизис» — разложение).

В зависимости от того какой ион соли вступает во взаимодействие с водой, различают три типа гидролиза:

  1. žгидролиз по катиону (в реакцию с водой вступает только катион);
  2. žгидролиз по аниону (в реакцию с водой вступает только анион);
  3. žсовместный гидролиз — гидролиз по катиону и по аниону (в реакцию с водой вступает и катион, и анион).

Любую соль можно рассматривать как продукт, образованный взаимодействием основания и кислоты:


Гидролиз соли – взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа.

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:
1) диссоциация соли в растворе – необратимая реакция (степень диссоциации, или 100%);
2) собственно , т.е. взаимодействие ионов соли с водой, — обратимая реакция (степень гидролиза ˂ 1, или 100%)
Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!
Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей KCl, NaNO 3 , NaSO 4 и BaI среда нейтральная .

Гидролиз по аниону

В случае взаимодействия анионов растворенной соли с водой процесс называется гидролизом соли по аниону .
1) KNO 2 = K + + NO 2 — (диссоциация)
2) NO 2 — + H 2 O ↔ HNO 2 + OH — (гидролиз)
Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1 М раствора – на 0,0014%), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион OH —), в нем p H = 8,14.
Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:
NO 2 — + H 2 O (H +, OH —) ↔ HNO 2 + OH —
Примеры:
а) NaClO = Na + + ClO —
ClO — + H 2 O ↔ HClO + OH —
б) LiCN = Li + + CN —
CN — + H 2 O ↔ HCN + OH —
в) Na 2 CO 3 = 2Na + + CO 3 2-
CO 3 2- + H 2 O ↔ HCO 3 — + OH —
г) K 3 PO 4 = 3K + + PO 4 3-
PO 4 3- + H 2 O ↔ HPO 4 2- + OH —
д) BaS = Ba 2+ + S 2-
S 2- + H 2 O ↔ HS — + OH —
Обратите внимание, что в примерах (в- д) нельзя увеличить число молекул воды и вместо гидроанионов (HCO 3, HPO 4, HS) писать формулы соответствующих кислот (H 2 CO 3, H 3 PO 4, H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты) он не может.
Если бы такая неустойчивая кислота, как H 2 CO 3 , образовывалась в растворе своей соли NaCO 3 , то наблюдалось бы выделение из раствора газа CO 2 (H 2 CO 3 = CO 2 + H 2 O). Однако, при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона с появлением в растворе только гидранионов угольной кислоты HCO 3 — .
Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты. Чем слабее кислота, тем выше степень гидролиза. Например, ионы CO 3 2- , PO 4 3- и S 2- подвергаются гидролизу в большей степени, чем ион NO 2 , так как диссоциация H 2 CO 3 и H 2 S по 2-й ступени, а H 3 PO 4 по 3-тей ступени протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , K 3 PO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости соды на ощупь).

Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).
Если в концентрированный раствор сильно гидролизующейся по аниону соли,
например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует со щелочью и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза, ведь в раствор соды мы не добавляли щелочь NaOH!

Обратите особое внимание на соли кислот средней силы — ортофосфорной и сернистой. По первой ступени эти кислоты диссоциируют довольно хорошо, поэтому их кислые соли гидролизу не подвергаются, и среда раствора таких солей — кислая (из-за наличия катиона водорода в составе соли). А средние соли гидролизуются по аниону — среда щелочная. Итак, гидросульфиты, гидрофосфаты и дигидрофосфаты — не гидролизуются по аниону, среда кислая. Сульфиты и фосфаты — гидролизуются по аниону, среда щелочная.

Гидролиз по катиону

В случае взаимодействия катиона растворенной соли с водой процесс называется
гидролизом соли по катиону

1) Ni(NO 3) 2 = Ni 2+ + 2NO 3 − (диссоциация)
2) Ni 2+ + H 2 O ↔ NiOH + + H + (гидролиз)

Диссоциация соли Ni(NO 3) 2 протекает нацело, гидролиз катиона Ni 2+ − в очень малой степени (для 0,1М раствора − на 0,001%), но этого оказывается достаточно, чтобы среда стала кислотной (среди продуктов гидролиза присутствует ион H +).

