Деформация с наклонным смещением 4 буквы. Пластическая деформация материалов

Частицы, из которых состоят твердые тела (как аморфные, так и кристаллические) постоянно совершают тепловые колебания около положений равновесия. В таких положениях энергия их взаимодействия минимальная. Если расстояние между частицами уменьшается, начинают действовать силы отталкивания, а если увеличиваться – то силы притяжения. Именно этими двумя силами обусловлены все механические свойства, которыми обладают твердые тела.

Определение 1

Если твердое тело изменяется под воздействием внешних сил, то частицы, из которых оно состоит, меняют свое внутреннее положение. Такое изменение называется деформацией .

Различают деформации нескольких видов. На изображении показаны некоторые из них.

Рисунок 3 . 7 . 1 . Некоторые виды деформаций твердых тел: 1 – деформация растяжения; 2 – деформация сдвига; 3 – деформация всестороннего сжатия.

Первый вид – растяжение или сжатие – является наиболее простым видом деформации. В таком случае изменения, происходящие с телом, можно описать при помощи абсолютного удлинения Δ l , которое происходит под действием сил, обозначаемых F → . Взаимосвязь, существующая между силами и удлинением, обусловлена геометрическими размерами тела (в первую очередь толщиной и длиной), а также механическими свойствами вещества.

Определение 2

Если мы разделим величину абсолютного удлинения на первоначальную длину твердого тела, мы получим величину его относительного удлинения (относительной деформации).

Обозначим этот показатель ε и запишем следующую формулу:

Определение 3

Относительная деформация тела растет при его растяжении и соответственно уменьшается при сжатии.

Если учесть, в каком именно направлении внешняя сила действует на тело, то мы можем записать, что F будет больше нуля при растяжении и меньше нуля при сжатии.

Определение 4

Механическое напряжение твердого тела σ – это показатель, равный отношению модуля внешней силы к площади сечения твердого тела.

Величину механического напряжения принято выражать в паскалях (П а) и измерять в единицах давления.

Важно понимать, как именно механическое напряжение и относительная деформация связаны между собой. Если отобразить их взаимоотношения графически, мы получим так называемую диаграмму растяжения. При этом нам нужно отмерить величину относительной деформации по оси x , а механическое напряжение – по оси y . На рисунке ниже представлена диаграмма растяжения, типичная для меди, мягкого железа и некоторых других металлов.

Рисунок 3 . 7 . 2 . Типичная диаграмма растяжения для пластичного материала. Голубая полоса – область упругих деформаций.

В тех случаях, когда деформация твердого тела меньше 1 % (малая деформация), то связь между относительным удлинением и механическим напряжением приобретает линейный характер. На графике это показано на участке O a . Если напряжение снять, то деформация исчезнет.

Определение 5

Деформация, исчезающая при снятии напряжения, называется упругой .

Линейный характер связи сохраняется до определенного предела. На графике он обозначен точкой a .

Определение 6

Предел пропорциональности – это наибольшее значение σ = σ п р, при котором сохраняется линейная связь между показателями σ и ε .

На данном участке будет выполняться закон Гука:

В формуле содержится так называемый модуль Юнга, обозначенный буквой E .

Если мы продолжим увеличивать напряжение на твердое тело, то линейный характер связи нарушится. Это видно на участке a b . Сняв напряжение, мы также увидим практически полное исчезновение деформации, то есть восстановление формы и размеров тела.

Предел упругости

Определение 7

Предел упругости – максимальное напряжение, после снятия которого тело восстановит свою форму и размер.

После перехода этого предела восстановления первоначальных параметров тела уже не происходит. Когда мы снимаем напряжение, у тела остается так называемая остаточная (пластическая) деформация.

Определение 8

Обратите внимание на участок диаграммы b c , где напряжение практически не увеличивается, но деформация при этом продолжается. Это свойство называется текучестью материала .

Предел прочности

Определение 9

Предел прочности – максимальное напряжение, которое способно выдержать твердое тело, не разрушаясь.

В точке e материал разрушается.

Определение 10

Если диаграмма напряжения материала имеет вид, соответствующий тому, что показан на графике, то такой материал называется пластичным . У них обычно деформация, при которой происходит разрушение, заметно больше области упругих деформаций. К пластичным материалам относится большинство металлов.

Определение 11

Если материал разрушается при деформации, которая превосходит область упругих деформаций незначительно, то он называется хрупким . Такими материалами считаются чугун, фарфор, стекло и др.

