Эндотелий жизненный цикл. Сосудистый эндотелий как эндокринная сеть


Владельцы патента RU 2309668:

Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для неинвазивного определения функции эндотелия. Для этого осуществляют снижение трансмурального давления в конечности, регистрируют амплитуды плетизмографических сигналов при различных давлениях. Определяют давление, при котором амплитуда плетизмографического сигнала максимальна, при этом производят снижение давления до величины, соответствующей заданному проценту от максимальной амплитуды, проведение окклюзионной пробы, в ходе которой в манжете, накладываемой проксимально от лоцируемого участка конечности. Далее создают давление, превышающее систолическое давление испытуемого, по меньшей мере на 50 мм рт.ст., при этом окклюзию осуществляют в течение, по меньшей мере, 5 минут. Устройство включает сенсорный блок, выполненный двухканальным и имеющий возможность регистрации пульсовых кривых с периферических артерий. Блок создания давления, выполненный с возможностью создания в манжете нарастающего ступенчато давления. Электронный блок, выполненный с возможностью определения давления в манжете, соответствующего максимальной амплитуде плетизмографического сигнала, и управления блоком создания давления для установления давления в манжете, соответствующего амплитуде плетизмографического сигнала, составляющей заданный процент от максимальной амплитуды, при этом сенсорный блок связан с электронным блоком, к выходу которого подключен блок создания давления. Заявленное изобретение позволяет повысить достоверность оценки функции эндотелия вне зависимости от артериального давления пациента. 2 н. и 15 з.п. ф-лы, 6 ил.

Изобретение относится к медицине, а именно к функциональной диагностике, и позволяет на ранних этапах выявлять наличие сердечно-сосудистых заболеваний и проводить контроль эффективности проводимой терапии. Изобретение позволят проводить оценку состояния эндотелия и на основании этой оценки решить вопрос ранней диагностики сердечно-сосудистых заболеваний. Изобретение может быть использовано при проведении широкомасштабной диспансеризации населения.

В последнее время все большую актуальность приобретает задача раннего выявление сердечно-сосудистных заболеваний. Для этого используется широкий спектр диагностических средств и методов, описанных в патентной и научной литературе. Так, патент США №5,343,867 раскрывает способ и устройство для ранней диагностики атеросклероза с использованием импедансной плетизмографии для выявления особенностей пульсовой волны в сосудах нижних конечностей. Показано, что параметры кровотока зависят от приложенного к изучаемой артерии извне давления. Максимальная амплитуда плетизмограммы во многом определяется величиной трансмурального давления, представляющего собой разницу между артериальным давлением внутри сосуда и давлением, приложенным снаружи с помощью манжеты тонометра. Максимальная амплитуда сигнала определяется при нулевом значении трансмурального давления.

С позиций структуры и физиологии артериальных сосудов это можно представить следующим образом: давление с манжеты передается на внешнюю стенку артерии и уравновешивает внутриартериальное давление с внутренней стенки артерии. При этом податливость артериальной стенки резко возрастает, и проходящая пульсовая волна растягивает артерию на большую величину, т.е. прирост диаметра артерии при том же пульсовом давлении становится большим. Этот феномен легко увидеть на осциллометрической кривой, снятой при регистрации артериального давления. На этой кривой максимальные осцилляции возникают, когда давление в манжете равно среднему артериальному давлению.

В патенте США №6322515 раскрыт способ и устройство для опеределния ряда параметров сердечно-сосудистой системы, используемые в том числе для оценки состояния эндотелия. В качестве сенсора для определения пульсовой волны здесь использованы фотодиоды и фотоприемники, проведен анализ фотоплетизмографических (ФПГ) кривых, зарегистрированных на пальцевой артерии до и после проведения пробы с реактивной гиперемией. При регистрации этих кривых на палец поверх оптического сенсора накладывалась манжета, в которой создавалось давление 70 мм рт.ст.

В патенте США №6939304 раскрыт способ и устройство для неинвазивой оценки функции эндотелия с использованием ФПГ сенсора.

В патенте США №6908436 раскрыт способ оценки состояния эндотелия с помощью измерения скорости распространения пульсовой волны. Для этого используется двухканальный плетизмограф, датчики устанавливаются на фалангу пальца, окклюзия создается с помощью располагаемой на плече манжеты. Изменение состояния артериальной стенки оценивается по задержке распространения пульсовой волны. Величина задержки в 20 мс и более рассматривается как проба, подтверждающая нормальную функцию эндотелия. Определение задержки проводится путем сравнения с ФПГ кривой, зарегистрированной на руке, на которой не проводилась окклюзионная проба. Однако недостатками известного способа является определение задержки по измерению смещения в области минимума непосредственно перед систолическим подъемом, т.е. в области, которая является в значительной степени вариабельной.

Наиболее близким аналогом к заявленным способу и устройству являются способ и устройство для неинвазивного определения изменения физиологического состояния пациента, описанные в патенте РФ №2220653. Известный способ заключается в проведении контроля периферического артериального тонуса путем размещения на датчиках пульса манжеты и повышения давления в манжете до 75 мм рт.ст., последующего измерения артериального давления с повышением давления в манжете выше систолического в течение 5 минут, дальнейшей регистрации пульсовой волны методом ФПГ на двух руках, после чего проводят амплитудный анализ ФПГ кривой в отношении полученных замеров до и после пережатия, определяют прирост ФПГ сигнала. Известное устройство включает датчик для измерения давления с манжетой, нагревательный элемент для нагрева поверхности лоцируемого участка тела и процессор для обработки измеренных сигналов.

Однако известные способ и устройство не позволяют обеспечить высокую достоверность проведенных исследований в виду низкой точности замеров и зависимости их от колебаний давления пациента.

Нарушение функции эндотелия возникает при наличии таких факторов риска сердечно-сосудистых заболеваний (ССЗ) как гиперхолестеринемия, артериальная гипертензия, курение, гипергомоцистеинемия, возраст и другие. Установлено, что эндотелий является органом-мишенью, в котором патогенетически реализуются факторы риска развития ССЗ. Оценка состояния эндотелия является "барометром", взгляд на который позволяет осуществить раннюю диагностику ССЗ. Такая диагностика позволит отойти от подхода, когда необходимо провести ряд биохимических тестов (определение уровня холестерина, липопротеидов низкой и высокой плотности, гомоцистеина и др.) для выявления наличия фактора риска. Экономически более обосновано для скринирования населения на первом этапе использовать интегральный показатель риска развития заболевания, каким является оценка состояния эндотелия. Оценка состояния эндотелия также чрезвычайно актуальна для объективизации проводимой терапии.

Задача, на решение которой направлены заявленные изобретения, заключается в создании физиологически обоснованного, неинвазивного способа и устройства для достоверного определения состояния эндотелиальной функции обследуемого пациента, обеспечивающих дифференцированный подход в зависимости от состояния пациента и основанных на системе преобразования, усиления и регистрации ФПГ сигнала при действии оптимальной величины заданного давления или локально приложенного к лоцируемой артерии усилия до и после проведения окклюзионной пробы.

Технический результат, который достигается при использовании заявленных устройства и способа, состоит в повышении достоверности оценки функции эндотелия вне зависимости от артериального давления пациента.

Технический результат в части способа достигается за счет того, что осуществляют снижение трансмурального давления в конечности, проводят регистрацию амплитуды плетизмографических сигналов при различных давлениях, определение давления, при котором амплитуда ПГ сигнала максимальна, снижение давления до величины, соответствующей заданному % от максимальной амплитуды, проведение окклюзионной пробы, в ходе которой в манжете, накладываемой проксимально от лоцируемого участка конечности, создают давление, превышающее систолическое давление испытуемого, по меньшей мере, на 50 мм рт.ст., а окклюзию осуществляют в течение, по меньшей мере, 5 минут.

Технический результат усиливается за счет того, что трансмуральное давление снижают путем наложения на участок конечности манжеты, в которой создают давление.

Давление на ткани конечности повышают дискретно с шагом 5 мм рт.ст. и длительностью шага 5-10 сек, регистрируют амплитуду ПГ сигнала.

Для снижения трансмуралъного давления в лоцируемой артерии используют механическое усилие, локально приложенное к тканям конечности.

Для снижения трансмуралъного давления в лоцируемой артерии уменьшают гидростатическое давление путем поднятия конечности на заданную высоту относительно уровня сердца.

После выбора величины трансмуралъного давления, при котором амплитуда ПГ сигнала составляет 50% от максимальной величины прироста ПГ сигнала, в окклюзионной манжете, установленной проксимально от лоцируемой артерии, создают супрасистолическое давление, регистрируют плетизмографический сигнал.

После, по меньшей мере, 5 минутной экспозиции окклюзионной манжеты, установленной проксимально от лоцируемой артерии, давление в ней сбрасывают до нуля, а регистрацию изменений ПГ сигнала осуществляют одновременно по двум референсному и испытуемому каналам в течение, по меньшей мере, 3 минут.

Зарегистрированный плетизмографический сигнал после проведения окклюзионной пробы анализируют с одновременным использованием амплитудного и временного анализа по данным, полученным по двум референсному и испытуемому каналам.

При проведении амплитудного анализа сравнивают величины амплитуды сигнала в референсном и испытуемом канале, скорость нарастания амплитуды сигнала в испытуемом канале, отношение амплитуд сигналов полученного максимума при различных величинах трансмуралъного давления, с максимальной величиной сигнала, полученного после проведения окклюзионной пробы.

При проведении временного анализа сравнивают плетизмографические кривые, полученные по референсному и испытуемому каналам, проводят процедуру нормирования сигнала, а затем определяют время запаздывания или фазовый сдвиг.

Технический результат в части устройства достигается за счет того, что устройство включает сенсорный блок, выполненный двухканальным и имеющим возможность регистрации пульсовых кривых с периферических артерий, блок создания давления, выполненный с возможностью создания в манжете нарастающего ступенчато давления, и электронный блок, выполненный с возможностью определения давления в манжете, соответствующего максимальной амплитуде ПГ сигнала и управления блоком создания давления для установления давления в манжете, соответствующего амплитуде ПГ сигнала, составляющей заданный процент от прироста максимальной амплитуды, при этом сенсорный блок связан с электронным блоком, к выходу которого подключен блок создания давления.

Технический результат усиливается за счет того, что блок создания давления выполнен с возможностью создания ступенчато нарастающего давления в манжете с шагом 5 мм рт. ст. и длительностью шага 5-10 секунд.

Сенсорный блок в каждом канале включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации проходящего через лоцируемую область светового сигнала.