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Катион металла отщепляет от молекулы воды гидроксид-ион и освобождает катион водорода H + .

Катион аммония в результате гидролиза образует слабое основание − гидрат аммиака и катион водорода:

NH 4 + + H 2 O ↔ NH 3 · H 2 O + H +

Обратите внимание, что нельзя увеличивать число молекул воды и вместо гидроксокатионов (например, NiOH +) писать формулы гидроксидов (например, Ni(OH) 2). Если бы гидроксиды образовались, то из растворов солей выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).
Избыток катионов водорода легко обнаружить индикатором или измерить специальными приборами. В концентрированный раствор сильно гидролизующейся по катиону соли, вносится магний или цинк, то последние реагируют с кислотой с выделением водорода.

Если соль нерастворимая — то гидролиза нет, т.к ионы не взаимодействуют с водой.

Соли – это ионные соединения, при попадании в воду они диссоциируют на ионы. В водном растворе эти ионы ГИДРАТИРОВАНЫ – окружены молекулами воды.

Обнаружено, что водные растворы многих солей имеют не нейтральную среду, а либо слабокислую, либо щелочную.

Объяснение этого – взаимодействие ионов соли с водой. Этот процесс называется ГИДРОЛИЗОМ.

Катионы и анионы, образованные слабым основанием или слабой кислотой, взаимодействуют с водой, отрывая от нее Н или ОН.

Причина этого: образование БОЛЕЕ ПРОЧНОЙ связи, чем в самой воде.

По отношению к воде соли можно разделить на 4 группы:

1) Соль, образованная сильным основанием и сильной кислотой - НЕ ГИДРОЛИЗУЕТСЯ , в растворе только диссоциирует на ионы. Среда нейтральная.

ПРИМЕР: Не гидролизуются соли – NaCl, KNO3, RbBr, Cs2SO4, KClO3, и т. п. В растворе эти соли только

диссоциируют:

Cs2SO4 à 2 Cs++SO42 -

2) Соль, образованная сильным основанием и слабой кислотой

- гидролиз ПО АНИОНУ . Анион слабой кислоты отрывает от воды ионы водорода , связывает их. В растворе образуется избыток ионов ОН - - среда щелочная.

ПРИМЕР: Гидролизу по аниону подвергаются соли - Na2S, KF, K3PO4 , Na2CO3, Cs2SO3, KCN, KClO, и кислые соли этих кислот.

K 3 PO 4 соль, образованная слабой кислотой и сильным основанием. Гидролизуется фосфат-анион.

PO 4 3- + НОН НРО42-+ОН-

K 3 PO 4 + Н2О К2НРО4 + КОН

(это первая ступень гидролиза, остальные 2 идут в очень малой степени)

3) Соль, образованная слабым основанием и сильной кислотой - гидролиз ПО КАТИОНУ . Катион слабого основания отрывает от воды ион ОН-, связывает его. В растворе остаётся избыток ионов H+ - среда кислая.

ПРИМЕР: Гидролизу по катиону подвергаются соли - CuCl2, NH4Cl, Al(NO3)3, Cr2(SO4)3 .

Cu SO 4 – соль, образованная слабым основанием и сильной кислотой. Гидролизуется катион меди:

Cu +2 + НОН CuOH + + H +

2 CuSO 4 +2 H 2 O (CuOH )2 SO 4 + H 2 SO 4

4) Соль, образованная слабым основанием и слабой кислотой - гидролиз И ПО КАТИОНУ И ПО АНИОНУ.

Если какие-либо из продуктов выделяются в виде осадка или газа, то гидролиз необратимый , если оба продукта гидролиза остаются в растворе - гидролиз обратимый.

ПРИМЕР: Гидролизуются соли –

· Al2S3,Cr2S3(необратимо):

Al2S3 + H2O à Al(OH)3 ¯ + H2S ­

· NH4F, CH3COONH4(обратимо)

NH4F + H 2 O NH4OH + HF

Взаимный гидролиз двух солей.