Деформация сдвига имеет аналогичные закономерности и свойства. Ее отличительная особенность состоит в направлении вектора силы: он направлен по касательной относительно поверхности тела. Для поиска величины относительной деформации нам нужно найти значение Δ x l , а напряжения – F S (здесь буквой S обозначена та сила, которая действует на единицу площади тела). Для малых деформаций действует следующая формула:

∆ x l = 1 G F S

Буквой G в формуле обозначен коэффициент пропорциональности, также называемый модулем сдвига. Обычно для твердого материала он примерно в 2 - 3 раза меньше, чем модуль Юнга. Так, для меди E = 1 , 1 · 10 11 Н / м 2 , G = 0 , 42 · 10 11 Н / м 2 .

Когда мы имеем дело с жидкими и газообразными веществами, то важно помнить, что у них модуль сдвига равен 0 .

При деформации всестороннего сжатия твердого тела, погруженного в жидкость, механическое напряжение будет совпадать с давлением жидкости (p) . Чтобы вычислить относительную деформацию, нам нужно найти отношение изменения объема Δ V к первоначальному объему V тела. При малых деформациях

Буквой B обозначен коэффициент пропорциональности, называемый модулем всестороннего сжатия. Такому сжатию можно подвергнуть не только твердое тело, но и жидкость и газ. Так, у воды B = 2 , 2 · 10 9 Н / м 2 , у стали B = 1 , 6 · 10 11 Н / м 2 . В Тихом океане на глубине 4 к м давление составляет 4 · 10 7 Н / м 2 , а относительно изменения объема воды 1 , 8 % . Для твердого тела, изготовленного из стали, значение этого параметра равно 0 , 025 % , то есть оно меньше в 70 раз. Это подтверждает, что твердые тела благодаря жесткой кристаллической решетке обладают гораздо меньшей сжимаемостью по сравнению с жидкостью, в которой атомы и молекулы связаны между собой не так плотно. Газы могут сжиматься еще лучше, чем тела и жидкости.

От значения модуля всестороннего сжатия зависит скорость, с которой звук распространяется в данном веществе.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

С процессом деформации человек начинает сталкиваться с первых дней своей жизни. Она позволяет нам чувствовать прикосновения. Ярким примером деформации из детства можно вспомнить пластилин. Существуют разные виды деформации. Физика рассматривает и изучает каждый из них. Для начала введём определение самого процесса, а затем постепенно рассмотрим возможные классификации и виды деформации, которые могут возникать в твёрдых объектах.

Определение

Деформация - это процесс перемещения частиц и элементов тела относительно взаимного местоположения в теле. Проще говоря, это физическое изменение внешних форм какого-либо объекта. Есть следующие виды деформации:

  • сдвиг;
  • кручение;
  • изгиб;

Как и любую другую физическую величину, деформацию можно измерить. В простейшем случае используется следующая формула:

е=(р 2 -р 1)/р 1,

где е - это простейшая элементарная деформация (увеличение или уменьшение длины тела); р 2 и р 1 - длина тела после и до деформации соответственно.

Классификация

В общем случае можно выделить следующие виды деформации: упругие и неупругие. Упругие, или обратимые, деформации исчезают после того, как пропадает воздействующая на них сила. Основа этого физического закона используется в силовых тренажёрах, например, в эспандере. Если говорить о физической составляющей, то в основе лежит обратимое смещение атомов - они не выходят за пределы взаимодействия и рамки межатомных связей.

Неупругие (необратимые) деформации, как вы понимаете, являются противоположным процессом. Любая сила, которую приложили к телу, оставляет следы/деформацию. К этому типу воздействия относится и деформация металлов. При таком типе изменения формы зачастую могут меняться и другие свойства материала. Например, при деформации, вызванной охлаждением, может увеличиться прочность изделия.

Сдвиг

Как уже было сказано, существуют различные виды деформации. Они подразделяются по характеру изменения формы тела. В механике сдвигом называют такое изменение формы, при котором нижняя часть бруса закреплена неподвижно, а сила прикладывается касательно к верхней поверхности. Относительная деформация сдвига определяется по следующей формуле:

где Х 12 - это абсолютный сдвиг слоёв тела (то есть расстояние, на которое сместился слой); В - это расстояние между закреплённым основанием и параллельным сдвинутым слоем.