Сенсорный блок в каждом канале включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации отраженного от лоцируемой области рассеянного светового сигнала.

Сенсорный блок включает импедансометрические электроды, или датчики Холла, или эластичную трубку, заполненную электропроводящим материалом.

Фотоприемник связан с фильтром, имеющим возможность выделения из общего сигнала пульсовой составляющей.

Сенсорный блок включает средство для поддержания заданной температуры лоцируемого участка тела.

Устройство включает жидкокристаллический дисплей для отображения результатов оценки функции эндотелия и/или соединенный с электронным блоком интерфейс для передачи данных о функции эндотелия в компьютер.

Техническая сущность заявленных изобретения и возможность достижения технического результата, достигаемого в результате их использования, будет более понятна при описании примера осуществления со ссылками на позиции чертежей, где на фиг.1 проиллюстрирована динамика показателей объемного кровотока и диаметра плечевой артерии в ходе проведения окклюзионной пробы, на фиг.2 приведена схема формирования ФПГ сигнала, на фиг.3 представлена ФПГ кривая, на фиг.4 показано семейство ФПГ кривых, полученных при различных величинах трансмурального давления у пациентов контрольной группы, фиг.5 показывает влияние изменения гидростатического давления на амплитуду ФПГ сигнала, а на фиг.6 представлена принципиальная блок-схема заявленного устройства.

Электронный блок обеспечивает определение давления в манжете 1, соответствующего максимальной амплитуде ПГ сигнала, и управление блоком создания давления для установления давления в манжете 1, соответствующего амплитуде ПГ сигнала, составляющей заданный процент (50%) от максимального прироста амплитуды. Возможно выполнение сенсорного блока в нескольких вариантах: в первом варианте инфракрасный светодиод 2 и фотоприемник 3 расположены с возможностью регистрации проходящего через лоцируемую область светового сигнала, по разные стороны от лоцируемого участка конечности, во втором - инфракрасный светодиод 2 и фотоприемник 3 расположены с возможностью регистрации отраженного от лоцируемой области рассеянного светового сигнала, по одну сторону от лоцируемого сосуда.

Кроме того, сенсорный блок может быть выполнен на основе импедансометрических электродов, или датчиков Холла, или эластичной трубки, заполненной электропроводящим материалом.

Оценка функции эндотелия осуществляется на основе регистрации ПГ сигнала, полученного с помощью сенсорного блока, установленного на верхних конечностях обследуемого пациента, с последующим электрическим преобразованием полученного сигнала, в ходе линейного нарастания давления в манжете 1 (или величины локально приложенного к лоцируемой артерии усилия) до получения максимальной амплитуды сигнала, после чего величина давления в манжете или локально приложенное усилие фиксируется, и окклюзионная проба проводится при фиксированной величине давления или усилия. При этом сенсорный блок устанавливается на внутренней стороне манжеты 1 или располагается на конце устройства, создающего усилие в области проекции артерии на поверхность кожи. Для автоматического задания этого давления используется обратная связь по амплитуде ПГ сигнала, поступающего с цифроаналогового преобразователя 8 через контроллер 9 на компрессор 11 блока создания давления.

Окклюзионная проба проводится с использованием манжеты, установленной проксимально (плечо, предплечье, запястье) относительно лоцируемои артерии (плечевая, радиальная или пальцевая). При этом сигнал, полученный с другой конечности, на которой не проводится окклюзионная проба, является референсным.

Заявленный способ определения состояния эндотелиальной функции обследуемого пациента включает два основных этапа: первый позволяет получить ряд плетизмографических кривых, зарегистрированных при различных давлениях в манжете 1 (или усилий прикладываемых к лоцируемои артерии), и второй этап - это непосредственно сама окклюзионная проба. Результатом первого этапа является информация о вязкоэластичных свойствах артериального русла и выбор давления или усилия для проведения окклюзионного теста. Изменения амплитуды ПГ сигнала при действии приложенного давления или усилия свидетельствуют о тонусе гладких мышц артерии и состоянии ее эластических компонентов (эластин и коллаген). Локально приложенное давление или усилие сопровождается изменением трансмурального давления, величина которого определяется разницей между артериальным давлением и приложенным извне давлением или усилием. При уменьшении трансмурального давления тонус гладких мышц снижается, что сопровождается увеличением просвета артерии, соответственно, при повышении трансмурального давления происходит сужение артерии. В этом состоит миогенная регуляция кровотока, направленная на сохранение оптимального давления в системе микроциркуляции. Так, при изменении давления в магистральном сосуде от 150 мм рт.ст. до 50 мм рт.ст. в капиллярах давление остается практически без изменений.

Изменение гладкомышечного тонуса реализуется не только в виде сужения или дилатации артерии, но и приводит соответственно к увеличению жесткости или податливости артериальной стенки. При снижении трансмурального давления гладкомышечный аппарат сосудистой стенки в той или иной степени релаксирует, что на ФПГ проявляется в виде увеличения амплитуды сигнала. Максимальная амплитуда имеет место при трансмуральном давлении, равном нулю. Схематически это представлено на фиг.4, где на приведенной S-образной кривой деформирования видно, что максимум приращения объема определяется при трансмуральном давлении, близком к нулю. При равных волнах пульсового давления, приложенных к различным участкам кривой деформирования, максимальный плетизмографический сигнал наблюдается в области, близкой к нулевой величине трансмурального давления. У пациентов контрольной группы, сопоставимой по возрасту и величине диастолического давления с группой лиц с клиническими проявлениями ишемической болезни, возрастание амплитуды сигнала при изменении трансмурального давления может составлять более 100% (фиг.4). Тогда как в группе больных ИБС это приращение амплитуды не превышает 10-20%.

Подобную динамику изменения амплитуды ПГ сигнала при разных значениях трансмурального давления можно связать только с особенностями вязкоэластичных свойств артериального русла у здоровых и больных стенозирующим атеросклерозом различной локализации. Гладкомышечный тонус артерий можно рассматривать преимущественно как вязкостный компонент, тогда как волокна эластина и коллагена представляют собой чисто эластический компонент структуры сосудистой стенки. Снижая гладкомышечный тонус при подходе к нулевым значениям трансмурального давления, мы как бы уменьшаем вклад вязкостного компонента гладких мышц в кривую деформирования. Подобный прием позволяет не только проводить более детальный анализ кривой деформирования эластических компонент артериальной сосудистой стенки, но и в более выгодных условиях регистрировать феномен реактивной гиперемии, после проведения окклюзионного теста.

Величину прироста диаметра приводящей артерии связывают с функционированием эндотелиальных клеток. Возрастание напряжения сдвига после окклюзионной пробы приводит к возрастанию синтеза оксида азота (NO). Возникает так называемая "поток-индуцированная дилатация". При нарушении функции эндотелиальных клеток способность продуцировать оксид азота и другие вазоактивные соединения снижена, что приводит к отсутствию феномена поток - индуцированной дилатации сосудов. В этой ситуации полноценной реактивной гиперемии не возникает. В настоящее время этот феномен используется для выявления нарушения функции эндотелия, т.е. эндотелиальной дисфункции. Индуцированная потоком дилатация сосуда определяется следующей последовательностью событий: окклюзия, увеличение потока крови, воздействие напряжения сдвига на эндотелиальные клетки, синтез оксида азота (как адаптация к увеличению кровотока), эффект воздействия NO на гладкую мышцу.

Максимальная величина кровотока достигается через 1-2 секунды после снятия окклюзии. При этом нужно отметить, что при одновременном мониторировании величины кровотока и диаметра артерии первоначально увеличивается величина кровотока, и только после этого меняется диаметр сосуда (фиг.1). После быстрого (несколько секунд) достижения максимума скорости кровотока увеличивается диаметр артерии, достигая максимума через 1 минуту. После чего возвращается к исходной величине в течение 2-3 минут. На примере особенностей состояния эластического модуля артериальной стенки у больных артериальной гипертензией можно сделать предположение о возможном участии исходной жесткости артерии в проявлении ответа эндотелиальных клеток на окклюзионную пробу. Нельзя исключить того, что при одинаковой продукции окиси азота эндотелиальными клетками проявление ответа гладкомышечными клетками артерии будет определятся исходным состоянием модуля эластичности артериальной стенки. Для нормализации проявления ответа гладкомышечного аппарата артериальной стенки желательно иметь исходную жесткость артерий у различных пациентов, если не идентичной, то по возможности близкой. Одним из вариантов такой унификации исходного состояния артериальной стенки является подбор величины трансмурального давления, при которой отмечается ее наибольшая податливость.

Оценку результатов окклюзионной пробы по параметрам реактивной гиперемии можно проводить не только на плечевой артерии, но и на более мелких сосудах.

Для определения потокозависимой дилатации был использован оптический метод. В основе метода находится прирост оптической плотности, связанный с пульсовым увеличением объема крови лоцируемой артерии. Приходящая пульсовая волна растягивает стенки артерии, увеличивая диаметр сосуда. Так как при ФПГ оптический сенсор регистрирует не изменение диаметра артерии, а прирост объема крови, который равен квадрату радиуса, то это измерение можно проводить с большей точностью. На фиг.2 представлен принцип получения ФПГ сигнала. Фотодиод регистрирует световой поток, прошедший через лоцируемый участок ткани пальца. С каждой пульсовой волной артерия пальца, расширяясь, увеличивает объем крови. Гемоглобин крови в значительной степени поглощает ИК излучение, что приводит к возрастанию оптической плотности. Проходящая по артерии пульсовая волна изменяет ее диаметр, что является основным компонентом пульсового приращения объема крови в лоцируемом участке.

На фиг.3 представлена ФПГ кривая. На кривой можно видеть два пика, первый из которых связан с сокращением сердца, второй - с отраженной пульсовой волной. Данная кривая получена при установке оптического датчика на последнюю фалангу указательного пальца.

Перед началом измерений компрессор 11 по сигналу контроллера 9 создает в манжете 1 давление. Нарастание давления осуществляется ступенчато с шагом 5 мм рт.ст., длительность каждого шага составляет 5-10 сек. С возрастанием давления снижается трансмуральное давление, а при равенстве давления в манжете и давления в лоцируемой артерии - становится равным нулю. На каждом шаге производится регистрация ФПГ сигнала, поступающего с фотоприемника 3. Сигнал с выхода преобразователя 4 усиливается в усилителе 5 и подвергается фильтрации в фильтре 6 для вырезания помех с промышленной частотой 50 Гц и ее гармоник. Основное усиление сигнала осуществляется масштабируемым (инструментальным) усилителем 7. Усиленное напряжение подается на аналого-цифровой преобразователь 8 и далее через USB - интерфейс 10 в компьютер. Контроллер 9 определяет давление, при котором амплитуда сигнала максимальна. Для улучшения соотношения сигнал/шум применяется синхронное детектирование.