Он происходит при попытке получить с помощью обменной реакции солей, которые в водном растворе полностью гидролизованы. При этом происходит взаимный гидролиз – т. е. катион металла связывает ОН-группы, а анион кислоты – Н+

1) Соли металлов со степенью окисления +3 и соли летучих кислот (карбонаты, сульфиды, сульфиты) – при их взаимном гидролизе образуется осадок гидроксида и газ:

2AlCl3 + 3K2S + 6H2O à 2Al(OH)3¯ + 3H2S + 6KCl

(Fe3+, Cr3+) (SO32-, CO32-) (SO2, CO2)

2) Соли металлов со степенью окисления +2 (кроме кальция, стронция и бария) и растворимые карбонаты также вместе гидролизуются, но при этом образуется осадок ОСНОВНОГО КАРБОНАТА металла:

2 CuCl2 + 2Na2CO3 + H2O à (CuOH)2CO3 + CO2 + 4 NaCl

(все 2+, кроме Са, Sr, Ba)

Характеристика процесса гидролиза:

1) Процесс гидролиза является обратимым , протекает не до конца, а только до момента РАВНОВЕСИЯ;

2) Процесс гидролиза – обратный для реакции НЕЙТРАЛИЗАЦИИ, следовательно, гидролиз - эндотермический процесс (протекает с поглощением теплоты).

KF + H2O ⇄ HF + KOH – Q

Какие факторы усиливают гидролиз?

1. Нагревание – при увеличении температуры равновесие смещается в сторону ЭНДОТЕРМИЧЕСКОЙ реакции – гидролиз усиливается;

2. Добавление воды – т. к. вода является исходным веществом в реакции гидролиза, то разбавление раствора усиливает гидролиз.

Как подавить (ослабить) процесс гидролиза?

Часто необходимо не допустить гидролиза. Для этого:

1. Раствор делают максимально концентрированным (уменьшают количество воды);

2. Для смещения равновесия влево добавляют один из продуктов гидролиза кислоту , если идёт гидролиз по катиону или щёлочь, если идёт гидролиз по аниону.

Пример: как подавить гидролиз хлорида алюминия ?

Хлорид алюминия AlCl 3 – это соль, образованная слабым основанием и сильной кислотой – гидролизуется по катиону:

Al +3 + HOH AlOH +2 + H +

Среда – кислая. Следовательно, для подавления гидролиза необходимо добавить еще кислоты. Кроме того, следует сделать раствор наиболее концентрированным.

Гидролиз - это взаимодействие веществ с водой, в результате которого изменяется среда раствора.

Катионы и анионы слабых электролитов способны взаимодействовать с водой с образованием устойчивых малодиссоциируемых соединений или ионов, в результате чего меняется среда раствора. Формулы воды в уравнениях гидролиза обычно записывают в виде Н‑ОН. При реакции с водой катионы слабых оснований отнимают от воды гидроксил ион, и в растворе образуется избыток Н + . Среда раствора становится кислотной. Анионы слабых кислот притягивают из воды Н + , и реакция среды становится щелочной.

В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды в процессе их растворения. Различают 4 варианта гидролиза.

1. Соль образована сильным основанием и сильной кислотой.

Такая соль гидролизу практически не подвергается. При этом равновесие диссоциации воды в присутствии ионов соли почти не нарушается, поэтому рН=7, среда нейтральная.

Na + + H 2 O Cl ‑ + H 2 O

2. Если соль образована катионом сильного основания и анионом слабой кислоты, то происходит гидролиз по аниону.

Na 2 CO 3 + HOH \(\leftrightarrow\) NaHCO 3 + NaOH

Так как в растворе накапливаются ионы ОН ‑ , то среда - щелочная, рН>7.

3. Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону.

Cu 2+ + HOH \(\leftrightarrow\) CuOH + + H +

СuCl 2 + HOH \(\leftrightarrow\) CuOHCl + HCl

Так как в растворе накапливаются ионы Н + , то среда кислая, рН<7.

4. Соль, образованная катионом слабого основания и анионом слабой кислоты, подвергается гидролизу и по катиону и по аниону.