Кручение

Если виды механических деформаций разделяли бы по сложности вычислений, то этот занял бы первое место. Такой вид изменения формы тела возникает при воздействии на него двух сил. При этом смещение любой точки тела происходит перпендикулярно к оси воздействующих сил. Говоря о таком типе деформации, следует упомянуть следующие величины, подлежащие вычислению:

  1. Ф - угол закручивания цилиндрического стержня.
  2. Т - момент действия.
  3. Л - длина стержня.
  4. Г - момент инерции.
  5. Ж - модуль сдвига.

Формула выглядит так:

Ф=(Т*Л)/(Г*Ж).

Другая величина, требующая вычисления, это относительный угол закручивания:

Q=Ф/Л (значения берутся из предыдущей формулы).

Изгиб

Это вид деформации, возникающий при изменении положения и формы осей бруса. Он также подразделяется на два типа - косой и прямой. Прямой изгиб - это такой вид деформации, при котором действующая сила приходится прямо на ось рассматриваемого бруса, в любом другом случае речь идёт о косом изгибе.

Растяжение-сжатие

Различные виды деформации, физика которых достаточно хорошо изучена, редко используются для решения различных задач. Однако при обучении в школе один из них зачастую применяется для определения уровня знаний учеников. Кроме этого названия, у данного типа деформации также присутствует другое, которое звучит так: линейное напряженное состояние.

Растяжение (сжатие) происходит, если сила, воздействующая на объект, проходит через центр его массы. Если говорить о визуальном примере, то растяжение приводит к увеличению длины стержня (иногда к разрывам), а сжатие - к уменьшению длины и возникновению продольных изгибов. Напряжение, вызываемое таким видом деформации, прямо пропорционально силе, воздейсвующей на тело, и обратно пропорционально площади поперечного сечения бруса.

Закон Гука

Основной закон, рассматриваемый при деформации тела. Согласно ему, деформация, возникающая в теле, прямо пропорциональна воздействующей силе. Единственная оговорка заключается в том, что он применим только при малых значениях деформации, поскольку при больших значениях и превышении предела пропорциональности эта связь становится нелинейной. В простейшем случае (для тонкого растяжимого бруска) закон Гука имеет следующий вид:

где Ф - это приложенная сила; к - коэффициент упругости; Л - это изменение длины бруса.

Если с двумя величинами всё понятно, то коэффициент (к) зависит от нескольких факторов, таких как материал изделия и его размеры. Его значение также можно вычислить по следующей формуле:

где Е - это модуль Юнга; С - площадь поперечного сечения; Л - длина бруса.

Выводы

На самом деле существует множество способов вычисления деформации предмета. Различные виды деформации используют разные коэффициенты. Виды деформации отличаются не только по форме результата, но и по силам, воздействующим на объект, а для вычислений вам потребуются недюжинные усилия и знания в области физики. Надеемся, что эта статья поможет вам разобраться в понимании базовых физических законов, а также позволит продвинуться немного дальше в изучении этого

Может оказаться, что изображения, реально нами наблюдаемые, точно соответствуют изображениям алгебры Это обстоятельство упростит анализ. Ряд аналогичных ситуаций будет рассмотрен в части III (см. приложение).

Следует, однако, заметить, что в большинстве случаев мы можем наблюдать лишь искаженные варианты идеальных изображений в результате мы сталкиваемся с фундаментальной проблемой - каким образом возникают подобные деформации. Полный синтез образа требует определения механизма деформации. Оно необходимо также и на стадии анализа.

Обозначим через отображение алгебры изображений на множество изображений, которые могут наблюдаться. Элементы

будем называть деформированными изображениями.

Обычно число преобразований велико и заранее неизвестно, какое именно будет действовать. Символ Ф используется для обозначения множества всех преобразований.

До сих пор мы ничего не сказали о природе деформированных изображений. Простейшим является случай когда изображения относятся к тому же типу, что и идеальные изображения алгебры изображений В этом случае будем говорить об автоморфных деформациях, отображает алгебру изображений в самое себя.

В противном случае, при гетероморфных деформациях, множество может включать целый ряд различных типов, как мы убедимся в этой главе. Может оказаться, что также обладает структурой алгебры изображений, хотя и отличной от Следует подчеркнуть, что даже и в таком случае структуры эти могут резко отличаться и, следовательно, между существует принципиальное различие. Довольно часто мы будем сталкиваться со случаем при котором идеальные (недеформированные) изображения являются частными

случаями деформированных. Как правило, разрушает структуру, и поэтому будет менее структурированной, чем

В случае, когда а область определения часто будет расширяться от до причем область значений будет оставаться равной . В таком случае можно многократно применять последовательность и, естественно, обобщить до полугруппы преобразований.