Процедура проведения оценки эндотелиальной функции делится на две части:

1) снижение трансмурального давления с помощью приложенного к части пальца давления (манжета с воздухом, эластичный окклюдер, механическое сдавливание) или путем изменения гидростатического давления за счет поднятия конечности на определенную высоту. Последняя процедура полностью может заменить навязывание усилия извне на стенку сосуда. В упрощенном варианте оценки состояния эндотелия можно исключить сложную схему автоматики, и только поднимая и опуская руку определять среднее давление по максимуму амплитуды плетизмографического сигнала, выйти на линейный участок кривой податливости (50% от максимального прироста) и затем провести окклюзионную пробу. Единственным недостатком такого подхода является необходимость позиционирования руки и проведение окклюзии с приподнятой рукой.

При снижении трансмурального давления возрастает пульсовая составляющая ФПГ, что соответствует увеличению податливости исследуемой артерии. При воздействии последовательностью нарастающих давлений, приложенных к пальцу, можно, с одной стороны, увидеть выраженность ауторегуляторной реакции, а с другой - выбрать оптимальные условия (по величине трансмурального давления) для съема информации при проведении окклюзионной пробы (выбор наиболее крутого участка на кривой податливости артерии);

2) создание окклюзии артерии путем приложения супрасистолического давления (на 30 мм рт.ст) в течение 5 минут. После быстрого сброса давления в манжете, установленной на лучевой артерии, проводится регистрация динамики ФПГ кривой (амплитудный и временной анализ). Регистрацию изменений ПГ сигнала осуществляют одновременно по двум референсному и испытуемому каналам в течение, по меньшей мере, 3 минут. При проведении амплитудного анализа сравнивают величины амплитуды сигнала в референсном и испытуемом канале, скорость нарастания амплитуды сигнала в испытуемом канале, отношение амплитуд сигналов, полученного максимума при различных величинах трансмуралъного давления, с максимальной величиной сигнала, полученного после проведения окклюзионной пробы. При проведении временного анализа сравнивают плетизмографические кривые, полученные по референсному и испытуемому каналу, проводят процедуру нормирования сигнала, а затем определяют время запаздывания или фазовый сдвиг.

Максимальные величины амплитуды ФПГ сигналов отмечались при нулевом трансмуральном давлении (давление, приложенное к сосуду извне, равно среднему артериальному давлению). Расчет велся следующим образом - диастолическое давление плюс 1/3 пульсового давления. Этот ответ артерии на давление извне не является эндотелийзависимым. Прием выбора давления, прикладываемого извне к артерии, не только позволяет проводить пробу с реактивной гиперемией по динамике ФПГ сигнала в наиболее оптимальной области податливости артерии, но и обладает собственной диагностической ценностью. Снятие семейства ФПГ кривых при различных величинах трансмурального давления позволяет получить информацию о реологических характеристиках артерии. Эта информация позволяет разграничить изменения, связанные с ауторегуляторным эффектом гладкомышечного аппарата стенки артерии в виде увеличения диаметра, от эластических свойств артерии. Увеличение диаметра артерии приводит к возрастанию постоянного компонента), за счет большего объема крови, находящегося в лоцируемой области. Пульсовая составляющая сигнала отражает приращение объема крови в систолу. Амплитуда ФПГ определяется податливостью артериальной стенки при прохождении пульсовой волны давления. Просвет артерии как таковой не влияет на амплитуду ФПГ сигнала. Полного параллелизма между приращением диаметра сосуда и податливостью стенки при изменении трансмурального давления не наблюдается.

При низком трансмуральном давлении артериальная стенка становиться менее жесткой по сравнению с ее механическими свойствами, определяемыми при физиологических значениях артериального давления.

Оптимизация проведения теста по величине трансмурального давления значительно увеличивает его чувствительность, позволяя выявлять патологию на самых ранних стадиях нарушения функции эндотелия. Высокая чувствительность теста позволит эффективно оценивать проведение фармакологической терапии, направленной на коррекцию нарушений эндотелиальной функции.

При увеличении давления в манжете до 100 мм рт.ст. отмечался постоянный рост сигнала, максимальная амплитуда сигнала определялась при 100 мм рт.ст. Дальнейшее повышение давления в манжете приводило к снижению амплитуды ФПГ сигнала. Снижение давления до 75 мм рт.ст. сопровождалось снижением амплитуды ФПГ сигнала на 50%. Давление в манжете также меняло форму ФПГ сигнала (см. фиг.3).

Изменение формы ФПГ сигнала заключалось в резком увеличении скорости нарастания систолического подъема с одновременной задержкой момента начала подъема. Эти изменения формы отражают влияние манжеты на прохождение пульсовой волны давления. Этот феномен происходит из-за вычитания из пульсовой волны давления, величины давления манжеты.

Подъем руки относительно "точки равенства давлений" (уровень сердца) позволяет отказаться от использования приложенного извне давления (напряжения) с помощью манжеты. Подъем руки с "точки равенства давлений" до позиции вытянутой вверх увеличивает амплитуду ФПГ. Последующее опускание руки на исходный уровень снижает амплитуду до исходного уровня.

Важным фактором, влияющим на величину трансмурального давления, является сила тяжести. Трансмуральное давление в пальцевой артерии поднятой руки меньше давления в той же артерии, находящейся на уровне сердца, на произведение величин плотности крови, ускорения силы тяжести и расстояния от "точки равенства давлений":

где Ptrh - трансмуральное давление в пальцевой артерии поднятой руки,

Ptrho - трансмуральное давление в пальцевой артерии, находящейся на уровне сердца, p - плотность крови (1,03 г/см), g - ускорение силы тяжести (980 см/сек), h - расстояние от точки равенства давлений до пальцевой артерии поднятой руки (90 см). При данном расстоянии от "точки равенства давлений" давление у стоящего человека с поднятой рукой на 66 мм рт.ст. ниже среднего давления в пальцевой артерии, измеренного на уровне сердца.

Таким образом, уменьшить трансмуральное давление можно, увеличивая прикладываемое извне давление или снижая давление в сосуде. Снизить давление в пальцевой артерии достаточно легко. Для этого необходимо поднять кисть выше уровня сердца. Постепенно поднимая руку, мы снижаем трансмуральное давление в пальцевой артерии. При этом амплитуда ФПГ сигнала резко возрастает. В поднятой руке среднее давление в пальцевой артерии может снизиться до 30 мм рт.ст., тогда как при нахождении кисти руки на уровне сердца оно равно 90 мм рт.ст. Трансмуральное давление в артериях голени может быть в четыре раза больше, чем в артериях поднятой руки. Влияние гидростатического давления на величину трансмурального давления можно использовать в функциональной пробе по оценке вязкоэластических свойств артериальной стенки.

Заявленные изобретения имеют следующие преимущества:

1) давление для проведения окклюзионной пробы выбирается индивидуально для каждого пациента,

2) обеспечивается информация о вязкоэластических свойствах артериального русла (по зависимости амплитуды ПГ сигнала от давления (усилия)),

3) обеспечивается улучшение соотношения сигнал/шум,

4) окклюзионная проба проводится в наиболее оптимальной области податливости артерии,

5) изобретения позволяют получить информацию о реологических характеристиках артерии за счет снятия семейства ФПГ кривых при различных значениях трансмурального давления,

6) изобретения увеличивают чувствительность теста, а следовательно, достоверность оценки функции эндотелия,

7) позволяют выявить патологию на самых ранних стадиях нарушения функции эндотелия,

8) позволяют достоверно оценить эффективность проводимой фармакотерапии.

1. Способ неинвазивного определения функции эндотелия, включающий проведение окклюзионной пробы, в ходе которой в манжете, накладываемой проксимально от лоцируемого участка конечности, создают давление, превышающее систолическое давление испытуемого, а окклюзию осуществляют в течение 5 мин, отличающийся тем, что на первом этапе производят снижение трансмурального давления в конечности, регистрируют амплитуды плетизмографических сигналов при различных давлениях, определяют давление, при котором амплитуда плетизмографического сигнала максимальна, затем снижают давление до величины, соответствующей заданному проценту от максимальной амплитуды, на втором этапе проводят окклюзионную пробу, причем создают давление, превышающее систолическое давление испытуемого, по меньшей мере, на 50 мм рт.ст, далее после проведения окклюзионной пробы регистрированный плетизмографический сигнал, анализируют с одновременным использованием амплитудного и временного анализа по данным, полученным по референсному и испытуемому каналам.

2. Способ по п.1, отличающийся тем, что трансмуральное давление снижают путем наложения на участок конечности манжеты, в которой создают давление.

3. Способ по п.1, отличающийся тем, что давление на ткани конечности повышают дискретно с шагом 5 мм рт.ст. и длительностью шага 5-10 с, одновременно регистрируют амплитуду плетизмографического сигнала.

4. Способ по п.1, отличающийся тем, что для снижения трансмуралъного давления в лоцируемой артерии уменьшают гидростатическое давление путем поднятия конечности на заданную высоту относительно уровня сердца.

5. Способ по п.1, отличающийся тем, что после выбора величины трансмурального давления, при котором амплитуда плетизмографического сигнала составляет 50% от максимально возможной величины, в окклюзионной манжете, установленной проксимально от лоцируемой артерии, создают супрасистолическое давление, регистрируют плетизмографический сигнал.

6. Способ по п.5, отличающийся тем, что после по меньшей мере 5-минутной экспозиции окклюзионной манжеты, установленной проксимально от лоцируемой артерии, давление в ней сбрасывают до нуля, а регистрацию изменений плетизмографического сигнала осуществляют одновременно по двум, референсному и испытуемому, каналам в течение, по меньшей мере, 3 мин.

7. Способ по п.1, отличающийся тем, что при проведении амплитудного анализа сравнивают величины амплитуды сигнала в референсном и испытуемом каналах, скорость нарастания амплитуды сигнала в испытуемом канале, отношение амплитуд сигналов, полученного максимума при различных величинах трансмурального давления с максимальной величиной сигнала, полученного после проведения окклюзионной пробы.

8. Способ по п.1, отличающийся тем, что при проведении временного анализа сравнивают плетизмографические кривые, полученные по референсному и испытуемому каналам, проводят процедуру нормирования сигнала, а затем определяют время запаздывания или фазовый сдвиг.