CH 3 COONH 4 + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH

CH 3 COO ‑ + + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH

Растворы таких солей имеют или слабокислую, или слабощелочную среду, т.е. величина рН близка к 7. Реакция среды зависит от соотношения констант диссоциации кислоты и основания. Гидролиз солей, образованных очень слабыми кислотой и основанием, является практически необратимым. Это, в основном, сульфиды и карбонаты алюминия, хрома, железа.

Al 2 S 3 + 3HOH \(\leftrightarrow\) 2Al(OH) 3 + 3H 2 S

При определении среды раствора солей необходимо учитывать, что среда раствора определяется сильным компонентом. Если соль образована кислотой, являющейся сильным электролитом, то среда раствора кислая. Если основание сильный электролит, то - щелочная.

Пример. Щелочную среду имеет раствор

1) Pb(NO 3) 2 ; 2) Na 2 CO 3 ; 3) NaCl; 4) NaNO 3

1) Pb(NO 3) 2 нитрат свинца(II). Соль образована слабым основанием и сильной кислотой , значит среда раствора кислая.

2) Na 2 CO 3 карбонат натрия. Соль образована сильным основанием и слабой кислотой, значит среда раствора щелочная.

3) NaCl; 4) NaNO 3 Соли образованы сильным основанием NaOH и сильными кислотами HCl и HNO 3 . Среда раствора нейтральная.

Правильный ответ 2) Na 2 CO 3

В растворы солей опустили индикаторную бумажку. В растворах NaCl и NaNO 3 она не изменила цвет, значит среда раствора нейтральная . В растворе Pb(NO 3) 2 окрасилась в красный цвет, среда раствора кислая. В растворе Na 2 СO 3 окрасилась в синий цвет, среда раствора щелочная.

Химическим путем рН раствора можно определить при помощи кислотно-основных индикаторов.

Кислотно-основные индикаторы – органические вещества, окраска которых зависит от кислотности среды.

Наиболее распространенными индикаторами являются лакмус, метиловый оранжевый, фенолфталеин. Лакмус в кислой среде окрашивается в красный цвет, в щелочной – в синий. Фенолфталеин в кислой среде - бесцветный, в щелочной окрашивается в малиновый цвет. Метиловый оранжевый в кислой среде окрашивается в красный цвет, а в щелочной – в желтый.

В лабораторной практике часто смешивают ряд индикаторов, подобранных таким образом, чтобы цвет смеси изменялся в широких пределах значений рН. С их помощью можно определить рН раствора с точностью до единицы. Эти смеси называют универсальными индикаторами .

Имеются специальные приборы – рН–метры, с помощью которых можно определить рН растворов в диапазоне от 0 до 14 с точностью до 0,01 единицы рН.

Гидролиз солей

При растворении некоторых солей в воде нарушается равновесие процесса диссоциации воды и, соответственно, изменяется рН среды. Это объясняется тем, что соли реагируют с водой.

Гидролиз солей химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых солей или катионов основных солей) и сопровождающееся изменением рН среды.

Рассмотрим процесс гидролиза в зависимости от природы оснований и кислот, образующих соль.

Соли, образованные сильными кислотами и сильными основаниями (NaCl, kno3, Na2so4 и др.).

Допустим , что при взаимодействии хлорида натрия с водой происходит реакция гидролиза с образованием кислоты и основания:

NaCl + H 2 O ↔ NaOH + HCl

Для правильного представления о характере этого взаимодействия запишем уравнение реакции в ионном виде, учитывая, что единственным слабодиссоциирующим соединением в этой системе является вода:

Na + + Cl - + HOH ↔ Na + + OH - + H + + Cl -

При сокращении одинаковых ионов в левой и правой частях уравнения остается уравнение диссоциации воды:

Н 2 О ↔ Н + + ОН -

Как видно, в растворе нет избыточных ионов Н + или ОН - по сравнению с их содержанием в воде. Кроме того, никаких других слабодиссоциирующих или труднорастворимых соединений не образуется. Отсюда делаем вывод, что соли, образованные сильными кислотами и основаниями гидролизу не подвергаются, а реакция растворов этих солей такая же, как и в воде, нейтральная (рН=7).