Во многих случаях можно будет также расширять область определения преобразований подобия до Все сказанное можно объединить в виде условия, которое ниже в большинстве случаев будет выполняться. В данном разделе будем предполагать, что образует группу.

Определение 4.1.1. Механизм деформации называется регулярным, если

Автоморфные деформации представляют собой весьма частный случай регулярного множества Ф. Оба типа преобразований, будут определяться на одном и том же множестве. Их роли, однако, совершенно различны. Преобразования подобия обычно изменяют изображение систематически, и эти изменения интуитивно понятны. В тех случаях, когда группа, преобразования не приводят к потере информации, так как обратное преобразование восстанавливает исходное изображение. Деформации же, с другой стороны, могут исказить изображение до такой степени, что будет невозможно точно восстановить его. Деформации приводят к потере информации.

Взаимодействие преобразований подобия и деформаций играет существенную роль, и в связи с этим мы введем два свойства, выполнение которых существенно упрощает анализ образов.

Определение 4.1.2. Рассмотрим регулярный механизм деформации на алгебре изображений. Будем называть его

Следует заметить, что это жесткие условия и выполняются они не очень часто. Естественно, деформации явно ковариантны, если Ф - коммутативная полугруппа и Другой простой случай возникает, когда векторное пространство, образуется определенными на нем линейными операторами; при таких условиях деформации являются гомоморфными.

Пусть - метрическое пространство с расстоянием, удовлетворяющим следующим условиям:

Если влечет расстояние является определенным, однако это допущение будет вводиться не всегда.

Естественно потребовать, чтобы метрика соответствовала отношениям подобия в и обеспечиваться это будет двумя способами.

Определение 4.1.3. Будем называть расстояние определенное на регулярном

Исходя из заданного расстояния определим

В таком случае легко убедиться в том, что расстояние инвариантно, а расстояние полиостью инвариантно.

Иногда в основе деформации будет лежать некий физический механизм, реализация которого сопряжена с затратами мощности, энергии или какой-либо аналогичной физической величины, необходимой для преобразования идеального изображения в реально наблюдаемую форму. Мы воспользуемся более нейтральным термином и будем говорить о необходимом усилии,

Определение 4.1.4. Рассмотрим на регулярном пространстве деформации неотрицательную функцию обладающую следующими свойствами:

функция называется инвариантной функцией усилия. Если выполняется условие и условие

Если 3.5 - ковариантио, то условие выполняется автоматически. В результате приходим к следующей теореме:

Теорема 4.1.1. Пусть функция усилия является полностью инвариантной, и выполняется равенство

В таком случае является полностью инвариантным расстоянием.

Замечание. Мы молчаливо подразумевали, что соотношение рассматриваемое как уравнение относительно всегда имеет хотя бы одно решение. Если это не так, то соответствующее значение следует заменить на и может оказаться необходимым допустить значение для итогового расстояния. Это обстоятельство повлияет на доказательство лишь в незначительной степени.

Доказательство. Функция является симметрической относительно двух своих аргументов, и для доказательства неравенства треугольника рассмотрим фиксированные Если существуют такие, что

то, обозначив получаем

Отсюда на основании свойства определения 4.1.4 следует, что

откуда в свою очередь следует, что

Наконец, полная инвариантность получается из свойства определения 4.1.4, так как влечет т. е. Это означает, что расстояние является полностью инвариантным.

Если бы мы работали с функцией усилия обладающей лишь инвариантностью, то можно было бы утверждать только то, что результирующее расстояние инвариантно.

Введем вероятностную меру Р на некоторой -алгебре подмножеств . Это означет, что мы будем говорить о некоторых деформациях как более вероятных, чем другие. Нам также потребуются -алгебры и на Т и соответственно, такие, чтобы для любого подмножества Е в и для которых выполняется условие и соответственно, было справедливо

Для определенного деформированный аналог будет иметь на вероятностную меру

Введем теперь более общий и более интересный вариант ковариантных деформаций.

Определение 4.1.5. Регулярные деформации с вероятностной мерой Р называются ковариантными по вероятности, если для всякого преобразования подобия преобразования имеют на одно и то же распределение вероятностей.