9. Устройство для неинвазивного определения функции эндотелия, включающее сенсорный блок, выполненный двухканальным и имеющим возможность регистрации пульсовых кривых с периферических артерий, блок создания давления, выполненный с возможностью создания в манжете нарастающего ступенчато давления, и электронный блок, выполненный с возможностью определения давления в манжете, соответствующего максимальной амплитуде плетизмографического сигнала, и управления блоком создания давления для установления давления в манжете, соответствующего амплитуде плетизмографического сигнала, составляющей заданный процент от максимальной амплитуды, при этом сенсорный блок связан с электронным блоком, к выходу которого подключен блок создания давления.

10. Устройство по п.9, отличающееся тем, что блок создания давления выполнен с возможностью создания ступенчато нарастающего давления в манжете с шагом 5 мм рт.ст и длительностью шага 5-10 с.

11. Устройство по п.9, отличающееся тем, что каждый канал сенсорного блока включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации проходящего через лоцируемую область светового сигнала.

12. Устройство по п.9, отличающееся тем, что каждый канал сенсорного блока включает инфракрасный диод и фотоприемник, расположенные с возможностью регистрации отраженного от лоцируемой области рассеянного светового сигнала.

13. Устройство по п.9, отличающееся тем, что сенсорный блок включает импедансометрические электроды, или датчики Холла, или эластичную трубку, заполненную электропроводящим материалом.

14. Устройство по п.11, отличающееся тем, что фотоприемник связан фильтром, имеющим возможность выделения из общего сигнала пульсовой составляющей.

Изобретение относится к медицине и физиологии и может быть использовано для комплексной оценки уровня физической работоспособности практически здоровых лиц старше 6 лет разного уровня тренированности, не имеющих ограничений по состоянию здоровья.

Изобретение относится к медицине, а именно к функциональной диагностике, и может быть использовано для неинвазивного определения функции эндотелия


Эндотелиальные клетки, выстилающие кровеносные сосуды , обладают удивительной способностью изменять свою численность и расположение в соответствии с локальными требованиями. Почти все ткани нуждаются в кровоснабжении , а оно в свою очередь зависит от эндотелиальных клеток. Эти клетки создают способную к гибкой адаптации систему жизнеобеспечения с разветвлениями во всех областях тела. Если бы не эта способность эндотелиальных клеток расширять и восстанавливать сеть кровеносных сосудов, рост тканей и процессы заживления были бы невозможны.

Самые крупные кровеносные сосуды - это артерии и вены , имеющие толстую прочную стенку из соединительной ткани и гладкой мускулатуры ( рис. 17-11,А). Эта стенка выстлана изнутри чрезвычайно тонким одиночным слоем эндотелиальных клеток, который отделен от окружающих слоев базальной мембраной . Толщина соединительнотканного и мышечного слоев стенки варьирует в зависимости от диаметра и функции сосуда, но эндотелиальная выстилка имеется всегда. Стенки тончайших разветвлений сосудистого дерева - капилляров и синусоидов - состоят только из эндотелиальных клеток и базальной мембраны.

Таким образом, эндотелиальные клетки выстилают всю сосудистую систему - от сердца до мельчайших капилляров - и управляют переходом веществ (а также лейкоцитов) из тканей в кровь и обратно. Более того, изучение эмбрионов показало, что сами артерии и вены развиваются из простых малых сосудов, построенных исключительно из эндотелиальных клеток и базальной мембраны: соединительная ткань и гладкая мускулатура там, где это нужно, добавляются позднее под действием сигналов от эндотелиальных клеток.

Эндотелиальные клетки экспрессируют молекулы, способные узнавать циркулирующие с кровотоком лейкоциты , обеспечивая таким образом их адгезию , а также распределение в сосудистом ложе.

Эндотелиальные клетки обладают мощным антикоагулянтным потенциалом. Они синтезируют простациклин , который ингибирует активацию тромбоцитов и вызывает вазодилятацию. На поверхности клеток расположены гепаринсодержащие протеогликаны, которые ускоряют зависимую от антитромбина III нейтрализацию многих сериновых протеиназ каскада свертывания крови .

Эндотелиальными клетками синтезируется и секретируется активатор плазминогена , инициирующий процессы растворения (лизиса) фибрина ( фибринолиз). Они содержат белок тромбомодулин , специфически связывающий фермент тромбин и инициирующий антикоагулянтный механизм активации белка СИ .

В то же время эндотелиальные клетки способны проявлять и прокоагулянтные свойства. Эти свойства проявляются в их способности продуцировать фактор активации тромбоцитов ( PAF - Platelet activating factor), ингибиторы активаторов плазминогена и тканевый фактор , который экспрессируется на поверхности активированного эндотелия. Он стимулирует активацию

1 Губарева Е.А. 1 Туровая А.Ю. 1 Богданова Ю.А. 1 Апсалямова С.О. 1 Мерзлякова С.Н. 1

1 ГБОУ ВПО «Кубанский государственный медицинский университет Министерства здравоохранения и социального развития Российской Федерации», Краснодар

В обзоре рассмотрена проблема физиологических функций эндотелия сосудов. История изучения функций сосудистого эндотелия начата с 1980 года, когда был открыт оксид азота Р. Фуршготом и И. Завадски. В 1998 году была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований – разработки участия эндотелия в патогенезе артериальной гипертензии и других сердечно-сосудистых заболеваний, а также способов эффективной коррекции его дисфункции. В статье рассмотрены основные работы по физиологической роли эндотелинов, оксида азота, ангиотензина II и других биологически активных эндотелиальных веществ. Очерчен круг проблем, связанных с изучением поврежденного эндотелия, как потенциального маркера развития многочисленных заболеваний.

биологически активные вещества

дилятаторы

констрикторы

оксид азота

эндотелий

1. Гомазков О.А. Эндотелий – эндокринное дерево // Nature. – 2000. – № 5.

2. Меньщикова Е.В., Зенков Н.К. Окислительный стресс при воспалении // Успехи соврем. биол. – 1997. – Т. 117. – С. 155–171.

3. Одыванова Л.Р., Сосунов А.А., Гатчев Я. Окись азота (NO) в нервной системе // Успехи соврем. биол. – 1997. – №3. – С. 374‒389.

4. Реутов В.П. Цикл окиси азота в организме млекопитающих // Успехи соврем. биол. – 1995. – № 35. – С. 189–228.

5. Cooke J.P. Asymmetrical dimethylarginine: the Uber marker? // Circulation. – 2004. – № 109. – Р. 1813.

6. Davignon J., Ganz P. Role of endothelial dysfunction in atherosclerosis// Circulation. – 2004. – № 109. – Р. 27.

7. De Caterina R. Endothelial dysfunctions: common denominators in vascular disease // Current Opinion in Lipidology. – 2000. Vol. 11, № 1. – Р. 9–23.

8. Kawashima S. The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis // Endothelium. – 2004. Vol. 11, № 2. – Р. 99–107.

9. Libby P. Inflammation in atherosclerosis// Nature. – 2002. – Vol. 420, № 6917. – Р. 868–874.

10. Tan K.C.B., Chow W.S., Ai V.H.G. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria// Diabetes Metabolism Research and Reviews. – 2002. – Vol. 18, № 1. – Р. 71–76.

Эндотелий - активный эндокринный орган, самый большой в организме, диффузно рассеянный вместе с сосудами по всем тканям. Эндотелий, по классическому определению гистологов, - однослойный пласт специализированных клеток, выстилающих изнутри все сердечно-сосудистое дерево, весом около 1,8 кг. Один триллион клеток со сложнейшими биохимическими функциями, включающий системы синтеза белков и низкомолекулярных веществ, рецепторы, ионные каналы .

Эндотелиоциты синтезируют субстанции, важные для контроля свертывания крови, регуляции сосудистого тонуса, артериального давления, фильтрационной функции почек, сократительной активности сердца, метаболического обеспечения мозга. Эндотелий способен реагировать на механическое воздействие протекающей крови, величину давления крови в просвете сосуда и степень напряжения мышечного слоя сосуда. Клетки эндотелия чувствительны к химическим воздействиям, которые могут приводить к повышенной агрегации и адгезии циркулирующих клеток крови, развитию тромбоза, оседанию липидных конгломератов (табл. 1).

Все эндотелиальные факторы делятся на вызывающие сокращение и расслабление мышечного слоя сосудистой стенки (констрикторы и дилятаторы). Основные констрикторы представлены ниже.

Большой эндотелин - неактивный предшественник эндотелина, содержащий 38 аминокислотных остатков, обладает менее выраженной вазоконстрикторной (по сравнению с эндотелином) активностью in vitro. Конечный процессинг большого эндотелина осуществляется при участии эндотелинпревращающего фермента.

Эндотелин (ЭТ). Японский исследователь М. Янагасава и соавт. (1988) описали новый эндотелиальный пептид, активно сокращающий гладкомышечные клетки сосудов. Открытый пептид, названный ЭТ, сразу стал предметом интенсивного изучения. ЭТ- сегодня один из самых популярных в списке биоактивных регуляторов. Это - вещество с наиболее мощной сосудосуживающей активностью образуется в эндотелии. В организме присутствуют несколько форм пептида, различающихся небольшими нюансами химического строения, но весьма не схожих по локализации в организме и физиологической активности. Синтез ЭТ стимулируют тромбин, адреналин, ангиотензин (АТ), интерлейкины, клеточные ростовые факторы и др. В большинстве случаев ЭТ секретируется из эндотелия «внутрь», к мышечным клеткам, где расположены чувствительные к нему ЕТА-рецепторы. Меньшая часть синтезируемого пептида, взаимодействуя с рецепторами ЕТВ-типа, стимулирует синтез NO. Таким образом, один и тот же фактор регулирует две противоположные сосудистые реакции (констрикцию и дилятацию), реализуемые различными химическими механизмами.