При составлении ионно–молекулярных уравнений реакций гидролиза необходимо:

1) записать уравнение диссоциации соли;

2) определить природу катиона и аниона (найти катион слабого основания или анион слабой кислоты);

3) записать ионно-молекулярное уравнение реакции, учитывая, что вода - слабый электролит- и что сумма зарядов должна быть одинаковой в обеих частях уравнения.

Соли, образованные слабой кислотой и сильным основанием

(Na 2 CO 3 , K 2 S, CH 3 COONa и др .)

Рассмотрим реакцию гидролиза ацетата натрия. Эта соль в растворе распадается на ионы: CH 3 COONa ↔ CH 3 COO - + Na + ;

Na + -катион сильного основания, CH 3 COO - - анион слабой кислоты.

Катионы Na + не могут связывать ионы воды, так как NaОН – сильное основание - полностью распадается на ионы. Анионы слабой уксусной кислоты CH 3 COO - связывают ионы водорода с образованием малодиссоциированной уксусной кислоты:

CH 3 COO - + НОН ↔ CH 3 COOН + ОН -

Видно, что в результате гидролиза CH 3 COONa в растворе образовался избыток гидроксид-ионов, и реакция среды стала щелочной (рН > 7).

Таким образом можно сделать вывод, что соли, образованные слабой кислотой и сильным основанием гидролизуются по аниону ( An n - ). При этом анионы соли связывают ионы Н + , а в растворе накапливаются ионы ОН - , что обуславливает щелочную среду (рН>7):

An n - + HOH ↔ Han (n -1)- + OH - , (при n=1 образуется HAn – слабая кислота).

Гидролиз солей, образованных двух- и трехосновными слабыми кислотами и сильными основаниями, протекает ступенчато

Рассмотрим гидролиз сульфида калия. К 2 S диссоциирует в растворе:

К 2 S ↔ 2К + + S 2- ;

К + - катион сильного основания, S 2 - анион слабой кислоты.

Катионы калия не принимают участия в реакции гидролиза, взаимодействуют с водой только анионы слабой сероводородной кислоты. В данной реакции по первой ступени происходит образование слабодиссоциирующих ионов HS - , по второй ступени – образование слабой кислоты H 2 S:

1-я ступень: S 2- + HOH ↔ HS - + OH - ;

2-я ступень: HS - + HOH ↔ H 2 S + OH - .

Образующиеся по первой ступени гидролиза ионы ОН - значительно снижают вероятность гидролиза по следующей ступени. В результате практическое значение обычно имеет процесс, идущий только по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей в обычных условиях.

Лекция: Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Гидролиз солей

Мы продолжаем изучать закономерности протекания химических реакций. При изучении темы вы узнали, что при электролитической диссоциации в водном растворе частицы, участвующих в реакции веществ растворяются в воде. Это гидролиз. Ему подвергаются различные неорганические и органические вещества, в частности, соли. Без понимания процесса гидролиза солей, вы не сможете объяснить явления, происходящие в живых организмах.

Сущность гидролиза солей сводится к обменному процессу взаимодействия ионов (катионов и анионов) соли с молекулами воды. В результате образуется слабый электролит – малодиссоциирующее соединение. В водном растворе появляется избыток свободных ионов Н + или ОН - . Вспомните, диссоциация каких электролитов образует ионы Н + , а каких ОН - . Как вы догадались, в первом случае мы имеем дело с кислотой, значит водная среда с ионами Н + будет кислой. Во втором же случае, щелочной. В самой воде среда нейтральная, поскольку она незначительно диссоциируется на одинаковые по концентрации ионы Н + и ОН - .

Характер среды можно определить с помощью индикаторов. Фенолфталеин обнаруживает щелочную среду и окрашивает раствор в малиновый цвет. Лакмус под действием кислоты становится красным, а под действием щелочи остается синим. Метилоранж - оранжевый, в щелочной среде становится желтым, в кислой среде – розовым. Тип гидролиза зависит от типа соли.