В тех случаях, когда деформация сужает образ-соответствие на случайное подмножество Е (но не его значения), мы будем интерпретировать ковариантность по вероятности как равенство распределения вероятностей на множестве распределению вероятностей на случайном множестве Е.

При использовании этого определения для любого фиксированного можно записать, что

С другой стороны, если сотношение (4.1.12) выполняется для любых и Е, то деформации являются ковариантными по вероятности.

Важное следствие ковариантности по вероятности устанавливается следующей теоремой:

Теорема 4.1.2. Пусть деформации ковариантны по вероятности и образ, состоящий из классов эквивалентности по модулю

В таком случае, если Е представляет собой -инвариантное множество в то условные вероятности являются вполне определенными: не зависит от если .

Доказательство. Рассмотрим условную вероятность

где -некоторый прототип (см. (3.1.14)). В таком случае

ввиду того, что имеет место ковариантность по вероятности. С другой стороны,

так как Е является -инвариантным. Следовательно, константа, так что условная вероятность действительно является вполне определенной, поскольку она не зависит от того, какое изображение служит исходным при рассмотрении образа .

В противном случае нельзя было бы говорить о если, конечно, не ввести также вероятностную меру на алгебре идеальных изображений

К обсуждению, проведенному в данном разделе, следует добавить, что желательно выбирать алгебраическую, топологическую и вероятностную структуры таким образом, чтобы они допускали естественное взаимное согласование. Читатель, интересующийся тем, как это может быть сделано в рамках стандартной алгебраическо-топологической постановки, может обратиться к монографии автора (1963).

При выборе конкретного вида Р мы сталкиваемся с большими трудностями, чем те, которые связаны с теоретическими

аспектами меры. Выбор должен производиться в каждом случае отдельно таким образом, чтобы, используя доступные сведения из соответствующей предметной области, обеспечить достижение естественного компромисса: модель должна обеспечить достаточно точную аппроксимацию изучаемых явленнй и допускать в то же время возможность аналитического или численного решения. Тем не менее можно сформулировать несколько общих принципов, которые могут оказаться полезными при построении модели деформаций.

Во-первых, следует попытаться разложить , которое может быть довольно сложным пространством, на простые факторы Произведение может быть конечным, счетным или несчетным, как мы убедимся ниже. Иногда такое разбиение задается непосредственно, как, например, в случае, когда деформации сводятся к топологическому преобразованию опорного пространства, за которым следует деформация маски. Некоторую пользу можно извлечь также из того способа, при помощи которого алгебры изображений построены из элементарных объектов. Если рассматриваются изображения, конфигурации которых включают образующих, и все они идентифицируемы, то можно попробовать воспользоваться представлением

рассчитывая на то, что свойства факторов окажутся достаточно удобными. Этот метод будет работать, однако, только в том случае, когда образующие однозначно определяются изображением. Вместо этого можно попробовать воспользоваться соответствующим разбиением в применении к каноническим конфигурациям, образующие которых определены в рассматриваемой алгебре изображений.

После разделения на достаточно простые факторы необходимо решить, какую вероятностную меру следует ввести на При этом существенным моментом является выбор такого способа факторизации деформаций, при котором отдельные факторы оказываются независимыми друг от друга. Невозможно полностью задать Р, не располагая эмпирической информацией, и для того чтобы получить оценки с удовлетворительной точностью, аксиоматическая модель должна быть в достаточной степени структурирована. Это критический момент для определения Р, и здесь требуется такое понимание механизма деформации, которое исключит неадекватное представление данных при последующем анализе. Если нам действительно удалось провести разбиение таким образом, что факторы в вероятностном смысле независимы, остается еще решить задачу

определения на них безусловных распределении. В качестве примера рассмотрим идеальные образующие, порождаемые механизмом типа где можно рассматривать как разностный оператор, а деформированные образующие определяются выражением Первое, что следует попробовать - это допустить независимость значений различных аргументах). Если это не может быть принято в качестве адекватной аппроксимации, стоило бы попытаться устранить зависимость посредством работы не с а с некоторым ее преобразованием (например, линейным). Другими словами, можно выбирать модель таким образом, чтобы деформации принимали простую вероятностную форму. Отметим в качестве еще одного примера, что при работе с образами-соответствиями (см. разд. 3.5) и дискретным опорным пространством X можно попытаться промоделировать Р исходя из предположения о том, что различные точки X отображаются на опорное пространство независимо и что соответствующие распределения различны.