Таблица 1

Факторы, синтезируемые в эндотелии и регулирующие его функцию

Факторы, вызывающие сокращение и расслабление мышечного слоя сосудистой стенки

Констрикторы

Дилятаторы

Большой эндотелин (бЭТ)

Оксид азота (NO)

Ангиотензин II (АТ II)

Большой эндотелин (бЭТ)

Тромбоксан А2 (ТхА2)

Простациклин (PGI2)

Простагландин Н2 (PGН2)

Эндотелиновый фактор деполяризации (EDHF)

Ангиотензин I (АТ I)

Адреномедулин

Факторы прогоагуляционные и антикоагуляционные

Протромбогенные

Антитромбогенные

Тромбоцитарный фактор роста (ТФРβ)

Оксид азота (NO)

Ингибитор тканевого активатора плазминогена (ИТАП)

Тканевой активатор плазминогена (ТАП)

Фактор Виллебранда (VIII фактор свертывания)

Простациклин (PGI2)

Ангиотензин IV (АТ IV)

Тромбомодулин

Эндотелин I (ЭТ I)

Фибронектин

Тромбоспондин

Фактор активации тромбоцитов (ФАТ)

Факторы, влияющие на рост сосудов и гладкомышечных клеток

Стимуляторы

Ингибиторы

Эндотелин I (ЭТ I)

Оксид азота (NO)

Ангиотензин II (АТ II)

Простациклин (PGI2)

Супероксидные радикалы

Натриуретический пептид С

Эндотелиальный фактор роста (ECGF)

Гепариноподобные ингибиторы роста

Факторы провоспалительные и противовоспалительные

Провоспалительные

Противовоспалительные

Фактор некроза опухоли α (ФНО-α)

Оксид азота (NO)

Супероксидные радикалы

С-реактивный белок (С-РБ)

Для ЭТ выявлены подтипы рецепторов, не схожие по клеточной локализации и запускающие «сигнальные» биохимические реакции. Четко прослеживается биологическая закономерность, когда одно и то же вещество, в частности, ЭТ регулирует различные физиологические процессы (табл. 2).

ЭТ - это группа полипептидов, состоящая из трех изомеров (ЭТ-1, ЭТ-2, ЭТ-3), отличающихся некоторыми вариациями и последовательностью расположения аминокислот. Имеется большое сходство между структурой ЭТ и некоторыми нейротоксическими пептидами (яды скорпиона, роющей змеи).

Основной механизм действия всех ЭТ заключается в увеличении содержания в цитоплазме гладкомышечных клеток сосудов ионов кальция, что вызывает:

  • стимуляцию всех фаз гемостаза, начиная с агрегации тромбоцитов и заканчивая образованием красного тромба;
  • сокращение и рост гладких мышц сосудов, приводящие к вазоконстрикции и утолщению стенки сосудов и уменьшению их диаметра.

Таблица 2

Подтипы рецепторов ЭТ: локализация, физиологические эффекты
и участие вторичных посредников

Эффекты ЭТ неоднозначны и определяются рядом причин. Наиболее активен изомер - ЭТ-1. Он образуется не только в эндотелии, но и в гладких мышцах сосудов, нейронах, глие, мезенгиальных клетках почек, печени и других органах. Полупериод жизни - 10-20 мин, в плазме крови - 4-7 мин. ЭТ-1 причастен к ряду патологических процессов: инфаркту миокарда, нарушению ритма сердца, легочной и системной гипертезии, атеросклерозу и др. .

Поврежденный эндотелий синтезирует большое количество ЭТ, вызывающего вазоконстрикцию . Большие дозы ЭТ приводят к значительным изменениям системной гемодинамики: снижению частоты сердечных сокращений и ударного объема сердца, увеличению на 50 % сосудистого сопротивления в большом круге кровообращения и на 130 % в малом .

Ангиотензин II (AT II) - физиологически активный пептид прогипертензивного действия. Это гормон, образующийся в крови человека при активации ренин-ангиотензиновой системы, участвует в регуляции артериального давления и водно-солевого обмена. Этот гормон вызывает сужение выносящих артериол почечных клубочков . Он увеличивает реабсорбцию в почечных канальцах натрия и воды. АТ II суживает артерии и вены, а также стимулирует выработку таких гормонов, как вазопрессин и альдостерон, что приводит к повышению давления. Сосудосуживающая активность АТ II определяется его взаимодействием с AT I рецептором .

Тромбоксан А2 (ТхА 2) - способствует быстрой агрегации тромбоцитов, увеличивая доступность их рецепторов для фибриногена, чем активирует коагуляцию, вызывает вазоспазм и бронхоспазм. Кроме того, TхA2 является медиатором в опухолеобразовании, тромбозах и астме. ТхА2 вырабатывается также гладкими мышцами сосудов, тромбоцитами. Одним из факторов, стимулирующих выделение ТхА2, является кальций, который в большом количестве выделяется из тромбоцитов в начале их агрегации. ТхА2 сам увеличивает содержание кальция в цитоплазме тромбоцитов. Кроме того, кальций активирует сократительные белки тромбоцитов, что усиливает их агрегацию и дегрануляцию. Он активирует фосфолипазу А2, превращающую арахидоновую кислоту в простагландины G2, Н2 - вазоконстрикторы .

Простагландин H2 (PGH2) - обладает ярко выраженной биологической активностью. Он стимулирует агрегацию тромбоцитов и вызывает сокращение гладких мышц с формированием вазоспазма.

Группа веществ под названием дилятаторы, представлена следующими биологически активными веществами.

Оксид азота (NO) - это низкомолекулярная и не несущая заряда молекула, способная быстро диффундировать и свободно проникать через плотные клеточные слои и межклеточное пространство. По строению NO содержит неспаренный электрон, имеет высокую химическую активность и легко реагирует со многими клеточными структурами и химическими компонентами, что обусловливает исключительное многообразие ее биологических эффектов. NO способен вызывать различные и даже противоположные эффекты в клетках-мишенях, что зависит от наличия дополнительных факторов: окислительно-восстановительного и пролиферативного статуса и ряда прочих условий. NO влияет на эффекторные системы, контролирующие пролиферацию, апоптоз и дифференцировку клеток, а также на их устойчивость к стрессовым воздействиям. NO выполняет функции посредника в передаче паракринного сигнала. Действие NO вызывает быстрый и относительно кратковременный ответ в клетках-мишенях, обусловленный снижением уровня кальция, а также долговременные эффекты, обусловленные индукцией определенных генов. В клетках-мишенях NO и ее активные производные, такие как пероксинитрит, действуют на белки, содержащие гем, железосерные центры и активные тиолы, также ингибируют железосерные ферменты. Кроме того, NO рассматривают как один из мессенджеров внутри и межклеточной сигнализации в центральной и периферической нервной системе и рассматривают как регулятор пролиферации лимфоцитов. Эндогенный NO - важный компонент системы регуляции кальциевого гомеостаза в клетках и соответственно активности Са 2+ -зависимых протеинкиназ. Образование NO в организме происходит при ферментативном окислении L-аргинина. Синтез NO осуществляется семейством цитохром ‒ P-450-подобных гемопротеинов - NO-синтаз.

По определению ряда исследователей - NO - «двуликий Янус»:

  • NO как усиливает процессы перекисного окисления липидов (ПОЛ) в мембранах клеток и липопротеинах сыворотки, так и ингибирует их;
  • NO вызывает вазодилятацию, но может вызывать и вазоконстрикцию ;
  • NO индуцирует апоптоз, но оказывает защитный эффект в отношении апоптоза, индуцированного другими агентами;
  • NO способен модулировать развитие воспалительной реакции и ингибировать окислительное фосфорилирование в митохондриях и синтез АТФ .

Простациклин (PGI2) - образуется преимущественно в эндотелии. Синтез простациклина происходит постоянно. Он подавляет агрегацию тромбоцитов, кроме того, оказывает вазодилятирующее действие за счет стимуляции специфических рецепторов гладкомышечных клеток сосудов, что приводит к повышению активности в них аденилатциклазы и к увеличению образования в них цАМФ.

Эндотелий зависимый гиперполяризующий фактор (EDHF) - по своей структуре он не идентифицирован, как NO или простациклин. EDHF вызывает гиперполяризацию гладкомышечного слоя артериальной стенки и соответственно его релаксацию. G. Edwards и соавт. (1998) было установлено, что EDHF не что иное как К+, который выделяется эндотелиоцитами в миоэндотелиальное пространство стенки артерии при действии на последнюю адекватного раздражителя. EDHF способен играть важную роль в регуляции артериального давления.

Адреномедулин содержится в сосудистой стенке, обоих предсердиях и желудочках сердца, спинномозговой жидкости. Имеются указания на то, что адреномедулин может синтезироваться легкими и почками. Адреномедулин стимулирует продукцию эндотелием NO, что способствует вазодилятации, расширяет сосуды почек и увеличивает скорость клубочковой фильтрации и диурез, повышает натрийурез, снижает пролиферацию гладкомышечных клеток, препятствует развитию гипертрофии и ремоделирования миокарда и сосудов, ингибирует синтез альдостерона и ЭТ.

Следующая функция сосудистого эндотелия - участие в реакциях гемостаза за счет выделения протромбогенных и антитромбогенных факторов.

Группа протромбогенных факторов представлена следующими агентами.

Тромбоцитарный фактор роста (PDGF) является наиболее хорошо изученным представителем группы белковых факторов роста. PDGF может изменять пролиферативный статус клетки, влияя на интенсивность белкового синтеза, но, не затрагивая при этом усиления транскрипции генов раннего ответа, как c-myc и c-fos. Сами тромбоциты не синтезируют белок. Синтез и процессинг PDGF осуществляется в мегакариоцитах - клетках костного мозга, предшественниках тромбоцитов - и запасается в α-гранулах тромбоцитов. Пока PDGF находится внутри тромбоцитов, он недоступен для других клеток, однако при взаимодействии с тромбином происходит активация тромбоцитов с последующим высвобождением содержимого в сыворотку. Тромбоциты являются главным источником PDGF в организме, но вместе с тем показано, что некоторые другие клетки также могут синтезировать и секретировать этот фактор: это в основном клетки мезенхимального происхождения.

Ингибитор тканевого активатора плазминогена-1 (ИТАП-1) - продуцируется эндотелиоцитами, клетками гладких мышц, мегакариоцитами и мезотелиальными клетками; депонируется в тромбоцитах в неактивной форме и является серпином. Уровень ИТАП-1 в крови регулируется очень точно и возрастает при многих патологических состояниях. Его продукция стимулируется тромбином, трансформирующим фактором роста β, тромбоцитарным фактором роста, ИЛ-1, ФНО-α, инсулиноподобным фактором роста, глюкокортикоидами. Основная функция ИТАП-1 - ограничить фибринолитическую активность местом расположения гемостатической пробки за счет ингибирования ТАП. Это выполняется легко за счет большего содержания его в сосудистой стенке по сравнению с тканевым активатором плазминогена. Таким образом, на месте повреждения активированные тромбоциты выделяют избыточное количество ИТАП-1, предотвращая преждевременный лизис фибрина.