Типы солей

Итак, любую соль представляет собой можно взаимодействие кислоты и основания, которые, как вы поняли, бывают сильными и слабыми. Сильные – это те, чья степень диссоциации α близка к 100%. Следует запомнить, что сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) кислоту чаще относят к кислотам средней силы. При решении задач по гидролизу, данные кислоты необходимо относить к слабым.

Кислоты:

    Сильные: HCl; HBr; Hl; HNO 3 ; HClO 4 ; H 2 SO 4 . Их кислотные остатки с водой не взаимодействуют.

    Слабые: HF; H 2 CO 3 ; H 2 SiO 3 ; H 2 S; HNO 2 ; H 2 SO 3 ; H 3 PO 4 ; органические кислоты. А их кислотные остатки взаимодействуют с водой, забирая у её молекул катионы водорода H+.

Основания:

    Сильные: растворимые гидроксиды металлов; Ca(OH) 2 ; Sr(OH) 2 . Их катионы металлов с водой не взаимодействуют.

    Слабые: нерастворимые гидроксиды металлов; гидроксид аммония (NH 4 OH). А катионы металлов здесь взаимодействуют с водой.

Исходя из данного материала, рассмотрим типы солей :

    Соли с сильным основанием и сильной кислотой. К примеру: Ba (NO 3) 2 , KCl, Li 2 SO 4 . Особенности: не взаимодействуют с водой, а значит гидролизу не подвергаются. Растворы таких солей имеют нейтральную реакцию среды.

    Соли с сильным основанием и слабой кислотой. К примеру: NaF, K 2 CO 3 , Li 2 S. Особенности: с водой взаимодействуют кислотные остатки этих солей, происходит гидролиз по аниону. Среда водных растворов - щелочная.

    Соли со слабым основанием и сильной кислотой. К примеру: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 . Особенности: с водой взаимодействуют только катионы металлов, происходит гидролиз по катиону. Среда - кислая.

    Соли со слабым основанием и слабой кислотой. К примеру: CH 3 COONН 4 , (NН 4) 2 CО 3 , HCOONН 4. Особенности: с водой взаимодействуют как катионы, так и анионы кислотных остатков, гидролиз происходит по катиону и аниону.

Пример гидролиза по катиону и образования кислой среды :

    Гидролиз хлорида железа FeCl 2

FeCl 2 + H 2 O ↔ Fe(OH)Cl + HCl (молекулярное уравнение)

Fe 2+ + 2Cl - + H + + OH - ↔ FeOH + + 2Cl - + Н + (полное ионное уравнение)

Fe 2+ + H 2 O ↔ FeOH + + Н + (сокращенное ионное уравнение)

Пример гидролиза по аниону и образования щелочной среды:

    Гидролиз ацетата натрия CH 3 COONa

CH 3 COONa + H 2 O ↔ CH 3 COOH + NaOH (молекулярное уравнение)

Na + + CH 3 COO - + H 2 O ↔ Na + + CH 3 COOH + OH - (полное ионное уравнение)

CH 3 COO - + H 2 O ↔ CH 3 COOH + OH - (сокращенное ионное уравнение)

Пример совместного гидролиза:

  • Гидролиз сульфида алюминия Al 2 S 3

Al 2 S 3 + 6H2O ↔ 2Al(OH) 3 ↓+ 3H 2 S

В данном случае мы видим полный гидролиз, который происходит, если соль образована слабым нерастворимым или летучим основанием и слабой нерастворимой или летучей кислотой. В таблице растворимости стоят прочерки на таких солях. Если в ходе реакции ионного обмена образуется соль, которая не существует в водном растворе, то надо написать реакцию этой соли с водой.

Например:

2FeCl 3 + 3Na 2 CO 3 ↔ Fe 2 (CO 3) 3 + 6NaCl

Fe 2 (CO 3) 3 + 6H 2 O ↔ 2Fe(OH) 3 + 3H 2 O + 3CO 2

Складываем эти два уравнения, то что повторяется в левой и правой частях, сокращаем:

2FeCl 3 + 3Na 2 CO 3 + 3H 2 O ↔ 6NaCl + 2Fe(OH) 3 ↓ + 3CO 2



Поделиться