Для того чтобы сузить выбор безусловных распределений, рассмотрим роль преобразований подобия. Если, как и выше, выбрано удачно, то можно рассчитывать, что Р будет обладать соответствующей инвариантностью. Итак, если подобные идеальные изображения и то в первую очередь следует выяснить, не обладают ли одним и тем же распределением вероятностей. Можно также использовать другой подход: попробовать модель, постулирующую равенство распределений вероятностей этот путь приводит нас к ковариантности по вероятности.

С помощью этих методов можем определить аналитическую форму Р, и оценки свободных параметров получить эмпирически.

Механизмы деформации будут классифицироваться на основе двух критериев: уровня и типа.

Под уровнем механизма деформации мы будем подразумевать тот этап синтеза образов изображений, на котором определяется Высший уровень, уровень изображений, соответствует тому случаю, когда

Деформация (англ. deformation ) - это изменение формы и размеров тела (или части тела) под действием внешних сил, при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела. При увеличении напряжения деформация может закончиться разрушением. Способность материалов сопротивляться деформации и разрушению под воздейстивем различного вида нагрузок характеризуется механическими свойствами этих материалов.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преобладающим действием касательной составляющей напряжения, другие - с действием его нормальной составляющей.

Виды деформации

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения;
  • Деформация сжатия;
  • Деформация сдвига (или среза);
  • Деформация при кручении;
  • Деформация при изгибе.

К простейшим видам деформации относятся: деформация растяжения, деформация сжатия, деформация сдвига. Выделяют также следующие виды деформации: деформация всестороннего сжатия, кручения, изгиба, которые представляют собой различные комбинации простейших видов деформации (сдвиг, сжатие, растяжение), так как сила приложенная к телу, подвергаемому деформации, обычно не перпендикулярна его поверхности, а направлена под углом, что вызывает как нормальные, так и касательные напряжения. Изучением видов деформации занимаются такие науки, как физика твёрдого тела, материаловедение, кристаллография.

ИЦМ(www.сайт)

В твёрдых телах, в частности - металлах, выделяют два основных вида деформаций - упругую и пластическую деформацию, физическая сущность которых различна.

Деформация металла. Упругая и пластическая деформация

Влияние упругой (обратимой) деформации на форму, структуру и свойства тела полностью устраняется после прекращения действия вызвавших её сил (нагрузок), так как под действием приложенных сил происходит только незначительное смещение атомов или поворот блоков кристалла. Сопротивление металла деформации и разрушению называется прочностью. Прочность является первым требованием, предъявляемым к большинству изделий.

Модуль упругости - это характеристика сопротивления материалов упругой деформации. При достижении напряжениями так называемого предела упругости (или порога упругости ) деформация становится необратимой.

Пластическая деформация , остающаяся после снятия нагрузки, связана с перемещением атомов внутри кристаллов на относительно большие расстояния и вызывает остаточные изменения формы, структуры и свойств без макроскопических нарушений сплошности металла. Пластическую деформацию также называют остаточной или необратимой. Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием .

ИЦМ(www.сайт)

Пластическая деформация металла . Для металлов характерно большее сопротивление растяжению или сжатию, чем сдвигу. Поэтому процесс пластической деформации металла обычно представляет собой процесс скольжения одной части кристалла относительно другой по кристаллографической плоскости или плоскостям скольжения с более плотной упаковкой атомов, где наименьшее сопротивление сдвигу. Скольжение осуществляется в результате перемещения в кристалле дислокаций. В результате скольжения кристаллическое строение перемещающихся частей не меняется.

Другим механизмом пластической деформации металла является двойникование . При деформации двойникованием напряжение сдвига выше, чем при скольжении. Двойники обычно возникают тогда, когда скольжение по тем или иным причинам затруднено. Деформация двойникованием обычно наблюдается при низких температурах и высоких скоростях приложения нагрузки.

Пластичность - это свойство твёрдых тел под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные (пластические) деформации после устранения этих сил. Отсутствие или малое значение пластичности называется хрупкостью. Пластичность металлов широко используется в технике.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. - 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. - 199 с.: ил. - (Профтехобразование). ББК 34.2. Ж 86. УДЖ 620.1
  2. Гуляев А.П. Металловедение. - М.: Металлургия, 1977. - УДК669.0(075.8)
  3. Солнцев Ю.П., Пряхин Е.И., Войткун Ф. Материаловедение: Учебник для вузов. - М.: МИСИС, 1999. - 600 с. - УДК 669.017

Поделиться