Ингибитор тканевого активатора плазминогена 2 (ИТАП-2) - основной ингибитор урокиназы.

Фактор фон Виллебранда (VIII - vWF) - синтезируется в эндотелии и мегакариоцитах; стимулирует начало тромбообразования: способствует прикреплению рецепторов тромбоцитов к коллагену и фибронектину сосудов, усиливает адгезию и агрегацию тромбоцитов. Синтез и выделение этого фактора возрастает под влиянием вазопрессина, при повреждении эндотелия. Поскольку все стрессорные состояния увеличивают выделение вазопрессина, то при стрессах, экстремальных состояниях тромбогенность сосудов возрастает.

АТ II быстро метаболизируется (период полураспада - 12 мин) при участии аминопептидазы А с образованием АТ III и далее под влиянием аминопептидазы N - ангиотензина IV, обладающих биологической активностью. АТ IV, предположительно, участвует в регуляции гемостаза, опосредует угнетение клубочковой фильтрации.

Важная роль отводится фибронектину - гликопротеиду, состоящему из двух цепей, соединенных дисульфидными связями. Вырабатывается он всеми клетками сосудистой стенки, тромбоцитами. Фибронектин является рецептором для фибринстабилизирующего фактора. Способствует адгезии тромбоцитов, участвуя в образовании белого тромба; связывает гепарин. Присоединяясь к фибрину, фибронектин уплотняет тромб. Под действием фибронектина клетки гладких мышц, эпителиоцитов, фибробластов повышают свою чувствительность к факторам роста, что может вызвать утолщение мышечной стенки сосудов и повышение общего периферического сопротивления сосудов.

Тромбоспондин - гликопротеид, который не только вырабатывается эндотелием сосудов, но находится и в тромбоцитах. Он образует комплексы с коллагеном, гепарином, являясь сильным агрегирующим фактором, опосредующим адгезию тромбоцитов к субэндотелию.

Фактор активации тромбоцитов (ФАТ) - образуется в различных клетках (лейкоциты, эндотелиальные клетки, тучные клетки, нейтрофилы, моноциты, макрофаги, эозинофилы и тромбоциты), относится к веществам с сильным биологическим действием.

ФАТ задействован в патогенезе аллергических реакций немедленного типа. Он стимулирует агрегацию тромбоцитов с последующей активацией фактора XII (фактора Хагемана). Активированный фактор XII, в свою очередь, активирует образование кининов, наибольшее значение из которых имеет брадикинин.

Группа антитромбогенных факторов представлена нижеперечисленными биологически активными веществами.

Тканевой активатор плазминогена (tPA, фактор III, тромбопластин, ТАП) - сериновая протеаза катализирует превращение неактивного профермента плазминогена в активный фермент плазмин и является важным компонентом системы фибринолиза. ТАП является одним из ферментов, наиболее часто вовлекаемых в процессы деструкции базальной мембраны, внеклеточного матрикса и инвазии клеток. Он продуцируется эндотелием и локализован в стенке сосудов. ТАП представляет собой фосфолипопротеин, эндотелиальный активатор, высвобождаемый в кровоток под действием разных стимулов.

Основные функции сводятся к инициации активации внешнего механизма свертывания крови. Он обладает высоким сродством к циркулирующему в крови ф.VII. В присутствии ионов Са2+ ТАП образует комплекс с ф.VII, вызывая его конформационные изменения и превращая последний в сериновую протеиназу ф.VIIа. Возникающий комплекс (ф.VIIа-Т.ф.) превращает ф.Х в сериновую протеиназу ф.Ха. Комплекс ТАП-фактор VII способен активировать как фактор X, так и фактор IX, что, в конечном итоге, способствует образованию тромбина.

Тромбомодулин - протеогликан, содержащийся в сосудах и являющийся рецептором для тромбина. Эквимолярный комплекс тромбин-тромбомодулин не вызывает превращения фибриногена в фибрин, ускоряет инактивацию тромбина антитромбином III и активирует протеин C, один из физиологических антикоагулянтов крови (ингибиторов свертывания крови). В комплексе с тромбином тромбомодулин функционирует в качестве кофактора. Связанный с тромбомодулином тромбин в результате изменения конформации активного центра приобретает повышенную чувствительность в отношении инактивации его антитромбином III и полностью теряет способность взаимодействовать с фибриногеном и активировать тромбоциты.

Жидкое состояние крови поддерживается благодаря ее движению, адсорбции факторов свертывания эндотелием и, наконец, благодаря естественным антикоагулянтам. Важнейшие из них - это антитромбин III, протеин С, протеин S и ингибитор внешнего механизма свертывания.

Антитромбин III (АТ III) - нейтрализует активность тромбина и других активированных факторов свертывания крови (фактора XIIa, фактора XIa, фактора Xa и фактора IXa). В отсутствие гепарина комплексирование АТ III с тромбином протекает медленно. При связывании остатков лизина АТ III с гепарином в ее молекуле происходят конформационные сдвиги, способствующие быстрому взаимодействию реактивного места АТ III с активным центром тромбина. Это свойство гепарина лежит в основе его антикоагулянтного действия. АТ III образует комплексы с активированными факторами свертывания крови, блокируя их действие. Эта реакция в сосудистой стенке и на эндотелиальных клетках ускоряется гепариноподобными молекулами.

Протеин С - синтезируемый в печени витамин-К-зависимый белок, который связывается с тромбомодулином и превращается тромбином в активную протеазу. Взаимодействуя с протеином S, активированный протеин С разрушает фактор Va и фактор VIIIa, прекращая образование фибрина. Активированный протеин С может также стимулировать фибринолиз. Уровень протеина С не столь жестко связан с наклонностью к тромбозам, как уровень АТ III. Кроме того, протеин С стимулирует выделение тканевого активатора плазминогена эндотелиальными клетками. Кофактором протеина С служит протеин S.

Протеин S - фактор протромбинового комплекса, кофактор протеина С. Снижение уровня АТ III, протеина С и протеина S или их структурные аномалии ведут к повышению свертываемости крови. Протеин S - витамин К - зависимый одноцепочечный плазменный протеин, является кофактором активированного протеина С, вместе с которым регулирует скорость свертывания крови. Протеин S синтезируется в гепатоцитах, эндотелиальных клетках мегакариоцитах, клетках Лейдинга, а также в клетках мозга. Протеин S функционирует как неэнзиматический кофактор активированного белка C, сериновая протеаза, участвующая в протеолитической деградации факторов Va и VIIIa.

Все факторы, влияющие на рост сосудов и гладкомышечных клеток, делятся на стимуляторы и ингибиторы. Основные стимуляторы представлены ниже.

Ключевой активной формой кислорода является супероксид анион-радикал (Ō2), образующийся при присоединении одного электрона к молекуле кислорода в основном состоянии. Ō2 представляет опасность тем, что способен повреждать белки, содержащие железо-серные кластеры, такие как аконитаза, сукцинатдегидрогеназа и НАДН-убихинон оксидоредуктаза. При кислых значениях рН Ō2 может протонироваться с образованием более реакционноспособного пероксидного радикала. Присоединение двух электронов к молекуле кислорода или одного электрона к Ō2 приводит к образованию Н2О2, которая является окислителем умеренной силы.

Опасность любых реакционно-активных соединений в значительной степени зависит от их стабильности. Экзогенно возникшие Ō2 могут проникать в клетку и (наряду с эндогенными) участвовать в реакциях, приводящих к различным повреждениям: перекисном окислении ненасыщенных жирных кислот, окислении SH-групп белков, повреждении ДНК и др.

Фактор роста эндотелиальных клеток (beta-Endothelial Cell Growth Factor) - обладает свойствами ростового фактора эндотелиальных клеток. 50 % аминокислотной последовательности молекулы ECGF соответствует структуре фактора роста фибробластов (FGF). Оба эти пептида также обнаруживают сходную аффинность к гепарину и ангиогенную активность in vivo. Основной фактор роста фибробластов (bFGF) считается одним из важных индукторов опухолевого ангиогенеза.

Главные ингибиторы роста сосудов и гладкомышечных клеток представлены следующими веществами.

Эндотелиальный натрийуретический пептид С - вырабатывается, главным образом, в эндотелии, но обнаруживается также в миокарде предсердий, желудочков и в почках. Вазоактивным действием обладает CNP, выделяющийся из эндотелиальных клеток и паракринно воздействующий на рецепторы гладкомышечных клеток, вызывая и вазодилятацию. Синтез CNP усиливается в условиях дефицита NO, что имеет компенсаторное значение при развитии артериальной гипертензии и атеросклерозе.

Макроглобулин α2 - это гликопротеин, который относится к α2-глобулинам и представляет собой одну полипептидную цепь с молекулярной массой 725000 кДа. Нейтрализует плазмин, оставшийся неинактивированным после взаимодействия с α2-антиплазмином. Угнетает активность тромбина.

Кофактор II гепарина - гликопротеин, одноцепочечный полипептид с молекулярной массой 65000 кДа. Его концентрация в крови равна 90 мкг/мл. Инактивирует тромбин, образуя с ним комплекс. Реакция значительно ускоряется в присутствии дерматансульфата.

Сосудистый эндотелий также вырабатывает факторы, влияющие на развитие и течение воспаления.

Они делятся на провоспалительные и противовоспалительные. Ниже представлены провоспалительные факторы.

Фактор некроза опухоли-α (ФНО-α, кахектин) - это пироген, во многом дублирует действие ИЛ-1, но кроме того, играет важную роль в патогенезе септического шока, вызванного грамотрицательными бактериями. Под влиянием ФНО-α резко увеличивается образование макрофагами и нейтрофилами Н2О2 и других свободных радикалов. При хроническом воспалении ФНО-α активирует катаболические процессы и тем самым способствует развитию кахексии.

Цитотоксическое действие ФНО-α на опухолевую клетку связано с деградацией ДНК и нарушением функционирования митохондрий.

Индикатором эндотелиальной дисфункции может служить С-реактивный белок (С-РБ). Накоплено достаточно сведений о взаимосвязи С-РБ с развитием поражений сосудистой стенки и его непосредственном участии в этом процессе. Ввиду этого уровень С-РБ рассматривается сегодня в качестве надежного предиктора осложнений сосудистых заболеваний мозга (инсульт), сердца (инфаркт), периферических сосудистых нарушений. С-РБ опосредует инициальные стадии повреждения сосудистой стенки: активацию эндотелиальных молекул адгезии (ICAM-l, VCAM-l), секрецию хемотаксических и провоспалительных факторов (МСР-1 - хемотаксический для макрофагов белок, ИЛ-6), способствуя привлечению и адгезии иммунных клеток к эндотелию. Об участии С-РБ в повреждении сосудистой стенки свидетельствуют, кроме того, и данные о депозитах С-РБ, обнаруженных в стенках пораженных сосудов при инфаркте миокарда, атеросклерозе, васкулитах.

Основной противовоспалительный фактор - оксид азота (его функции представлены выше).

Таким образом, сосудистый эндотелий, находясь на границе между кровью и другими тканями организма, полностью выполняет свои основные функции за счет биологически активных веществ: регуляция параметров гемодинамики, тромборезистентность и участие в процессах гемостаза, участие в воспалении и ангиогенезе.

При нарушении функции или структуры эндотелия резко меняется спектр выделяемых им биологически активных веществ. Эндотелий начинает секретировать агреганты, коагулянты, вазоконстрикторы, причем часть из них (ренин-ангиотензиновая система) оказывает влияние на всю сердечно-сосудистую систему. При неблагоприятных условиях (гипоксия, нарушения обмена веществ, атеросклероз и т. п.) эндотелий становится инициатором (или модулятором) многих патологических процессов в организме .

Рецензенты :

Бердичевская Е.М., д.м.н., профессор, зав. кафедрой физиологии ФГОУ ВПО «Кубанский государственный университет физической культуры, спорта и туризма» г. Краснодар;

Быков И.М., д.м.н., профессор, зав. кафедрой фундаментальной и клинической биохимии ГБОУ ВПО КубГМУ Минздравсоцразвития России, г. Краснодар.

Работа поступила в редакцию 03.10.2011.

Библиографическая ссылка

Каде А.Х., Занин С.А., Губарева Е.А., Туровая А.Ю., Богданова Ю.А., Апсалямова С.О., Мерзлякова С.Н. ФИЗИОЛОГИЧЕСКИЕ ФУНКЦИИ СОСУДИСТОГО ЭНДОТЕЛИЯ // Фундаментальные исследования. – 2011. – № 11-3. – С. 611-617;
URL: http://fundamental-research.ru/ru/article/view?id=29285 (дата обращения: 13.12.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Подробности

Эндотелий - интима сосудов. Он выполняет ряд важных функций, в том числе: регулирует тонус сосудов, способствует изменению их диаметра, является сенсором повреждения сосудистой стенки и может запускать механизм свертывания крови.

1. Общий план строения сосудистой стенки.

2. Основные функции эндотелия сосудов.

  • Регуляция величины сосудистого тонуса и сосудистого сопротивления
  • Регуляция текучести крови
  • Регуляция ангиогенеза
  • Реализация процесса воспаления

3. Основные функции эндотелия реализуются:

1) Сдвигом секреторной функции эндотелия в сторону сосудорасширительных факторов (90% приходится на оксид азота).

2) Ингибированием:

  • Агрегации тромбоцитов
  • Адгезии белых клеток крови
  • Пролиферации гладких мышц

Основные функции эндотелиального слоя сосудистой клетки определяются его синтетическим фенотипом – набором вазоактивных факторов, синтезируемых эндотелием.

4. При дисфункции эндотелия наблюдается:

1) Сдвиг секреторной функции эндотелия в сторону сосудосуживающих факторов

2) Усиление:

  • агрегации тромбоцитов
  • адгезии белых клеток крови
  • пролиферации клеток гладких мышц

Что приводит к уменьшению сосудистого просвета, тромбообразованию, появлению очага воспаления и гипертрофии сосудистой стенки.

5. Регуляция текучести крови при участии эндотелия в норме.

6. Сдвиг синтетической активности эндотелиальной клетки в сторону прокоагулянтного фенотипа при нарушении целостности эндотелия или возникновении воспалительного процесса.

7. ЭНДОТЕЛИЙ СОСУДИСТОЙ СТЕНКИСИНТЕЗИРУЕТ И ВЫДЕЛЯЯЕТ СУЖИВАЮЩИЕ И РАСШИРИТЕЛЬНЫЕ ВАЗОАКТИВНЫЕ ФАКТОРЫ:

8. Типы действий вазоактивных факторов, синтезируемых эндотелием сосудистой стенки.

9. Основные пути метаболизма арахидоновой кислоты.

Циклооксигеназный путь
Липоксигеназный путь
Эпоксигеназный путь
Трансацилазный (мембранный) путь

Активация фосфолипазы А2 (брадикинином) стимулирует выход арахидоновой кислоты в растворимую часть клетки и ее метаболизм

10. Кооперативный способ активации арахидоновой кислоты.

11. Метаболизм арахидоновой кислоты (АА) при участии фосфолипазы А2 (PLA2).

==>>Воспаление.

12. Метаболиты арахидоновой кислоты по циклооксигеназному пути.

13. Механизм действия нестероидных противоспалительных препаратов с анальгетическим действием.

14. Типы циклооксигеназ. Их стимуляция и ингибирование.

Циклооксигеназа I типа (ингибируется парацетамолом) и II типа (ингибируется диклофенаком)

15. Механизм реализации действия простациклина (PG2) на гладкой мышце сосуда.

16. Схема синтеза эндогенных каннабиноидов.

Эндогенные каннабиноиды(NAEs) –(анандамид) метаболизируются с образованием арахидоновой кислоты и ее последующей деградации.

Механизм действия эндогенного каннабиноида – анандамида на сосудистую стенку:

Быстрая деградация в эндотелии уменьшает расширительный потенциал эндоканнабиноидов.

Влияние анандамида на сопротивление перфузируемого сосудистого русла кишечник (А) и изолированного резистивного мезентериального сосуда (В).

Схема возможного пути метаболизма анандамида, ингибирующего его прямое вазодилятаторное действие на гладкую мышцу сосудов.

17. Эндотелий-зависимое расширение сосудов.

Синтез оксида азота: ключевой элемент - NO-синтаза (конститутивная - работает всегда и индуцибельная - активируется под воздействием определенных факторов)

18. Изоформы NO-синтаз: нейрональная, индуцибильная, эндотелиальная и митохондриальная.

Структура изоформ синтаз оксида азота:

mtNOS –альфа форма nNOS, отличающаяся фосфорилированным С-концом и двумя измененными аминокислотными остатками.

19. Роль NO-синтаз в регуляции различных функций организма.

20. Схема активации синтеза NO и cGMP в эндотелиальной клетке.

21. Физиологические и гуморальные факторы, активирующие эндотелиальную форму NO-синтазы.

Факторы, определяющие биодоступность оксида азота.

Участие оксида азота в реакции окислительного стресса.

Влияние пироксинитрита на белки и ферменты клетки.

22. Синтез оксида азота эндотелиальной клеткой и механизм расширения гладкой мышцы сосудов.

23. Гуанилатциклаза – фермент, катализирующий образование цГМФ из ГТФ, структура и регуляция. Механизм расширения сосуда при участии цГМФ.

24. Ингибирование цГМФ Rho-киназного пути сокращения гладких мышц сосудов.

25. Вазоактивные факторы, синтезируемые эндотелием и пути реализации их воздействия на гладкую мышцу сосуда.

26. Открытие эндотелина – эндогенного пептида, обладающего вазоактивными свойствами.

Эндотелин – эндогенный пептид, синтезируемый эндотелиальными клетками сосудистой системы.

Эндотелин – 21 –членный пептид, обладающий вазоконстрикторными свойствами.

Структура эндотелина-1, Семейство эндотелинов: ЭТ-1, ЭТ-2, ЭТ-3.

Эндотелин:

Экспрессия разных форм пептида в тканях:

  • Эндотелин-1 (эндотелий и гладкая мышца сосудов, сердечные миоциты, почка и т.д.)
  • Эндотелин -2 (почка, мозг, ж-кишечный тракт и т.д.)
  • Эндотелин-3 (кишечник, надпочечники)

Механизм синтеза в тканях: три разных гена -
Препроэндотелин-->биг эндотелин-->эндотелины
*фурин-подобная эндопепт. эндотелинпревр. ферм.
(клеточная поверхн., внутрикл. визикулы)
Типы рецепторов и эффектов :
Ета (гладкая мышца - сокращение)
Етв (эндотелий-выделение эндотелий-зав. расш. фак. гладкая мышца- сокращение)
Содержание в тканях и крови: фм/мл
увеличение в 2-10 раз при сердечной недостаточности, легочной гипертензии, почечной недостаточности, субарахноидальной геморрагии и т.д.

27. Синтез эндотелина эндотелиальной клеткой и механизм сокращения гладкой мышцы сосуда.

28. Механизм реализации действия эндотелина на гладкую мышцу сосуда в норме и патологии.

29. Патологическая роль эндотелина.

  • вазоконстрикция
  • гипертрофия
  • фиброз
  • воспаление

30. Основные факторы гуморальной регуляции сосудистого тонуса, опосредующие свое действие через изменение секреторной функции эндотелия.

  • Катехоламины (адреналин и норадреналин)
  • Ангиотезин-рениновая система
  • Семейство эндотелинов
  • АТФ, АДФ
  • Гистамин
  • Брадикинин
  • Тромбин
  • Вазопрессин
  • Вазоактивный интенстинальный пептид
  • Кольцитонин генсвязывающий пептид
  • Натрийуретический пептид
  • Оксид азота

Эндотелий сосудов обладает способностью синтезировать и выделять факторы, вызывающие расслабление или сокращение гладких мышц сосудов в ответ на разного рода стимулы. Общая масса эндотелиоцитов, монослойно выстилающих кровеносные сосуды изнутри (интима), у человека приближается к 500 г. Общая масса, высокая секреторная способность эндотелиальных клеток позволяют рассматривать эту «ткань» как своеобразный эндокринный орган (железу). Распределенный по сосудистой системе эндотелий, очевидно, предназначен для вынесения своей функции непосредственно к гладкомышечным образованиям сосудов. Период полужизни выделяемого эндотелиоцитами инкрета очень мал - 6-25 с (вследствие быстрого перехода его в нитраты и нитриты), но он способен сокращать и расслаблять гладкие мышцы сосудов, не оказывая влияния на эффектор-ные образования других органов (кишечник, бронхи, матка).

Выделяемые эндотелием сосудов расслабляющие факторы (ЭРФ) - нестабильные соединения, одним из которых является оксид азота (N0). В эндотелиальных клетках сосудов N0 образуется из а-аргинина при участии фермента - синтетазы окиси азота.

NO рассматривается как некоторый общий путь передачи сигнала от эндотелия к гладким мышцам сосудов. Выделение из эндотелия N0 ингибируется гемоглобином и потенцируется ферментом - дисмутазой.

Участие эндотелия в регуляции тонуса сосудов общепризнанно. Для всех магистральных артерий показана чувствительность эндотелиоцитов к скорости кровотока, выражающаяся в выделении ими расслабляющего гладкие мышцы сосудов фактора, приводящего к увеличению просвета этих артерий. Таким образом, артерии непрерывно регулируют свой просвет соответственно скорости течения по ним крови, что обеспечивает стабилизацию давления в артериях в физиологическом диапазоне изменений величин кровотока. Этот феномен имеет большое значение в условиях развития рабочей гиперемии органов и тканей, когда происходит значительное увеличение кровотока, а также при повышении вязкости крови, вызывающей рост сопротивления кровотоку в сосудистой сети. Повреждение механочувствительности сосудистых эндотелиоцитов может быть одним из этиологических (патогенетических) факторов развития облитерирующего эндоартериита и гипертонической болезни.

Роль курения

Общепризнанно, что никотин и оксид углерода влияют на функции сердечно-сосудистой системы и вызывают изменения обмена веществ, повышения артериального давления, частоты пульса, потребления кислорода, содержания в плазме катехоламинов и карбоксигемоглобина, атерогенеза и пр. Все это способствует развитию и ускорении появления заболеваний сердечно-сосудистой системы

Никотин повышает уровень сахара в крови и, возможно, поэтому курение способствует утолению голода и ощущению эйфории. После выкуривания каждой сигареты увеличивается частота сердечных сокращений, снижается ударный объем при физической нагрузке разной интенсивности.

Выкуривание большого числа сигарет с низким содержанием никотина вызывает такие же изменения, как и выкуривание меньшего количества сигарет с бульшим содержанием никотина. Это очень важный факт, свидетельствующий об иллюзорности курения безопасных сигарет.

Важную роль в развитии поражения сердечно-сосудистой системы при курении играет оксид углерода, который вдыхается в виде газа с табачным дымом. Оксид углерода способствует развитию атеросклероза, влияет на мышечную ткань (частичный или тотальный некроз), на функцию сердца у больных стенокардией, включая негативное инотропное действие на миокард

Важное значение имеет тот факт, что у курильщиков повышен уровень холестерина в крови по сравнению с некурящими, что вызывает закупорку коронарных сосудов.

Курение оказывает существенное влияние на ишемическую болезнь сердца (ИБС), вероятность заболевания ИБС возрастает с увеличением количества потребляемых сигарет; эта вероятность также возрастает с увеличением длительности курения, но снижается у лиц, прекративших курение.

Курение также оказывает влияние на развитие инфаркта миокарда. Риск инфаркта (в том числе повторного) возрастает с количеством выкуренных за день сигарет, а также в старших возрастных группах, особенно старше 70 лет, курение сигарет с более низким содержанием никотина не снижает риск развития инфаркта миокарда. Влияние курения на развитие инфаркта миокарда обычно связывают с возникновением коронарного атеросклероза, вследствие чего появляются ишемия сердечной мышцы и последующий некроз ее. Как содержащие, так и не содержащие никотин сигареты увеличивают присутствие в крови оксида углерода, уменьшают усвоение кислорода сердечной мышцей.

Существенное воздействие оказывает курение на заболевания периферических сосудов, в частности на развитие эндартериита нижних конечностей (перемежающаяся хромота или облитерирующий эндартериит), особенно при сахарном диабете. После выкуривания одной сигареты спазм периферических сосудов держится примерно 20 мин, в связи с чем велика опасность развития облитерирующего эндартериита.

Курящие больные сахарным диабетом подвергаются большему риску (на 50%) развития обструктивного поражения периферических сосудов, чем некурящие.

Курение является также фактором риска в развитии атеросклеротической аневризмы аорты, развивающейся у курящих в 8 раз чаще по сравнению с некурящими. У курильщиков в 2-3 раза увеличена смертность от аневризмы брюшной аорты.

Спазм периферических сосудов, возникающих под влиянием никотина, играет роль в развитии гипертонической болезни (во время курения артериальное давление особенно сильно повышается).

    Артериальная гипертензия (эссенциальная гипертензия). Патогенез. Факторы риска.

Артериальная гипертензия - стойкое повышение артериального давления. По происхождению различают артериальную гипертензию первичную и вторичную. Вторичное повышение артериального давления является лишь симптомом (симптоматическая гипертензия), следствием какого-нибудь другого заболевания (гломерулонефрит, сужение дуги аорты, аденома гипофиза или коркового вещества надпочечных желез и т. д.).

Первичную гипертензию до сих пор называют эссенциальной гипертензией, что указывает на невыясненность ее происхождения

Гипертоническая болезнь является одним из вариантов первичной артериальной гипертензии. При первичной гипертензии повышение артериального давления является основным проявлением болезни.

На долю первичной гипертензии приходится 80% всех случаев артериальной гипертензии. Остальные 20% составляют вторичную артериальную гипертензию, из них 14% связаны с заболеваниями паренхимы почек или ее сосудов.

Этиология. Причины первичной гипертензии, возможно, различны и многие из них до сих пор окончательно не установлены. Однако не подлежит сомнению, что определенное значение в возникновении гипертензии имеет, перенапряжение высшей нервной деятельности под влиянием эмоциональных воздействий. Об этом свидетельствуют частые случаи развития первичной гипертензии у людей, переживших ленинградскую блокаду, а также у людей "стрессовых" профессий. Особое значение при этом имеют отрицательные эмоции, в частности эмоции, не отреагированные в двигательном акте, когда вся сила их патогенного воздействия обрушивается на систему кровообращения. На этом основании Г. Ф. Ланг назвал гипертоническую болезнь "болезнью неотреагированных эмоций".

Артериальная гипертензия - это "болезнь осени жизни человека, которая лишает его возможности дожить до зимы" (А. А. Богомолец). Тем самым подчеркивается роль возраста в происхождении гипертонической болезни. Однако и в молодом возрасте первичная гипертензия встречается не так редко. Важно при этом отметить, что до 40 лет мужчины болеют чаще, чем женщины, а после 40 соотношение приобретает противоположный характер.

Определенную роль в возникновении первичной гипертензии играет наследственный фактор. В отдельных семьях заболевание встречается в несколько раз чаще, чем у остального населения. О влиянии генетических факторов свидетельствует и большая конкордантность по гипертонической болезни у однояйцевых близнецов, а также существование линий крыс, предрасположенных или резистентных к некоторым формам гипертензии.

В последнее время в связи с проведенными в некоторых странах и среди народностей (Япония, Китай, негритянское население Багамских островов, некоторые районы Закарпатской области) эпидемиологическими наблюдениями установлена тесная связь между уровнем артериального давления и количеством потребляемой соли. Считают, что длительное потребление более 5 г соли в день способствует развитию первичной Гипертензии у людей, имеющих наследственное предрасположение к ней.

Успешное экспериментальное моделирование "солевой гипертензии" подтверждает значение избыточного потребления соли. С приведенными наблюдениями хорошо согласуются клинические данные о благоприятном терапевтическом эффекте низкосолевой диеты при некоторых формах первичной гипертензии.

Таким образом, в настоящее время установлено несколько этиологических факторов гипертензии. Неясно только, какой из них является причиной, а какой играет роль условия в возникновении болезни.

    Прекапиллярный и посткапиллярный виды гипертензии малого круга кровообращения. Причины. Последствия.

Лёгочная гипертензия (АД более 20/8 мм рт.ст.) бывает либо прекапиллярной, либо посткапиллярной.

Прекапиллярная форма лёгочной гипертензии характеризуется повышением давления (а значит, сопротивления) в мелких артериальных сосудах системы лёгочного ствола. Причинами прекапиллярной формы гипертензии бывают спазм артериол и эмболия ветвей лёгочной артерии.

Возможные причины спазма артериол:

        стресс, эмоциональные нагрузки;

        вдыханием холодного воздуха;

        рефлекс фон Эйлера-Лильестранда (констрикторная реакция лёгочных сосудов, возникающая в ответ на снижение рО2 в альвеолярном воздухе);

        гипоксия.

Возможные причины эмболии ветвей лёгочной артерии:

    тромбофлебит;

    нарушения ритма сердца;

    гиперкоагуляция крови;

    полицитемия.

Резкий подъём АД в лёгочном стволе раздражает барорецепторы и путём срабатывания рефлекса Швачка-Парина приводит к снижению системного АД, замедлению ритма сердца, увеличению кровенаполнения селезёнки, скелетных мышц, уменьшению венозного возврата крови к сердцу, предотвращению отёка лёгкого. Это ещё больше нарушает работу сердца, вплоть до его остановки и гибели организма.

Лёгочная гипертензия усиливается при следующих состояниях:

    снижении температуры воздуха;

    активизации САС;

    полицитемии;

    повышении вязкости крови;

    приступах кашля или хроническом кашле.

Посткапиллярная форма лёгочной гипертензии бывает вызвана снижением оттока крови по системе лёгочных вен. Характеризуется застойными явлениями в лёгких, возникающими и усиливающимися при сдавлении лёгочных вен опухолью, соединительнотканными рубцами, а также при различных заболеваниях, сопровождающихся левожелудочковой сердечной недостаточностью (митральном стенозе, гипертонической болезни, инфаркте миокарда, кардиосклерозе и др.).

Следует отметить, что посткапиллярная форма может осложнять прекапиллярную форму, а прекапиллярная - посткапиллярную.

Нарушение оттока крови из лёгочных вен (при повышении давления в них) приводит к включению рефлекса Китаева, приводящего к увеличению прекапиллярного сопротивления (вследствие сужения лёгочных артерий) в малом круге кровообращения, предназначенного для разгрузки последнего.

Лёгочная гипотензия развивается при гиповолемии, вызванной кровопотерей, коллапсом, шоком, пороками сердца (со сбросом крови справа налево). Последнее, например, возникает при тетраде Фалло, когда значительная часть венозной малооксигенированной крови поступает в артерии большого круга, минуя лёгочные сосуды, в том числе минуя обменные капилляры лёгких. Это приводит к развитию хронической гипоксии и вторичных расстройств дыхания.

В этих условиях, сопровождающихся шунтированием лёгочного кровотока, ингаляция кислорода не улучшает процесс оксигенации крови, гипоксемия сохраняется. Таким образом, эта функциональная проба - простой и надёжный диагностический тест выявления этого вида нарушения лёгочного кровотока.

    Симптоматические гипертензии. Виды, патогенез. Экспериментальные гипертензии.

Поделиться